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Summary

A ratiometric fluorescent pH sensor based on CdSe/CdZnS nanocrystal quantum dots (NCs) has 

been designed for biological pH ranges. The construct is formed from the conjugation of a pH dye 

(SNARF) to NCs coated with a poly(amido amine) (PAMAM) dendrimer. The sensor exhibits a 

well–resolved ratio response at pH values between 6 and 8 under linear or two–photon excitation, 

and in the presence of a 4% bovine serum albumin (BSA) solution.

Introduction

Inorganic semiconductor nanocrystals (NCs), also known as quantum dots, have been 

widely pursued as components of optical sensors due to their attractive properties of narrow, 

tunable emission, continuous excitation spectra, high molar extinction coefficients and 

photoluminescence (PL) quantum yields, and resistance to photobleaching.1–9 The favorable 

photophysical properties of NCs compared to organic fluorophores make them suitable 

candidates for incorporation into a sensing strategy that modulates the luminescence of NCs. 

Fluorescence Resonant Energy Transfer (FRET) is often used as the means to control 

luminescence, and NCs have been investigated as both FRET donors and acceptors;1,10–12 

however, most examples of FRET–based NC sensor mechanisms take advantage of the NC 

as the donor, which has led to the demonstration of NC sensors for a variety of target 

analytes.2,4,13,14

Emission–ratiometric behavior is a desirable for optical sensors because it allows the ratio 

signal to be read independently of probe concentration or excitation intensity.15 We 
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previously reported3,4 the first example of a CdSe/ZnS NC–based ratiometric and reversible 

pH sensor, which was synthesized through the conjugation of an emissive squaraine pH–

sensitive dye to the NC.4 By engineering the construct so that the emission of the NC 

overlaps with the pH–dependent absorption of the squaraine dye, FRET from the NC donor 

to the dye acceptor was modulated by pH, resulting in a change in the ratio of wavelength–

resolved PL emission from the NC and dye, with an isosbestic point in between. While this 

work represented a proof–of–concept for a general method towards ratiometric NC sensors 

for various targets,1,16 the pH range (pKa ~ 8.8) of sensor response was incompatible with 

biological applications.17,18 Moreover the biological utility of the NC construct was limited 

owing to the potential lability of the ester bond linking the dye to the NC towards 

esterases.19 We therefore sought to design a NC–chemosensor construct that would be 

robust toward degradation and exhibit signal transduction in a pH range of pertinence to 

biology. Here we describe the use of poly(amido amine) (PAMAM) dendrimer ligands and 

an acceptor dye (SNARF–5F) to afford the following properties: (i) a chemosensing 

response in the pH 7 range; (ii) a “starburst” structure that furnishes a high degree of 

valency for coupling of multiple dye substituents per NC; (iii) amine pendants to furnish 

robust amide bonds upon conjugation; and, (iv) the exploitation of the high two–photon 

absorption cross–section of NC20 to establish the chemosensing response. With regard to the 

latter, two-photon excitation allows for minimal scattering of excitation light and hence 

significant depth penetration,21,22 diminished photodamage and excitation of probes 

confined to a small volumes.22–24 These properties are especially valuable for biological 

imaging and sensing25 especially in tumor microenvironments,26 which is of particular 

interest to us.17 Together, the results reported herein, furnish a NC-chemosensing construct 

that operates in the biological pKa range under two-photon excitation conditions.

Experimental

CdSe NCs overcoated with alloyed CdZnS were prepared by a modified literature 

method.27,28 Reagent doses for the overcoat were chosen to yield a ~3 monolayer shell on 

the bare CdSe NCs as previously described.28 The quantum yield of the NC sample was Φ= 

58% in hexanes after one precipitation, with a FWHM = 32 nm. The lowest energy 

absorption peak was at 508 nm.

Dihydrolipoic acid–modified poly(amido amine) (DHLA–PAMAM) was prepared by 

coupling generation 1 PAMAM to DHLA, which was prepared by literature methods,29 in 

the presence of EDC and NHS. Cap–exchange of CdSe/CdZnS with DHLA–PAMAM was 

accomplished by mixing DHLA–PAMAM in methanol with chloroform solution of NCs. 

The dendrimer solubilized NCs were extracted into water and excess ligands were removed 

through dialysis using Millipore centrifuge tubes equipped with 50,000 Da molecular weight 

cut–off (MWCO) filters. The isolated aqueous compatible NCs were found to have a 

quantum yield of Φ = 26% in water and a FWHM = 32 nm. SNARF–5F 5 (and –6) were 

conjugated to the DHLA–PAMAM modified NCs by activating the carboxylic acid of the 

dye for amide coupling with 1–ethyl–3,3′–dimethylaminopropylcarbodiimide (EDC) in pH 6 

MES buffer. The N–hydroxysuccinimide (NHS) activated dye was coupled to DHLA-

PAMAM solubilized NC with stirring. The unreacted dye was removed through dialysis 

with 50,000 Da MWCO filters.
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Samples for UV–vis spectra were prepared by diluting in appropriate standard pH phosphate 

buffers for pH 6–8 and a borate buffer for pH 9. Potassium phosphate buffered solution with 

4%–bovine serum albumin (BSA) was used for calibration studies. Samples for light 

scattering measurements were filtered through a 0.2 μm syringe filter and microcentrifuged 

before measurements were taken at 25 °C. Steady–state fluorescence measurements were 

obtained in a 1 cm path length cuvette from a custom–built Photon Technology Instruments 

fluorometer installed with a Hamamatsu R928 photomultiplier tube and a 150 W Xe 

excitation lamp. Quantum yield (Φ) measurements were made by using rhodamine 590 as 

the reference. A 400 nm emitting Ti: Sapphire laser equipped with a gated intensified CCD 

camera was used to obtain time–resolved fluorescence spectra. Data were collected at room 

temperature using a 1 cm optical path fluorescence cuvette.

Two photon emission spectra were taken on NC–SNARF solutions prepared in potassium 

phosphate buffers with 4% BSA. Buffered sample solutions were placed in 0.1 × 1 mm22 

inner diameter glass microslides attached to a standard microscope slide. All spectral 

measurements were taken on a custom–built multiphoton laser scanning microscope 

(MPLSM) with the emission output fibre–coupled to a spectrometer. Multiphoton excitation 

was performed by a Spectra–Physics Broadband MaiTai diode pumped Ti:Sapphire laser 

using 800–920 nm light at sample powers ranging from 10–60 mW. Two–photon laser 

scanning microscopy imaging was performed on an Olympus Fluoview 300 Laser Scanning 

Microscope modified with a Spectra–Physics MaiTai laser. All images were taken at either 

800 or 850 nm with excitation powers of 42 or 35 mW, respectively.

The efficiency (E) of energy transfer was determined using the Förster equation,

(1)

where τD is the donor excited–state decay lifetime, and kD→A is there energy transfer rate. 

R0 is the characteristic distance at which kD→A = τD
−1 such that E = 50%. Parametrs for the 

fit are given in the ESI. For a given sample, E can be obtained from the quenching of the NC 

donor emission intensity with respect to a control prepared with no dye. The efficiency was 

also obtained using the emission lifetimes of the donor in the absence (τD) and the presence 

of an acceptor (τDA)

(2)

Details of synthesis, measurements and analysis are provided in ESI.

Results

We sought to prepare water–soluble NCs with a strongly bound PAMAM dendrimer 

coating. Dendrimer–capped NCs derived from PAMAM are known with monodentate thiol 

ligand coordination.30,31 However, the monodentate coordination limits stability, which can 

be improved significantly by using multidentate thiol coordination.32–34 To this end, we 
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modified PAMAM dendrimers bidentate dihydrolipoic acid as a NC surface chelating ligand 

as shown in Scheme 1. Ligand exchange of the NCs was accomplished by a facile phase–

exchange method, as shown in Scheme 2, where distilled water was layered on top of a 

vigorously stirred chloroform/methanol solution of NCs and dendrimer ligand. Over the 

course of few hours, the colorful NC phase transfers to the top aqueous layer, leaving excess 

ligands in the organic phase. After water solubilization, NCs exhibiting appreciable quantum 

yield (26%) were obtained. NCs capped with DHLA–PAMAM ligands were also found to 

be stable for months when stored at 4 °C.

The EDC–mediated coupling of the SNARF–5F to the surface of the NCs was performed in 

distilled water. The use of the bicarbonate buffer system, conventional in peptide coupling 

chemistry, resulted in poor coupling yields and precipitation of the amine–terminated NCs. 

Conversely, a high coupling efficiency was achieved in distilled water owing to the high 

valency of the amines on the NCs. The yield of the reaction was as high as 86%, after 

removing unbound dye by repeated dialysis with water via ultracentrifugation. The 

hydrodynamic radius of the dendrimer capped NCs was determined through light scattering 

measurements and was observed to be 16 ± 1 nm. The hydrodynamic radius is larger than 

expected for a NC coated by a single layer of DHLA-PAMAM ligand but could be 

explained by a limited amount of cross-linking via disulfide bonds to give multiple PAMAM 

layers of the NC. The pKa of a primary amine on a generation 1 PAMAM dendrimer is 

9.00.35 Thus in biological environments the PAMAM amine is likley protonated. We have 

found that the NCs are stable at pHs as high as 9; at and above pH 9, the NCs slowly 

precipitate over the course of one week.

The UV–vis absorption spectrum at each pH value (Fig 1) is the composite sum of the 

continuous NC absorption in the higher energies and of the pH dependent SNARF–5F 

absorption between 470–620 nm. By separating the NC and the dye contributions to the 

overall conjugate spectrum, a ratio of dye to NC of 26 to 1 was obtained. In the FRET 

analysis that follows, we take this to be the number of acceptors m per donor, assuming that 

all uncoupled dye has been removed in the dialysis steps.

The critical transfer distances at pH 6 and 9 were calculated using the quantum yield of NCs 

in absence of appended dye (ϕD = 0.26, measured by comparison to laser dye standards). 

Depending on the degree of spectral overlap, which is modulated by the pH, the critical 

transfer distance (R0) was found to be between 4.46 nm (at pH 6) and 4.68 nm (at pH 9), 

typical for Förster energy transfer processes. Using Eq. 1, we can determine the NC-dye 

separation with a characteristic distance with the caveat that the conjugate chemistry gives a 

range of donor-acceptor separation distances and thus the characteristic distance that we 

obtain is necessarily a weighted average of these values.

Steady–state emission (Fig 2) exhibits spectra that are indicative of FRET that is pH 

dependent. While the construct was excited at λexc = 365 nm, where the SNARF–5F has 

little absorption, dye emission is clearly evident. In addition, the SNARF–5F becomes more 

absorptive at the NC emission wavelength as the pH is increased, thus increasing the 

spectral overlap between the donor–acceptor pair. As such, the donor NC emission is 

decreased, which is also a signature of energy transfer. The emission profiles of the 
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construct shown in Fig 2 are clearly ratiometric and unique over a range of pH. As shown in 

Fig 3, the sensor’s quantum yield is such that the photoluminescence response to pH is 

clearly visible to the eye.

The emission of a two–color ratiometric sensor has ratio and intensity as two independent 

variables.15,16 The state of the sensor can thus be determined from the ratio of any two 

wavelength–resolved emission channels that display significantly different intensity 

responses to pH. A calibration curve can be constructed using the ratio of the maximum 

emission intensities of the NC and dye or by using the ratio of the integrated intensity within 

two wavelength regions selected to capture each peak. Fig S1a illustrates an example 

calibration of the SNARF:NC ratio vs pH constructed from integrated emission spectra. The 

ratio monotonically increases from pH 6.0 to pH 8.0.

FRET was confirmed by time–resolved emission spectroscopy. Lifetimes decays are shown 

in Fig S2; the time constants as well as FRET parameters extracted from the lifetimes, are 

listed in Table 1. The lifetimes of the unconjugated NC was found to be 16 ns at pH = 6. The 

lifetime of the donor NC conjugated to SNARF is shortened owing to energy transfer. 

Moreover, the lifetime decay is pH dependent owing to enhanced energy transfer with 

increasing pH due to greater spectral overlap.

With lifetime quenching rate constants in hand, the energy transfer efficiency can be 

extracted from the emission lifetimes of the donor in the absence and the presence of an 

acceptor, er eq. (2). FRET is most efficient (37.5%) under basic conditions and decreases to 

25% at pH 6, consistent with decreased spectral overlap between the donor–acceptor as the 

pH is lowered. A value for the donor–acceptor distance, r, can be calculated from from eq. 

(1). At a dye to NC ratio of 26:1, the distance between the SNARF and NC was 8.7 nm at 

pH 9 as compared to 9.6 nm at pH 6. The energy transfer distances are smaller than the 

hydrodynamic radius extracted from dynamic light scaterring. One possible explanation for 

this behavior is that the conjugation sites are presumably distributed throughout the 

dendrimer ligand coating, and hence the average distance for FRET will be shorter than that 

defined by the outer surfce of the coating. Despite the large size of the NC–SNARF 

dendrimer construct, the overall FRET efficiency is large owing to the high number of 

acceptor molecules at the NC surface. The high coupling yield suggests that primary amine 

sites are highly accessible from the aqueous solution, contrasting alternative amine–bearing 

ligand coatings in which competition of NC surface binding with solution display has been 

suspected.36,37

In order to determine the effectiveness of the NC–SNARF sensor in a biological–like 

environment, the construct was examined in 4% bovine serum albumin (BSA) in phosphate 

solutions buffered between pH 6.0 and pH 8.0 at 0.2 pH increments. Albumin was chosen as 

a blood mimic as it is generally the most abundant plasma protein in mammals;38 in 

addition, BSA naturally introduces a mildly scattering optical environment, thus capturing a 

challenge in biological sensing. Fig 4a shows the pH dependence of the emission of the 

construct in BSA buffers. The BSA contributes a broad autofluorescence background but 

nonetheless the NC and SNARF emission peaks can be resolved clearly. The SNARF:NC 

integrated emission ratio decreases in the presence of BSA. NCs have previously been 
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shown to exhibit increased quantum yields when directly conjugated to BSA.39,40 It has 

been suggested that BSA passivates the surface of the NCs by acting as a physical barrier of 

O2 for surface oxidation.40 Although our construct was only placed in a solution of BSA and 

not directly coupled, it is possible that the electrostatic attraction between the dendrimer 

coated NCs and BSA was strong enough to further passivate the NCs to increase their 

quantum yields. Note that in the absence of unconjugated NCs or direct excitation of the 

dye, changes in NC quantum yield alone will not change the FRET efficiency or the 

resulting emission ratio. On the other hand, the decrease in SNARF:NC emission ratio may 

be explained by a decrease in the quantum yield of the dye on its exposure to BSA. The pH 

calibration curve is significantly altered by the presence of BSA, however the range of 

sensitivity remains the same.

In a control experiment, matched concentrations of dendrimer coated NCs and SNARF–5F 

were individually placed in phosphate buffer with and without BSA buffer to see whether 

any differences existed in emission intensity. While dendrimer coated NCs exhibit 

approximately the same intensity, the intensity of SNARF–5F is diminished by 

approximately 90% (Fig S3). As albumin provides a hydrophobic environment, the 

diminished intensity of SNARF–5F may be due to solvent effects, a phenomenon commonly 

exhibited by xanthene–based dyes.41–43 It is also possible that the dye may be forming a 

complex with the albumin, which has also been reported for fluorescein.44 Given the high 

degree of quenching of SNARF–5F alone as compared to SNARF–5F covalently attached to 

the NC surface, conjugation of SNARF to the NC is beneficial as the NC scaffold mitigates 

SNARF interactions with the biological milieu.

We next examined whether sensing could be established under two–photon excitation (λexc 

= 800 nm). Fig 4b shows the two photon–excited fluorescence spectrum of the sensor under 

varying pH conditions, once again in phosphate buffers containing 4% BSA. The spectrum 

exhibits a ratiometric pH dependent profile, thus establishing that the FRET–based sensing 

scheme is viable for both one– and two–photon excitation. Notably, the BSA 

autofluorescence that was apparent under linear excitation was absent under 2-photon 

excitation at 800 nm. Despite the ratiometric response and absence of the BSA contribution, 

the emission lineshape differs quantitatively from that observed under linear excitation; the 

relative contribution of the dye emission is significantly larger under 2-photon excitation, 

particularly at high pH. Within a model for which excitation of the SNARF in the NC-

SNARF construct occurs purely by energy transfer from the NC, the emission spectrum of 

the sensor should be independent of the excitation mode. The 2-photon action cross-sections 

of NCs are large compared to typical dyes and endogenous fluorophores. Indeed, action 

cross-sections of >104 Goppert-Meyer units for larger-diameter CdSe/ZnS NCs have been 

reported.25 Our own measurements of a CdSe/CdZnS NC sample similar to the one used 

here, using a Rhodamine B standard, revealed a two-photon absorption cross-section of 

~9000 Goppert-Meyer (GM) units at 800 nm excitation. With our value of F, an action 

cross-section of ~2300 GM units is expected for the NC donors in the sensor construct. At 

present, the origin of the deviation in sensor response between linear and 2-photon 

excitation is unclear, but it could be associated with direct two-photon excitation of the 

SNARF dye competing with FRET excitation under conditions where the NC is quenched or 

saturated.
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The 2-photon excited fluorescence emission of the sensor in BSA-containing buffer was also 

detected using image-mode readout by using a dichroic filter centered at λ = 565 nm to 

direct the green (NC) and the red (SNARF) fluorescence emission channels onto two 

different PMT detectors. Fig S1b shows the calibration curve obtained with image mode 

detection under two–photon excitation; the results qualitatively replicate the monotonic 

increase of the SNARF:NC emission ratio with pH that was observed under linear 

excitation. pH changes as small as 0.2 pH units are detected at over 100 μm translation in 

depth.

Conclusions

We have demonstrated an effective CdSe/CdZnS NC based pH sensor that is effective in a 

physiologically relevant pH range. A poly(amido amine) scaffold has been incorporated as 

the capping ligand, which serves to impart water solubility and to furnish a high valency of 

primary amines for covalent coupling of multiple FRET acceptors. Both single– and two–

photon excitation sources were found to be effective in eliciting pH–sensitive dual emission 

from the NC–SNARF conjugate. The accessibility of high ratios of acceptor molecules per 

NC to enhance the efficiency of energy transfer, the use of multiphoton excitation to 

minimize background signals and photodamage, and the ratiometric nature of the construct 

make the NC based sensor a promising tool for pH sensing in biological environments.
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Fig. 1. 
UV–vis absorbance spectra of NC–SNARF construct at pH 6 (green line ), pH 7 (red 

line ), pH 8 (blue line ), and pH 9 (gray line ).

Somers et al. Page 9

Chem Sci. Author manuscript; available in PMC 2015 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Normalized emission spectra of NC–SNARF construct in phosphate buffers at pH 6 (green 

line ), pH 7 (red line • • •), pH 8 (blue line ), and pH 9 (gray line ).NC 

emission decreases with a concomitant increase in dye emission with increasing pH.
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Fig. 3. 
Changes in emission color of the NC–SNARF sensor from left to right: pH = 6, 7, 8 and 9.
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Fig. 4. 
Normalized emission spectra of NC–SNARF in phosphate buffers containing 4% BSA 

under (a) one–photon excitation at 365 nm and (b) two–photon excitation at 800 nm. Spectra 

taken at 0.2 pH increments.
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Scheme 1. 
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Scheme 2. 
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