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The genome of Pelosinus fermentans JBW45, isolated from a chromium-contaminated site in Hanford, Washington, USA, has
been completed with PacBio sequencing. Nine copies of the rRNA gene operon and multiple transposase genes with identical
sequences resulted in breaks in the original draft genome and may suggest genomic instability of JBW45.
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Pelosinus fermentans JBW45 was isolated from groundwater
stimulated for hexavalent-chromium reduction by injection

of a polylactate compound (1). Pelosinus spp. are found in sites
contaminated by heavy metals, explosives, and chlorinated sol-
vents, at low or below-detection levels, but become dominant fol-
lowing nutrient addition in vitro (2–14) or in situ (1, 15, 16). A
strict anaerobe, JBW45 likely resides in sediment-associated, an-
aerobic microsites (6). Although Pelosinus strains have been seen
to form spores (17, 18), spore formation has not been docu-
mented for JBW45.

Previous genome sequencing of JBW45 with Illumina technol-
ogy resulted in 98 contigs (1). Draft genome sequences for three
other Pelosinus spp. from Hanford (A11, B4, and HCF1) and the
type strain R7 from Russian kaolin clays are similar to each other
but show little synteny with JBW45 or the completed genome of
Pelosinus sp. UFO1, isolated from Oak Ridge, Tennessee, USA
(19–21).

The complete genome sequence of JBW45 was determined
with a Pacific Biosciences (PacBio, Menlo Park, California, USA)
RSII instrument with P4-C2 chemistry as described previously
(22). Two single-molecule real-time (SMRT) cells yielded
1,345,758,432 bases in 202,124 reads with a mean and maximum
read length of 6,656 and 35,018 bases, respectively. SMRT analysis
version 2.2 and HGAP version 3.0 (PacBio) were used for se-
quence assembly, which was improved with Pilon (23) and anno-
tated as described previously (1). A single contig with 32-kb over-
lapping ends was generated, differing only by the presence of a
putative transposase gene (JBW_01610). PCR across this region
showed the transposase present in 4 of 14 JBW45 colonies, sug-
gesting that the transposase may be actively moving and possibly
contributing to evolutionary plasticity (24). Six identical copies
(49.6% G�C content) were found in the completed JBW45 ge-

nome. This transposase was not found in the completed UFO1
genome. A similar gene (82 to 83% identity) was found as the only
gene on a small contig in the draft genomes of A11, B4, HCF1, and
R7. JBW45 contains 18 other genes annotated as transposases,
many of which occur multiple times in the genome. Transposase
and rRNA operon sequences resulted in breaks in assembly of the
original JBW45 genome, underscoring the value of longer se-
quencing technologies, which is consistent with other reports (22,
25, 26).

The final assembly was circularized, resulting in a 5,380,816-bp
chromosome with a G�C content of 39.5% and 250-fold se-
quence coverage. A total of 4,743 protein-coding, 77 tRNA, and 28
rRNA (ten 5S, nine 23S, and nine 16S) genes were identified. Four
of the 16S rRNA genes contained a 100-bp insertion, which is
consistent with previous findings of intragenomic 16S rRNA gene
heterogeneity in UFO1 (21, 27). The average number of bacterial
rRNA operons is four (28); however, UFO1 contains fifteen 16S
rRNA genes (21). A higher number of rRNA operons may allow
rapid adaptation and recovery from the stationary phase (29, 30).
This may provide Pelosinus spp. with a competitive advantage
upon nutrient stimulation.

Nucleotide sequence accession numbers. This whole-genome
shotgun project has been deposited in DDBJ/ENA/GenBank un-
der the accession number CP010978. The version described in this
paper is the first version, CP010978.1.
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