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Summary

Interleukin-17 (IL-17) is a cytokine with critical functions in multiple

autoimmune diseases. However, its roles in type I diabetes and the under-

lying mechanisms remain to be fully elucidated. In the current study, we

investigated the impact of IL-17 deficiency on streptozotocin (STZ) -in-

duced diabetes. Il-17�/� mice exhibited attenuated hyperglycaemia and

insulitis after STZ treatment compared with control mice. The Il-17�/�

mice had fewer CD8+ cells infiltrating the pancreas than wild-type con-

trols after STZ injection. Wild-type mice showed increased percentage and

number of splenic CD8+ cells and decreased Gr1+ CD11b+ myeloid-

derived suppressor cells (MDSC) after STZ treatment, but Il-17�/� mice

maintained the percentages and numbers of splenic CD8+ cells and

MDSC, suggesting that IL-17 is implicated in STZ-induced cellular

immune responses in the spleen. We further purified the MDSC from

spleens of STZ-treated mice. Il-17�/� MDSC showed increased ability to

suppress CD8+ cell proliferation in vitro compared with wild-type MDSC.

Transfer of MDSC to diabetic mice showed that MDSC from Il-17�/�

mice could ameliorate hyperglycaemia. Moreover, recipients with MDSC

from Il-17�/� mice had a decreased percentage of CD8+ cell in the spleen

compared with recipients with MDSC from wild-type mice. These data

suggest that IL-17 is required in splenic MDSC function after STZ deliv-

ery. In summary, our study has revealed a pathogenic role of IL-17 in an

STZ-induced diabetes model with important implications for our under-

standing of IL-17 function in autoimmune diseases.

Keywords: diabetes; interleukin-17A; myeloid-derived suppressor cells;

streptozotocin.

Introduction

Interleukin-17 (IL-17) is an inflammatory cytokine

secreted by T cells. Six IL-17 family members (IL-17A–
F) have been described, and the prototype member of

the family is IL-17A, often termed IL-17 in literature.

Interleukin-17 mediates pro-inflammatory responses and

induces many other cytokines, such as IL-6, tumour

necrosis factor-a, transforming growth factor-b, in

various cell types.1 It is important in proliferation, mat-

uration and invasion of neutrophils2 and is one of the

major effectors of T helper type 17 cells, which

exhibited pivotal roles in autoimmune disease. Adop-

tively transferred T helper type 17 cells could stimulate

CD8+ cytotoxic T lymphocytes and promote diabetes

development.3 Moreover, increasing evidence showed

that other IL-17-producing cells also play important

roles in diabetes.4,5

However, the roles of IL-17 in different diabetes mod-

els remained controversial. In non-obese diabetic (NOD)

mouse models, IL-17 neutralization treatment could pre-

vent the development of diabetes.6 Interleukin-17-defi-

cient (Il-17�/�) NOD mice showed delayed onset of

diabetes.7 On the other hand, an IL-17 knockdown

Abbreviations: FACS, fluorescence activated cell sorting; MDSC, myeloid derived suppressor cells; NOD, nonobese diabetic; STZ,
streptozotocin
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NOD line created by directly introducing a short hairpin

RNA construct did not show altered diabetes susceptibil-

ity.8 Neutralization of IL-17 in vivo did not protect

NOD-severe combined immunodeficiency mice against

diabetes transferred by diabetic splenocytes.9 Moreover,

IL-17 production was undetectable in CD4+ or CD8+ T

cells in the CD8-driven lymphocytic choriomeningitis

virus-induced model of type 1 diabetes.10 At the same

time, in vitro data showed that IL-17 markedly pro-

moted induced nitric oxide production and nitric oxide-

dependent toxicity in mouse pancreatic islet cells.11

However, IL-17 may be more involved in affecting

immune responses in secondary lymphoid tissues rather

than directly mediating beta cell injury, as the IL-17-

positive cells were relatively rare in the pancreas during

diabetes development.6

Myeloid-derived suppressor cells (MDSC) represent a

population of immature myeloid cells with the ability to

suppress various T-cell functions.12 MDSC with hallmarks

of surface Gr-1 and CD11b in mice accumulate during

many pathological conditions including cancer and

autoimmunity.13 MDSC have been shown to play a pro-

tective role in diabetes.14,15 In tumours, IL-17 was

reported to promote MDSC recruitment16 and mediate

MDSC-induced tumour immune responses.17 In diabetes,

reports describing the potential link between IL-17 and

MDSC in diabetes are currently lacking.

In this study, we examined the effects of IL-17 defi-

ciency on streptozotocin (STZ) -induced diabetes. Our

findings indicate that IL-17 is implicated in STZ-induced

immune responses in both pancreas and spleen.

Materials and methods

Animal models

Six- to eight-week-old Il-17�/� mice from Dr Yoichiro

Iwakura18 and wild-type C57BL/6 mice were used for dia-

betes models. Mice after 4 hr fast were injected intraperi-

toneally with STZ (50 mg/kg of body weight) in citrate

buffer (Sigma, St Louis, MO, USA) or an equivalent vol-

ume of citrate buffer daily for five consecutive days.

Blood glucose levels were measured before first injection

and after final injection between 9 a.m. and 10 a.m. All

mice were housed in pathogen-free facilities on a 12-hr

light- dark cycle. All protocols and procedures in this

study were approved by the Ethics Committee of Wuhan

University (Permission No. SYXK2008-0013).

ELISA

Mouse serum samples were obtained and stored at -20°C
until the ELISA. Insulin concentrations were determined

using ELISA kits (Millipore, Billerica, MA, USA) as rec-

ommended by the assay manufacturer.

Histology

Pancreatic slides from three mice in each group on Day

35 after injection were analysed. A minimum of 30 islets

stained with haematoxylin & eosin from each mouse were

examined microscopically by two different observers for

the presence of insulitis. The severity of insulitis was

scored as follows: 0, no lymphocytic infiltration; 1, lym-

phocytic infiltration occupying < 25% of the total islet

cell area; 2, lymphocytic infiltration occupying 25–49% of

the total islet cell area; 3, lymphocytic infiltration occupy-

ing 50–75% of the total islet cell area; 4, lymphocytic

infiltration occupying > 75% of the total islet cell area, or

small retracted islets.

Flow cytometry

Peripheral blood samples were collected and red cells were

removed using Red Blood Cell Lysing Buffer (Sigma).

Splenocytes were isolated from freshly obtained spleen

specimens after grinding and filtering. After depleting red

cells, single splenic cell suspensions were collected for fur-

ther staining. Single pancreatic cell suspensions were pre-

pared as previous described.19 For surface staining, cells

were stained for 30 min with fluorescently labelled anti-

bodies against surface molecules: CD4 (clone: RM4-5),

CD8 (clone: H35-17.2), Gr-1 (clone: RB6-8C5), Ly6G

(clone: 1A8), Ly6C (clone: HK1.4), F4/80 (clone: BM8),

CD11b (clone: M1/70), and NK1.1 (clone: PK136) (eBio-

science, San Diego, CA, USA). For Foxp3 (clone: FJK-16s)

staining, cells were fixed, permeabilized using buffers and

then stained with labelled antibodies (eBioscience). The

cell suspensions were analysed or sorted by FACS (BD

Aria III; BD, Franklin Lakes, NJ, USA). Gates were set

based on the staining profile of the isotype controls.

Adoptive transfer

The MDSC (Gr1+ and CD11b+) were purified by flow

cytometric sorting from the spleens of Il-17�/� mice and

wild-type mice treated with STZ on Day 24. The MDSC

(2 9 105) from one mouse were intravenously injected

into the tail vein of another wild-type diabetic mouse

treated with STZ on Day 13. There were 12 recipients in

total, with six in each group.

CD8+ cells and MDSC co-culture

The culture medium is RPMI-1640 plus 10% heat inacti-

vated fetal calf serum (Gibco, Gaithersburg, MD, USA)

and 10 mM L-glutamine. 96-well plates were pre-coated

with 50 ll PBS per well containing 5 lg/ml LEAFTM puri-

fied anti-mouse CD3 and CD28 (Biolegend, San Diego,

CA, USA) at 4°C overnight. FACS-sorted splenic CD8+

cells from diabetic mice were labelled with 5 lM CFSE
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(Sigma) for 5 min, washed and divided into 100 ll
(2 9 105 cells) per well. FACS-sorted splenic

Gr1+ CD11b+ cells (MDSC) from STZ-treated mice were

collected and added into CD8+ cells (100 ll, 2 9 105 cells

per well). The cells were cultured in a humidified atmo-

sphere with 5% CO2 at 37°C for 96 hr. Then, 50 ll of
supernatant was collected for interferon-c ELISA (eBio-

science). Cells were collected and analysed by FACS. Pro-

liferation Indices were analysed using MODFIT LT software

(Verity Software House, Topsham, ME, USA).

Quantitative RT-PCR

RNA was extracted using Rneasy mini Kit (Qiagen, Hilden,

Germany) and reverse transcribed to cDNA using an RT

Kit (Invitrogen, Carlsbad, CA, USA). Quantitative PCR

analyses were performed using the SYBR Green PCR Master

Mix (Takara, Shiga, Japan). The relative RNA levels of each

gene were normalized against b-actin. Primers used were:

Arg1: 50-TAC AAG ACA GGG CTC CTT TCA G-30 and 50-
CCG TTG AGT TCC GAA GCA AG-30. iNOS: 50-TCC
TGG ACA TTA CGA CCC CT-30 and 50-CTC TGA GGG

CTG ACA CAA GG-30. Il-10: 50-GGT TGC CAA GCC TTA

TCG GA-30 and 50-GGG GAG AAA TCG ATG ACA GC-30.
b-actin: 50-TGA AGA TCA AGA TCA TTG CTC CTC-30

and 50-CCT GCT TGC TGA TCC ACA TC-30.

Statistical analysis

All values are expressed as mean � SE of the mean. Dif-

ferences were analysed using Student’s t-test and P < 0�05
was considered statically significant. The severity of the

insulitis was analysed by Wilcoxon signed rank test.

Results

Il-17 deficiency attenuates STZ-induced diabetes

To understand the function of IL-17 in diabetes, we

established multiple low-dose STZ models of Il-17�/�

mice and the blood glucose levels were monitored

(Fig. 1a). Both Il-17�/� and wild-type mice showed

comparably increased glucose levels after STZ injection

for 15 days. Wild-type control mice maintained a hyper-

glycaemic state (> 15 mM) from Day 18 to Day 35

before being killed (19�0 � 3 mM). In contrast, Il-17�/�

mice treated with STZ exhibited dramatically lower glu-

cose levels from Day 18 to Day 35 before being killed

(12�7 � 2 mM).

In agreement with the blood glucose changes, Il-17�/�

mice had greatly increased levels of serum insulin com-

pared with wild-type mice on Day 35 after STZ treatment

(Il-17�/�: 203 � 31 pg/ml versus wild-type: 70 � 11 pg/

ml) (Fig. 1b). We then examined the impact of Il-17
knockout on the progression of insulitis. Wild-type mice

showed dramatically increased leucocyte infiltration into

the islets after STZ treatment. In contrast, Il-17�/� mice

exhibited moderate insulitis after STZ treatment (Fig. 1c,
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Figure 1. Il-17 deficiency attenuated streptozotocin (STZ) -induced

diabetes. Multiple low dose of STZ were injected into Il-17�/� (KO)

and wild-type (WT) mice; citrate buffer was injected as control. (a)

Blood glucose levels were measured before the first injection (Day 0)

and after the final injection from Days 1 to 35. (b) The serum insulin

levels of four group mice were determined on Day 35. Each group

n = 10. Student’s t-tests were performed between the STZ-treated

groups. (c) The severity of insulitis was scored as described in the

Materials and methods section. Levels of insulitis: 0 (white), 1 (dot-

ted), 2 (horizontal stripes), 3 (diagonal stripes), and 4 (black).

Wilcoxon signed rank test analysis was performed to analysis the

insulitis between the STZ-treated groups. *P < 0�05. (d) Haema-

toxylin & eosin staining of pancreatic sections of four group mice.

Images are representative of major islets in each group. Bar = 50 lm.
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d). Together, Il-17�/� mice showed attenuated multiple

low doses of STZ-induced diabetes.

Il-17 deficiency inhibits CD8+ T-cell infiltration into
pancreas after STZ treatment

To characterize the inflammatory cellular response

induced by STZ treatment in Il-17�/� mice, we quantified

several immune cell subsets in the pancreas. Both Il-17�/�

and wild-type mice showed increased percentages and

numbers of CD4+, CD8+, Gr-1+ CD11b+ and NK+ cells

on Day 24 after STZ injection (Fig. 2a and c). However,

Il-17�/� mice had significantly lower percentages and

numbers of CD8+ cells than wild-type mice after STZ

treatment (Fig. 2a, c and e). We further quantified the

immune cell subsets in peripheral blood. The Il-17�/� and

wild-type mice had similar percentages and numbers of

CD4+, CD8+ and NK+ cells in peripheral blood (Fig. 2b

and d). Il-17�/� mice showed lower percentages and lower

numbers of Gr1+ cells and Gr1+ CD11b+ (MDSC) in

peripheral blood than wild-type mice. After STZ injection,

while Il-17�/� mice maintained the levels of Gr1+ cells

and MDSC, wild-type mice had dramatically decreased

Gr1+ cells and MDSC. In outcome, Il-17�/� mice exhib-

ited even higher percentages and numbers of Gr1+ cells

and MDSC than wild-type controls after STZ treatment

(Fig. 2b, d and f). Together with other reports,6 we specu-

lated that IL-17 may be more involved in affecting

immune responses in the spleen than in the lesion tissue.

Il-17 deficiency affects CD8+ cell and MDSC
percentages in spleens after STZ treatment

The four groups of mice (Il-17�/� mice treated with/with-

out STZ, wild-type mice with/without STZ) had no signif-

icant differences in the percentages of CD4+, Gr-1+ and

NK+ cells in the spleen (see Supplementary material,

Fig. S1). Mice treated with STZ showed increased percent-

ages of CD4+ Foxp3+ (regulatory T) cells after STZ treat-

ment from Day 12, but no significant difference between

Il-17�/� and wild-type groups (see Supplementary mate-

rial, Fig. S1). Notably, wild-type mice exhibited gradually

increased percentages and numbers of CD8+ cells from

Day 15 after STZ injection, which was consistent with

published literature on the important roles of CD8+ T

cells in the STZ model.4 At the same time, Il-17�/� mice

treated with STZ maintained the percentages and numbers

of CD8+ cells at the basal levels found in control mice

treated with buffer (Fig. 3a and c). On the other hand,

wild-type mice showed gradually decreased percentages

and numbers of Gr1+ CD11b+ (MDSC) from Day 15 after

STZ injection, and Il-17�/� mice treated with STZ main-

tained the percentages and numbers of MDSC at the basal

levels of the control mice treated with buffer (Fig. 3b and

d). Hence, Il-17�/� mice exhibited lower percentages and

numbers of CD8+ cells and higher MDSC than wild-type

mice after STZ treatment. These data suggest that IL-17 is

implicated in the regulation of splenic CD8+ cells and

MDSC during STZ-induced diabetes development.

To further characterize the splenic MDSC from

mice treated with STZ, we examined these cells with

Ly6G, Ly6C and F4/80 staining. Splenic MDSC from both

Il-17�/� and wild-type mice had Ly6G+ and Ly6C+ sub-

sets with Ly6C+ cells as a major cell type (Fig. 3e). Hence,

CD11b+ Ly6C+ cells contributed mainly to the increased

MDSC in Il-17�/� mice on Day 15 after STZ treatment.

At the same time, there was no significant difference in

the percentages of F4/80+ cells in the splenic MDSC

between Il-17�/� and wild-type mice (61�5 � 3�2% versus

58�4 � 2�5%) (Fig. 3e).

Il-17-deficient MDSC ameliorated STZ-induced
hyperglycaemia

To characterize the roles of these MDSC, we purified

Gr1+ CD11b+ cells from the spleens of Il-17�/� and wild-

type mice on Day 24 after STZ treatment. As shown in

Fig. 4(a), MDSC from STZ-treated Il-17�/� mice expressed

dramatically higher levels of Il-10, and similar levels of arg1

and iNOS compared with those in wild-type mice. We fur-

ther co-cultured splenic CD8+ cells with the purified

MDSC in vitro. The proliferation indices of CD8+ cells

stimulated by CD3 and CD28 antibodies reached

8�43 � 0�21. Whereas the proliferation indices of CD8+

cells decreased to 4�88 � 0�39 after wild-type MDSC were

added, they decreased even lower to 4�46 � 0�31 after Il-
17�/� MDSC were added (Fig. 4b, and see Supplementary

material, Fig. S2). At the same time, the interferon-c pro-

duction by CD8+ cells showed a slight decrease after MDSC

addition, but no significant difference was found among

the groups (Fig. 4c). Next, we transferred the isolated

MDSC into STZ-treated wild-type mice on Day 13

(Fig. 4d). Both groups (recipients of Il-17�/� MDSC, recip-

ients of wild-type MDSC) showed increased blood glucose

levels. However, the recipients of Il-17�/� MDSC had sig-

nificantly lower blood glucose levels than recipients of

wild-type MDSC (Fig. 4d). We further analysed the spleens

of recipients on Day 24 after STZ treatment. The recipients

of Il-17�/� MDSC exhibited increased expression levels of

iNOS and Il-10 (Fig. 4e) and a significantly lower percent-

age of CD8+ cells than recipients of wild-type MDSC

(Fig 4f). These data indicated that Il-17�/� MDSC could

ameliorate STZ-induced hyperglycaemia with increased

Il-10 expression and suppressed CD8+ cells involved.

Discussion

Our current study indicates that IL-17 plays a patho-

genic role in STZ-induced diabetes. Il-17�/� mice exhib-

ited attenuated hyperglycaemia after Day 18 but not
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before Day 15 after STZ treatment, suggesting that IL-17

could be more critical in the late phase of STZ induced

diabetes development rather than the onset. In support-

ing this statement, IL-17R knockout mice also had

decreased levels of blood glucose and islet inflammation

in the STZ model.4 However, IL-17 was reported to
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Figure 2. Il-17 deficiency inhibited CD8+ cell infiltration into pancreas after streptozotocin (STZ) treatment. FACS analysis results of pancreatic

cells (a and c) and peripheral blood cells (b and d) after CD4, CD8, Gr-1, CD11b, or NK1.1 staining. Single pancreatic cells and peripheral blood
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*P < 0�05. Representative plots from FACS analysis of pancreatic cells (e) and peripheral blood cells (f) are shown.
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have different roles in NOD mouse models.6–9 The

explanation could be that the NOD model is more com-

plicated, developing spontaneous autoimmune diabetes

with the various

IL-17-producing T subset cells involved: Th17/Tc17,4

invariant natural killer T,5,20 cdT.9

Our findings indicate that IL-17 deficiency inhibits the

increase of pancreatic and splenic CD8+ cells after STZ

injection. The pancreatic infiltration of T cells is a critical

process during the development of diabetes induced by

multiple low doses of STZ.21 Moreover, the splenic

immune response including CD8+ cells is also important
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in diabetes,22 and the administration of anti-CD8 anti-

bodies resulted in a protective effect.23 In our study, the

time-point (from Day 15 after STZ injection) of changed

splenic CD8+ cell percentages was the same as that of the

shift in blood glucose in Il-17�/� mice treated with STZ,

suggesting that the decreased splenic CD8+ cells of Il-17�/

� mice may be implicated in diabetes resistance. These data

suggested that IL-17 plays important roles in both

pancreatic and splenic immune responses during diabetes.

Our study provides evidence that IL-17 plays a role in

STZ-induced changes of splenic MDSC. Under normal

conditions, IL-17 deficiency alone is not sufficient to

change the splenic MDSC (Fig. 3). When STZ is adminis-

trated, auto-antigens are released from islets and the sple-

nic MDSC percentage decreases. IL-17 deficiency could

completely block this decrease, suggesting that IL-17 has

an important role during this process. At the same time,

IL-17 deficiency could affect the splenic MDSC function

after STZ treatment. Il-17�/� MDSC showed increased

ability to suppress CD8+ cell proliferation in vitro and a

protective role after adoptive transfer in diabetic mice

(Fig. 4). These results were inconsistent with the fact that

IL-17 is important for MDSC function in the tumour

sites24,25 and infection.26,27 Further studies are needed,

and our study represents a first step towards a better

understanding of the connections of IL-17 and MDSC in

diabetes.

In summary, our study revealed a pathogenic role of

IL-17 in STZ-induced diabetes and the IL-17-dependent

splenic immune response involved. Future study of the

molecular signalling will shed new light on the systemic

understanding of IL-17 function in diabetes.
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Figure 4. Il-17-deficient myeloid-derived suppressor cells (MDSC) ameliorated streptozotocin (STZ) -induced hyperglycaemia. (a) Quantitative

RT-PCR analysis of the MDSC purified from spleens of Il-17�/� and wild-type mice on Day 24 after STZ treatment. Each group n = 3. (b) The

proliferation indices of CD8 cells co-cultured with MDSC purified from spleens of Il-17�/� or wild-type mice on Day 24 after STZ treatment. (c)

The concentrations of interferon-c (IFN-c) in the co-culture medium. Each group n = 3. (d) Blood glucose levels of the recipient mice were mea-

sured after final STZ injection from Days 7 to 24. On Day 13, the wild-type mice received MDSC (2 9 105/mouse) from Il-17�/� or wild-type

mice treated with STZ. Each group n = 6. (e) Quantitative RT-PCR analysis of spleens from the recipients on Day 24. Each group n = 3.

(f) FACS analysis results of splenocytes from the recipients on Day 24. Each group n = 3. *P < 0�05.
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Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Figure S1. Il-17 deficiency did not affect CD4+, Foxp3+

and natural killer (NK) cell percentages in spleen after

streptozotocin (STZ) treatment. FACS analysis results of

splenocytes after CD4 (a), Foxp3 (b), Gr-1 (c) and NK

(d) staining. Single splenic cells were prepared from Il-
17�/� and wild-type mice at various time-points after

STZ or buffer injection. Each group consisted of at least

three individual mice. *P < 0�05.
Figure S2. Il-17 deficiency promoted the ability of

myeloid-derived suppressor cells (MDSC) to suppress

CD8+ cell proliferation in vitro. Representative FACS

analysis data of CFSE-labelled CD8+ cells co-cultured

with MDSC purified from spleens of Il-17�/� or wild-type

mice on Day 24 after streptozotocin (STZ) treatment.
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