
Metabolic dysfunction in obstructive sleep apnea: A critical 
examination of underlying mechanisms

Omar A. MESARWI1, Ellora V. SHARMA2, Jonathan C. JUN1, and Vsevolod Y. POLOTSKY1

1Johns Hopkins University School of Medicine, Baltimore, Maryland 2Northeast Ohio Medical 
University, Rootstown, Ohio, USA

Abstract

It has recently become clear that obstructive sleep apnea (OSA) is an independent risk factor for 

the development of metabolic syndrome, a disorder of defective energy storage and use. Several 

mechanisms have been proposed to explain this finding, drawing upon the characteristics that 

define OSA. In particular, intermittent hypoxia, sleep fragmentation, elevated sympathetic tone, 

and oxidative stress – all consequences of OSA – have been implicated in the progression of poor 

metabolic outcomes in OSA. In this review we examine the evidence to support each of these 

disease manifestations of OSA as a unique risk for metabolic dysfunction. Tissue hypoxia and 

sleep fragmentation are each directly connected to insulin resistance and hypertension, and each of 

these also may increase sympathetic tone, resulting in defective glucose homeostasis, excessive 

lipolysis, and elevated blood pressure. Oxidative stress further worsens insulin resistance and in 

turn, metabolic dysfunction also increases oxidative stress. However, despite many studies linking 

each of these individual components of OSA to the development of metabolic syndrome, there are 

very few reports that actually provide a coherent narrative about the mechanism underlying 

metabolic dysfunction in OSA.
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INTRODUCTION

Obstructive sleep apnea (OSA) is a common syndrome, affecting approximately 20–30% of 

men, and 10–15% of women.1–3 In the last 15 years, many studies have shown that OSA is a 

risk factor for the development of metabolic syndrome, independent of obesity.4,5 Metabolic 

syndrome is marked by the presence of at least three of the following: abdominal obesity, 

hypertriglyceridemia, low plasma high-density lipoprotein (HDL) levels, hyperglycemia, 

and elevated blood pressure.6 Insulin resistance is a primary manifestation of metabolic 

syndrome,7 and metabolic syndrome is a major risk factor for cardiovascular morbidity and 

mortality.6 The most commonly cited pathways by which OSA is believed to affect 
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metabolism include oxidative stress, sympathetic nervous system activation, tissue hypoxia, 

and sleep fragmentation (Fig. 1). The purpose of this review is to critically examine these 

theories and the literature supporting their validity in linking OSA to metabolic syndrome.

OXIDATIVE STRESS

Links between OSA and oxidative stress

Reactive oxygen species (ROS) are molecules possessing one or more unpaired electrons, 

such as superoxide (O2·−), hydrogen peroxide (H2O2), or hydroxyl radicals (HO·). Reactive 

nitrogen species (RNS) describe nitric oxide synthase products, including nitric oxide (NO) 

or peroxynitrate (OONO−). The odd number of electrons in these molecules renders them 

highly reactive, which is why both ROS and RNS have important roles in both health and 

disease. ROS are formed from the reduction of oxygen during respiration, or may be 

generated by ROS-generating enzyme systems. ROS may also enter biological systems from 

the environment in the form of pollutants, UV radiation, carcinogens, smoking, and 

infection. They play critical physiological roles in signal transduction, anti-microbial 

defense, and cell proliferation. However, when present in high levels, ROS interfere with 

cell structure and/or function, leading to “oxidative stress.”

Some manifestations of oxidative stress include modification of nucleic acids, leading to 

genetic mutations; oxidation of lipids, which can foster atherosclerosis; or oxidation of 

proteins, which can alter enzyme function and signaling pathways. To limit excessive ROS, 

anti-oxidant systems have evolved, including superoxide dismutase and glutathione 

reductase. In 1956, Harman proposed the free radical theory of aging.8 Since then, oxidative 

stress has been implicated to varying degrees in the development and progression of 

atherosclerosis, neurodegenerative disorders, diabetes, and cancer.

Given the transient existence of most ROS/RNS, quantitative assessment of oxidative stress 

is difficult. It is often easier to measure the impact of ROS on their cellular environment. For 

instance, ROS interact with glutathione, a free radical scavenging protein, changing it from 

reduced (GSH) to oxidized (GSSG) gluthathione in the process. Inferences about the redox 

state of a biological system can also be drawn by measuring levels or types of oxidized 

cellular lipids, protein, or nucleic acids. In addition, investigators may analyze the activity of 

ROS-generating enzyme systems such as xanthine oxidase, lipooxgenase, or nicotinamide 

adenine dinucleotide phosphate-oxidase (NADPH) oxidase.

Several studies have demonstrated that OSA patients exhibit elevated markers of oxidative 

stress. These biomarkers include modified lipids,9–13 protein,14,15 nucleic acids,16 and 

reduction in antioxidant capacity.17 In addition, OSA is associated with increased ROS 

production from leukocytes,18,19 with attenuation of this phenomenon after CPAP treatment. 

A thorough cataloguing of these studies appears in expert reviews.20,21

The mechanism by which OSA induces oxidative stress is unknown, but is commonly 

ascribed to hypoxia. OSA is characterized by transient falls in hemoglobin saturation during 

obstructed or flow-limited breathing, followed by recovery of oxygen levels during 

resumption of effective breathing. This cyclic pattern of hypoxia and re-oxygenation is 

MESARWI et al. Page 2

Sleep Biol Rhythms. Author manuscript; available in PMC 2015 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



termed intermittent hypoxia (IH). Chronic IH in rats increases brain oxidative stress22 and 

NADPH oxidase activity.23 Chronic IH in mice induces cardiac lipid peroxidation24 in 

association with left ventricular dysfunction, as well as increased nuclear factor (NF-κB) 

expression in the aorta, heart and lungs.24 However, other studies either show no significant 

oxidative stress from IH exposure25 or selective changes in oxidative stress only in certain 

tissues such as the liver.26 The leading theory of how IH causes oxidative stress contends 

that “the oscillation of O2 concentrations during chronic IH remarkably mimics the 

processes of ischemia/re-oxygenation and could therefore increase cellular production of 

ROS”.22 Ischemia-reperfusion (I-R) injury is a devastating form of tissue damage often 

occurring in the setting of thrombosis or transplantation,27 where ROS mediate reperfusion 

capillary leak and organ dysfunction.28 During the ischemic phase of I-R injury, ATP 

depletion causes toxic accumulations of metabolites and buildup of intracellular calcium. 

The high calcium level may be a stimulus for protease activation of xanthine oxidase,29 an 

enzyme that catabolizes purines and in so doing, generates ROS. During reperfusion, oxygen 

becomes available as a substrate for xanthine oxidase H2O2 production. Influx of activated 

neutrophils may cause further oxidative injury from NADPH oxidase.30

It is not known whether the IH of OSA in patients with preserved blood flow is sufficient to 

induce the same pathophysiology as I-R injury. Inadequacy of oxygen to sustain usual 

metabolic activity (i.e. ischemia) is not evident even when breathing severely hypoxic gases, 

which has led to a critical view of the term “hypoxia”.27 In addition, sustained hypoxia (i.e. 

from high altitude exposure) without reoxygenation induces oxidative stress.31–34 This 

oxidative stress may be due to a paradoxical increase in the amount of superoxide normally 

generated by mitochrondria during respiration. This phenomenon has been termed 

“reductive stress”.35 It might be argued that the distinctions between ROS generation from I-

R theory and reductive stress are merely academic. However, there may be practical 

implications for how sleep-related hypoxemia is addressed, depending upon the nature and 

origin of ROS in OSA.

Obstructive sleep apnea may also induce oxidative stress by other pathways that have 

received comparatively little attention. First, OSA dynamically increases circulating 

substrate levels during sleep, including glucose36 and free fatty acids (FFA).37 These 

elevations may be related to hypoxia-induced stimulation of the autonomic nervous system 

and lead to ROS generation through the aforementioned pathways. In particular, elevated 

FFA induce endothelial dysfunction via vascular ROS38 and induce skeletal muscle insulin 

resistance and inflammation.39 Second, OSA40,41 as well as experimental IH exposure in 

humans42 and rodents43 activates the renin-angiotensin system. Angiotensin II has potent 

effects on blood pressure, inflammation and oxidative stress,44 in part through its action on 

endothelial NADPH oxidase.45 ACE inhibitors have been shown to improve insulin 

signaling in skeletal muscle.46 In addition, the fluid retention from elevated renin-

angiotensin could be a unifying factor behind the development of OSA and hypertension.47 

Third, OSA can lead to sleep loss. Sleep deprivation, through as yet poorly understood 

pathways, induces production of the pro-inflammatory cytokines tumor necrosis factor-α 

(TNF-α) and interleukin-6 (IL-6), and increases appetite, which can lead to systemic 

oxidative stress through excessive consumption of calorie-rich foods.48 Fourth, obesity is a 

common risk factor for both OSA and oxidative stress49 and may therefore drive the 
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association between the two. In summary, OSA may induce oxidative stress through several 

possible pathways, although I-R injury is the most widely cited theory.

Links between oxidative stress and metabolism

Oxidative stress could play a role in the development or progression of diabetes or metabolic 

syndrome.50 Hypertension, a key component of metabolic syndrome, may be mediated by 

suppressed levels of the arterial vasodilator nitric oxide. Superoxide, generated by the 

stimulation of NADPH oxidase by Angiotensin II,51 degrades endothelial nitric oxide.52 

Diets rich in fruits and vegetables53,54 and antioxidant vitamins55 have been shown to 

reduce blood pressure and oxidative stress. Another key element of metabolic syndrome is 

obesity. While it is not clear whether oxidative stress induces obesity, it is abundantly clear 

that obesity is as a pro-inflammatory state. Obese mice exhibit high levels of adipose tissue 

NADPH oxidase activity, in association with reduced expression of adiponectin and PPAR-γ 

and elevated TNF-α, reflecting an inflammatory phenotype. Inhibition of NADPH oxidase 

decreased inflammation and attenuated hyperlipidemia and hyperglycemia as well as liver 

steatosis.56 This study illustrates that ROS can directly alter metabolism through-cross talk 

with inflammatory pathways in adipose tissue.

One of the primary insults leading to diabetes mellitus is insulin resistance, which is also 

considered the core defect in metabolic syndrome.57 Insulin stimulates glucose uptake in 

muscle and adipose tissues, inhibits hepatic glucose production, and suppresses lipolysis. 

Circulating insulin binds its receptor on the surface of insulin-responsive cells. Upon insulin 

binding, the receptor undergoes auto-phosphorylation of tyrosine residues, which in turn 

leads to phosphorylation of intracellular insulin receptor substrates (IRS). Tyrosine-

phosphorylated IRS proteins bind to Src-homology-2 (SH2) domains including 

phosphatidylinositol 3′-kinase (PI3K). PI3K in turn phosphorylates downstream messengers, 

which leads to GLUT-4 translocation (glucose transport), GSK-3 activation (glycogen 

synthesis), and fatty acid synthesis. The insulin signaling cascade can be interrupted by 

inflammatory stimuli. For example, TNF-α or increased FFA levels58 cause phosphorylation 

of IRS-1 on serine, instead of tyrosine residues, effectively preventing downstream insulin 

signal transduction, and IRS-1 binding to the insulin receptor.59

Several clinical studies show an association between oxidative stress and insulin 

resistance.60 Interestingly, physiologic levels of ROS (H2O2) are generated during insulin 

stimulation of target cells, and are actually necessary to propagate insulin signaling.60,61 

Paradoxically, high levels of exogenous H2O2 inhibit insulin signaling62–64 and these levels 

of ROS may occur during in vivo insults such as hyperglycemia.60 In fact, chronically 

elevated glucose and FFA have been proposed as pathways leading to excessive 

mitochondrial ROS generation and insulin resistance.65 However, the more precise 

mechanisms by which ROS impair insulin signaling are unclear. Some of the proposed 

pathways are reviewed elsewhere66 and include (a) activation of Ser/Thr “stress” kinases 

such as NF-κB or p38-MAPK, which cause inappropriate phosphorylation of the insulin 

receptor or IRS; (b) disruption of cellular compartmentalization of insulin signaling 

elements; (c) reduced GLUT-4 transcription; and (d) impaired mitochondrial oxidation of 

fatty acids.67 A second “hit” in the pathogenesis of diabetes mellitus is pancreatic β-cell 
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failure. ROS have been proposed as mediators of β-cell failure from excessive glucose and 

fatty acid loads.68 The hyperglycemia of diabetes induces oxidative stress, which may 

mediate devastating neurovascular consequences.69,70 Hence, a vicious cycle may be 

operant in which oxidative stress leads to diabetes, which in turn causes further oxidative 

stress.

A practical question is whether treating oxidative stress can improve glucose homeostasis. 

The data are limited, but small studies involving short-term administration of antioxidants 

have shown improved glucose disposal and/or insulin action.71–74 However, no long-term, 

large-scale studies have been published that demonstrate the efficacy of antioxidants for 

metabolic syndrome. Nutrition guidelines by the American Diabetes Association do not 

recommend antioxidant supplements75 and enthusiasm for the use of antioxidants has been 

tempered by disappointing trials for the primary and secondary prevention of cardiovascular 

diseases.76 Whether this lack of evidence should be construed as proof against the role of 

ROS in diabetes is controversial,77 reflecting the larger debate about the free radical theory 

of aging and disease.78

Evidence that metabolic dysfunction is mediated by oxidative stress in OSA

Several studies demonstrate that elements of metabolic syndrome, such as hypertension and 

insulin resistance, improve with CPAP treatment79 while other studies show that CPAP 

treatment attenuates oxidative stress.20 One month after CPAP treatment, Murri et al. 

showed a decrease in blood pressure that correlated with improvements in oxidative stress.80 

However, these studies do not directly prove a functional role of oxidative stress in OSA.

One approach to demonstrate that oxidative stress is a mediator of OSA consequences is to 

examine the physiological or metabolic impact of antioxidant therapies in OSA. Intravenous 

administration of vitamin C to patients with OSA acutely normalized vascular responses to 

acetylcholine81 and improved flow-mediated dilation (FMD) of the brachial artery.82 

Allopurinol, a xanthine oxidase inhibitor, also improved FMD compared to placebo in 

patients with OSA, in association with a lowering of plasma lipid peroxides.83 A diet 

enriched in fruits and vegetables led to weight loss and reductions of blood pressure in 

patients with OSA, albeit without a detectable change in antioxidant levels measured using a 

ferric-reducing/antioxidant power (FRAP) assay.84 Interestingly, the antioxidant N-

acetylcysteine (NAC) improved lipid peroxidation, and improved OSA itself.85

Overall, there is compelling evidence that ROS may play a role in OSA-mediated 

endothelial dysfunction, but the role of oxidative stress in mediating other OSA 

consequences is decidedly less clear.

SYMPATHETIC NERVOUS SYSTEM

Links between OSA and sympathetic activation

The sympathetic nervous system (SNS) is responsible for eliciting adaptive responses to 

stressful stimuli. Physiologic stress stimulates the locus coeruleus in the hypothalamus,86,87 

which instigates a variety of “fight-or-flight” reflexes, such as an increase in cardiac output, 

and redistribution of blood flow to skeletal muscles. In terms of metabolism, the SNS 
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orchestrates a host of tissue signals that result in a net efflux of glucose and FFA into the 

bloodstream. Some of these signals arise from sympathetic efferent fibers acting upon 

adipose tissue, liver, and skeletal muscle. In addition, the adrenal medulla secretes 

catecholamines into the plasma, which are carried to target tissues. In contrast to these rapid 

effects of SNS stimulation, other responses to stress are activated more gradually, including 

the hypothalamic-pituitary-adrenal (HPA) axis, which mediates the secretion of 

corticotropin-releasing hormone, pituitary adrenocorticotropic hormone, and ultimately 

corticosteroids produced in the adrenal cortex.88,89

OSA has been firmly linked to SNS activation, confirmed by measurements of muscle 

sympathetic nerve activity and elevated urine and plasma catecholamines90–94 with 

normalization after CPAP.90,95 One of the hallmarks of OSA that increases SNS activity is 

IH. IH stimulates chemoreflexes in the carotid body that in turn stimulate the SNS,96,97 with 

evidence of increased efferent stimulation in cervical, renal, splanchnic, thoracic, and 

lumbar sympathetic nerves.96,98–101 In rodents, IH activates the sympathetic nervous system 

and increases catecholamine efflux by the adrenal medulla.96,97,102–113 Besides IH, OSA 

also can cause arousals from sleep and hypercapnia, and these stimuli have interactive 

effects on sympathetic signaling. For example, hypoxia and hypercapnia augment SNS 

activity in a synergistic manner.114,115 In experimentally-induced apneas in sleeping dogs, 

hypoxia and sleep arousals showed additive effects on SNS activity and systemic blood 

pressure.116

What are the functional consequences of IH-induced SNS activation? Healthy humans 

exposed to acute IH develop insulin resistance.117 Qualitatively similar findings occur in 

subjects exposed to acute sustained hypoxia.118 Moreover, acute hypoxia-induced insulin 

resistance is attenuated by the sympatholytic drug clonidine.119 It is not yet clear whether 

long-term IH also induces glucose intolerance or insulin resistance via SNS activity. In rats, 

IH causes a time-dependent increase in blood pressure. This elevation in blood pressure can 

be abolished by sympathetic denervation with 6-hydroxydopamine, denervation of the 

carotid bodies or sympathetic nerves, or adrenal medullectomy.110,120 However, it remains 

unclear whether IH is the primary driver of SNS activation and hypertension in human OSA. 

Exposure of humans to 2 weeks of IH increases daytime blood pressure121 in association 

with increased SNS activity, but preventing hypoxemia in OSA with supplemental oxygen 

does not lower blood pressure, although CPAP does.122

Links between the sympathetic nervous system and metabolism

Catecholamines are considered counter-regulatory hormones since they oppose the anabolic, 

energy-conserving, and glucose utilizing role of insulin. Catecholamines stimulate glucagon 

secretion, activate glycogenolysis and gluconeogenesis in the liver, and cause breakdown of 

muscle glycogen and adipose tissue triglycerides. They also inhibit insulin secretion and 

insulin-mediated glucose uptake by skeletal muscle.123–125 The tight coupling of SNS and 

metabolism is particularly evident in the anatomy of liver tissue. In the liver, sympathetic 

nerve fibers travel with the hepatic artery and portal vein, branching into smooth muscle 

layers to reach hepatic lobules.126–130
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Sympathetic nervous system activation is known to rapidly alter glucose homeostasis. For 

decades it has been recognized that epinephrine, the prototypical stress hormone, causes 

insulin resistance in humans.131 Norepinephrine and epinephrine also inhibit insulin 

secretion from pancreatic islets132–136 and blunt the usual stimulation of insulin secretion by 

glucose.134–137 At least in some species, insulin secretion may be under tonic inhibition by 

this pathway: Mice lacking α2A-adrenoreceptors have elevated plasma insulin and reduced 

blood glucose levels, as well as improved glucose tolerance.136 SNS signaling, 

predominantly via α-adrenoreceptors, controls hepatic glucose output.128,138–140 SNS 

activation also has potent effects on lipid metabolism. Lipolysis is chiefly activated by 

stimulation of β-adrenoreceptors located on the surface of adipocytes. A signaling cascade 

leads to an elevation of intracellular cAMP, followed by hydrolysis of intracellular 

triglycerides and release of FFA, which serve as an important source of fuel for oxidation, 

particularly in the skeletal muscle and heart.

Although the SNS is critical for survival during life-threatening stress, excessive SNS 

activity may have deleterious consequences. For example, the SNS was implicated in the 

development of hypertension many decades ago, which led to the development of 

sympatholytic drugs for lowering blood pressure. Recently, catheter-based renal sympathetic 

denervation has been offered to treat poorly controlled hypertension.141,142 Brotman and 

Girod envision a duel between insulin and counter-regulatory hormones as a “tug of war 

with no winner,” culminating in metabolic syndrome.143 It is theoretically plausible that 

repetitive episodes of insulin resistance could ultimately progress towards pancreatic β-cell 

failure and type 2 diabetes. In particular, excessive lipolysis with an over-abundance of FFA 

can lead to systemic “lipotoxicity,” which refers to the ectopic accumulation of lipids in 

skeletal muscle and liver.144–147 Norepinephrine infused into dogs caused acute insulin 

resistance, high plasma FFA levels, and acute fatty degeneration of the liver, which “was 

yellow and cut like butter” within 48 h.148 More physiologic elevations of FFA have been 

implicated in skeletal muscle insulin resistance, where FFA and their metabolic 

intermediates inhibit tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1), which 

in turn decreases insulin-stimulated glucose transport.149,150 In the liver, increased FFA flux 

stimulates gluconeogenesis151 and the assembly of triglyceride rich very low density 

lipoproteins (VLDL) and VLDL secretion to the bloodstream, resulting in dyslipidemia.152

In summary, acute stimulation of the SNS can induce multiple physiologic changes that 

resemble metabolic syndrome. Chronic stress and elevated SNS activity have been proposed 

as causal factors in the development of metabolic syndrome.89,153,154

Evidence that metabolic dysfunction is mediated by SNS activity in OSA

Evidence for the role of the SNS in mediating OSA consequences is mostly circumstantial. 

For example, CPAP decreases both sympathetic activity and blood pressure.90,95,122,155 

Exposure of healthy humans to IH causes insulin resistance with increased sympathetic 

activity.117 Patients with OSA have elevated plasma FFA levels, perhaps via SNS-mediated 

lipolysis.37,156
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TISSUE HYPOXIA

Links between OSA and tissue hypoxia

Intermittent hypoxia is a defining characteristic of OSA.157 The nadir arterial 

oxyhemoglobin saturations seen in OSA may be quite low, and are typically lower than in 

other pulmonary illnesses. In some cases, the hypoxemia of OSA can lead to cor pulmonale. 

As such, considerable importance has also been attached to tissue hypoxia as a mechanism 

that may underlie metabolic dysfunction in OSA.

No studies have directly measured tissue oxygen tension in patients with OSA. Rather, 

inferences about inadequate tissue oxygenation have been made using indirect evidence. For 

example, two case reports describe acute elevation of liver enzymes in OSA; in these cases, 

severe nocturnal desaturations in OSA were thought to have caused ischemic liver 

damage.158,159 Another study reported higher morning creatine phosphokinase (CPK) levels 

in OSA patients, which were then lowered with CPAP treatment.160 These results suggest 

that patients with OSA may experience liver and muscle damage during sleep, but do not 

specifically prove that tissue ischemia is the underlying mechanism. Morning lactate levels 

are modestly elevated in OSA.161,162 During exercise, subjects with OSA show impaired 

aerobic and glycolytic capacity, a finding similar to that seen at high altitude.163 In addition, 

OSA severity correlates modestly with hematocrit level,164 although the disease rarely leads 

to polycythemia.165,166 Taken together, these findings suggest that there may be patients 

with OSA who have inadequate tissue oxygenation but more invasive assessments would be 

needed to confirm this hypothesis.

Translational models of OSA using IH exposure in rodents have provided some insight 

about the potential burden of tissue hypoxia in OSA. Reinke et al. measured tissue oxygen 

levels during exposure of mice to IH. As arterial oxygen levels fluctuated between baseline 

and a nadir saturation of 60%, oxygen tension in fat and liver also varied with the same 

periodicity.167 Interestingly, obese mice showed an even greater degree of tissue hypoxia, 

suggesting possible interactions of hypoxia and obesity. Similar reductions in oxygen 

tension were reported during extrinsic airway obstruction in rats.168 From these animal 

studies, it is apparent that IH can rapidly decrease oxygen tension in tissues, and a similar 

phenomenon might occur in human OSA. Whether these transient reductions in tissue 

oxygen are sufficient to cause anoxic or ischemic injury is unclear.

Tissue hypoxia can also be assessed by examining pathways of cellular adaptation to 

hypoxia. One might surmise that tissue hypoxia could be accompanied by activation of 

mediators of a global cellular hypoxic response, such as hypoxia inducible factor-1 (HIF-1). 

HIF-1 is a heterodimer that consists of a constitutively expressed β subunit and an O2-

regulated α subunit.169 HIF-1α activation by sustained hypoxia occurs due to the inhibition 

of O2-dependent prolyl hydroxylation,170 thereby preventing ubiquitination and proteasomal 

degradation. An alternative pathway of ROS-mediated accumulation of HIF-1α has been 

demonstrated in adrenal cells during in vitro IH.171 HIF-1 regulates a multitude of cellular 

functions, including metabolism, angiogenesis, and cellular growth.172 Few studies have 

actually examined HIF-1 activation in OSA. One such study examined gene expression 

profiles of skin biopsy samples from OSA patients, mouse aortas from animals exposed to 4 
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weeks of IH, and human dermal microvascular and coronary artery endothelial cells cultured 

in IH.173 Severely hypoxic OSA patients had increased skin HIF-1α expression relative to 

less hypoxic patients, but there was no increase in mouse aorta HIF-1α expression in IH, and 

of the two cell types examined, only coronary artery endothelial cells showed an increase in 

HIF-1α. Another study reported no increase in HIF-1 activity in OSA patients relative to a 

control population, as measured by DNA binding assay.174 However, HIF-1α expression 

increased in the liver and lung tissues of mice after chronic IH,175 and in vitro exposure of 

cells to IH has mirrored this finding.176 Whether these experimental paradigms are realistic 

simulations of cellular hypoxia in OSA remains to be shown. Still, these results do suggest 

that HIF-1α activation depends upon factors including tissue, species, as well as the nature 

and severity of hypoxia.

Links between tissue hypoxia and metabolism

Hypoxia has complex effects on metabolism, many of which are mediated by the central 

nervous system. Hypobaric hypoxia encountered at high altitude leads to anorexia, weight 

loss, and SNS activation with associated insulin resistance.177 In many mammals, hypoxia 

causes a decrease in the thermoregulatory set point, leading to a fall in body temperature.178 

Therefore, hypoxia at relatively cool ambient temperatures can lead to a dramatic fall in 

metabolic rate, deceleration of tissue lipid uptake, and the development of hyperlipidemia179 

– a finding not seen at warmer ambient temperature.180 Besides eliciting these systemic 

responses, hypoxia also can directly affect cellular metabolism at the tissue level. For the 

purposes of this review, we will focus on tissue-level hypoxia, since this is a commonly 

cited hypothesis connecting OSA to metabolic dysfunction.

There is mounting evidence that oxygen tension in adipose tissue may have important 

metabolic consequences. It has been proposed that HIF-1 plays a role in the development 

and progression of metabolic syndrome, since the oxygen tension of adipose tissue in obese 

humans181,182 and mice183 is decreased. This reduced oxygen tension may be sufficient to 

induce HIF-1 expression. However, HIF-1 may also be upregulated in obesity by high levels 

of insulin.184 Regardless of whether adipose HIF-1 is stimulated by hypoxia or insulin, the 

consequences of HIF-1 activation have been demonstrated by both gain-of-function and 

loss-of-function studies: Overexpression of HIF-1α in adipose tissues causes weight gain,185 

while inhibition of HIF-1 leads to weight loss in mice fed a high-fat diet.186 Adipose tissue 

hypoxia may also have other consequences. In vitro exposure of cultured adipocytes to IH 

significantly reduced secretion of adiponectin,187 a hormone that fosters insulin sensitivity 

and weight loss. Additionally, cultured adipocytes increase expression of the glucose 

transporter GLUT-1 in hypoxia188 and decrease expression of the insulin-sensitive 

transporter GLUT-4,189 suggesting that hypoxia, via HIF-1 activation, may cause impaired 

glucose handling in adipocytes.

Hypoxia in the liver may play a role in the progression of non-alcoholic fatty liver disease 

(NAFLD), the hepatic manifestation of metabolic syndrome.190 Baze et al. examined 

hepatic gene expression in mice by microarray, in response to chronic continuous hypoxia of 

increasing severity. Their team found a difference in the expression profile in hypoxia in 

genes associated with immune response, angiogenesis, oxygen transport, glycolysis, and 
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carbohydrate, fatty acid and lipid metabolism.191 Hypoxia led to impaired glucose 

metabolism and induced liver injury in PTEN knockout mice, a transgenic animal that 

develops steatohepatitis.192 Hypoxia was also found to increase the expression of several 

lipogenic genes, such as PPAR-γ (peroxisome proliferator activated receptor-gamma), 

SREBP-1c (sterol regulatory element binding protein-1c), and ACC1/2 (acetyl CoA 

carboxylase 1 and 2); and was associated with decreased expression of mitochondrial beta 

oxidation genes. Hepatic HIF-1 activation is necessary for the development of liver fibrosis 

in a mouse model of NAFLD using bile duct ligation,193 and is involved in the activation of 

hepatic Kupffer cells194 and stellate cells195 in the development of hepatic fibrosis.

Hypoxia may be involved in the development of atherosclerosis. Atherosclerosis was 

accelerated in rabbits exposed to sustained chronic hypoxia.196 In fact, arterial wall hypoxia 

has been hypothesized as an inciting event in early atheroma formation.197 In humans, OSA 

is associated with early signs of atherosclerosis, and OSA severity correlated with the 

severity of vascular abnormalities.198 Moreover, CPAP reverses early signs of 

atherosclerosis in patients with OSA.199 Chronic IH also accelerates atherosclerosis in mice. 

This finding was evident at early stages of plaque formation200 and at advanced stages, 

assessed in mice deficient in ApoE (a lipoprotein necessary for catabolism of 

cholesterol).201 The increased atherosclerosis was associated with hypertension, vascular 

stiffness, and dyslipidemia, and could be attenuated by correcting the lipid transport defect 

caused by IH.202 It remains to be seen whether human OSA exacerbates atherosclerosis by 

these pathways examined in translational IH models.

However, not all studies suggest that hypoxia is harmful for metabolic health. In fact, 

hypoxic exposures have been used to treat obesity and to improve body composition.203 

Hypoxia was found to improve glucose metabolism in some studies,204,205 suggesting that 

tissue-level hypoxia may actually have insulin-sensitizing effects that prevail over SNS-

mediated insulin resistance. Mice exposed to hypoxia for 4 weeks displayed marked 

improvement in insulin sensitivity, contrasting with the acute effects of hypoxia.206 Authors 

speculated that improvements in skeletal muscle blood flow, perhaps induced by endothelial 

nitric oxide, mediated the observed improvements in glucose disposal. Acute hypoxia was 

also shown to improve, rather than worsen, the plasma lipid profile in mice housed at 

thermoneutrality.180 This reduction in plasma lipids was ascribed to hypoxia lowering 

hepatic VLDL secretion, and increasing fatty acid uptake in the heart.

Evidence that metabolic dysfunction is mediated by tissue hypoxia in OSA

Several studies have shown an association between metrics of hypoxia during sleep and 

metabolism. For example, in the Sleep Heart Health Study, sleep related hypoxemia was 

associated with glucose intolerance after controlling for multiple confounding variables.207 

However, it is difficult to study the effects of OSA-related hypoxia in complete isolation 

from other aspects of the disorder. Some of this information can be gleaned from studies 

where OSA was treated with supplemental oxygen rather than CPAP. Several studies have 

shown that supplemental oxygen alone is effective in reducing the magnitude of nocturnal 

desaturations in OSA, although it does not correct the syndrome itself (reviewed in Mehta et 

al.208). A few studies have examined the effect of oxygen therapy on blood pressure;209–211 
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two of these studies showed no effect,210,211 and the third showed a modest reduction in 

diastolic blood pressure relative to patients placed on supplemental air.209 One larger recent 

study has examined the effect of CPAP or supplemental oxygen on blood pressure in 

patients with moderate to severe OSA (AHI 15–50 events/h).122 Supplemental oxygen did 

not alter mean arterial pressure. CPAP therapy, however, caused a 2.4 mm Hg decrease in 

mean arterial pressure relative to untreated patients – a finding replicated in several other 

studies.212 These findings call into question whether hypoxia is the major factor that leads to 

hypertension in OSA. Other features of OSA, such as repetitive arousals, hypercapnia, and 

shifts in intrathoracic pressure, may be more important. Currently, there are no studies that 

have examined any other metabolic outcomes in OSA when comparing supplemental 

oxygen to CPAP.

SLEEP FRAGMENTATION

Links between sleep fragmentation and metabolism

Fragmented sleep is another of the cardinal manifestations – indeed, one of the defining 

characteristics – of sleep apnea.157 There is ample evidence, both in animal models and in 

human subjects, that sleep fragmentation results in insulin resistance and hypertension.

A few studies have examined the role of acute sleep fragmentation in the development of 

metabolic dysfunction in humans. One study used mechanical or auditory stimuli to 

fragment sleep over two nights in healthy, nonobese volunteers.213 After sleep 

fragmentation, the volunteers showed worsened glucose handling and insulin sensitivity, as 

measured by intravenous glucose tolerance test. Similar results were seen in patients after 

slow wave sleep deprivation.214 Auditory sleep fragmentation also blunted the physiologic 

decrease in blood pressure during sleep.215 Mechanisms by which sleep fragmentation 

induces these effects are unknown but are likely related to physiologic changes in autonomic 

tone that occur between sleep and wake states.216

The role of chronic sleep fragmentation in the development of metabolic syndrome is 

unclear. One cross-sectional study of an elderly population found that each standard 

deviation increase in fragmented sleep, assessed with actigraphic recording, was associated 

with an increase in body mass index of 0.59 kg/m2.217 Frequent arousals from sleep in 

snorers without OSA was also found to be associated with hypertension.218

Animal models of sleep fragmentation have been developed, often using mechanical 

disruption to prevent REM sleep219–221 or manipulation of the airway or environment to 

simulate obstructive apneas.222–224 In one study, rats were subjected to either restricted 

sleep,” or “disturbed sleep,” imposed by timed revolutions of a wheel in which the animals 

were housed. Both protocols caused hyperglycemia and decreased insulin levels during an 

IV glucose tolerance test.225 Longer durations of sleep fragmentation (up to 20 weeks) have 

also been shown to induce insulin resistance, in association with activation adipose tissue 

inflammation and oxidative stress.226 Sleep fragmentation in mice also caused glucose 

intolerance and increased food intake after 2 weeks,227 and obesity after 8 weeks.228
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Evidence that metabolic dysfunction is mediated by sleep fragmentation in OSA

There is little evidence to support a direct link between sleep fragmentation and the 

development of specific manifestations of metabolic syndrome in patients with OSA. As 

noted above, CPAP therapy appears to improve some metabolic outcomes in OSA,79 and 

CPAP clearly decreases fragmented sleep, but the effects of CPAP are myriad, so ascribing 

the metabolic improvements to less fragmented sleep specifically is impossible.

CONCLUSION

In conclusion, OSA is believed to affect metabolism by several pathways including 

oxidative stress, SNS activation, tissue hypoxia, and sleep fragmentation. However, the 

relative contribution of each of these mechanisms to metabolic dysfunction in OSA is 

unclear and probably varies considerably from patient to patient depending on a disease 

phenotype. Future investigation may focus on specific disease phenotypes, which lead to the 

development of poor metabolic outcomes, and on utilizing these phenotypic markers to 

optimize future therapeutic strategies and outcomes.
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Figure 1. 
Proposed mechanisms that may underlie metabolic dysfunction in obstructive sleep apnea. 

ROS, reactive oxygen species.

MESARWI et al. Page 24

Sleep Biol Rhythms. Author manuscript; available in PMC 2015 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


