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Abstract

The statistical methods for variable selection and prediction could be challenging when missing 

covariates exist. Although multiple imputation (MI) is a universally accepted technique for solving 

missing data problem, how to combine the MI results for variable selection is not quite clear, 

because different imputations may result in different selections. The widely applied variable 

selection methods include the sparse partial least-squares (SPLS) method and the penalized least-

squares method, e.g. the elastic net (ENet) method. In this paper, we propose an MI-based 

weighted elastic net (MI-WENet) method that is based on stacked MI data and a weighting 

scheme for each observation in the stacked data set. In the MI-WENet method, MI accounts for 

sampling and imputation uncertainty for missing values, and the weight accounts for the observed 

information. Extensive numerical simulations are carried out to compare the proposed MI-WENet 

method with the other competing alternatives, such as the SPLS and ENet. In addition, we applied 

the MIWENet method to examine the predictor variables for the endothelial function that can be 

characterized by median effective dose (ED50) and maximum effect (Emax) in an ex-vivo 

phenylephrine-induced extension and acetylcholine-induced relaxation experiment.
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1. Introduction

Missing data are a common problem in various settings including clinical trials, animal 

studies, and survey sampling.[1–3] When analysing data with missing values, a 

straightforward strategy is to conduct a complete case analysis, where the observations with 

any missing values are ignored. This approach is simple yet ignores the possible differences 

between the complete cases and incomplete cases that may result in a substantial bias when 

the subjects with complete observations are not a random sub-sample of all subjects.[1] The 

complete case analysis also may lose information, and thus, results in incorrect inferences.
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[1,4] Because experiments in medical research are usually expensive, the need for adequate 

handling of missing data is a constantly recognized source of concern.[5] Instead of the 

complete case analysis, a more sophisticated approach called single imputation is used to 

impute the missing values with plausible values, and then statistical analyses are carried out 

on the imputed data set. However, the single imputation method ignores the uncertainty of 

imputation on the missing values that may lead to the underestimation of variances and the 

distortion of the correlation structure of the data. Therefore, simple single imputation is 

usually not recommended.[1–4] Multiple imputation (MI) has gradually become a more 

wellaccepted imputation-based statistical technique for handling missing data since the 

publication of Rubin’s pioneering work for nonresponses in survey.[1] MI procedure 

involves imputing each missing value with M (> 1) independent plausible values, and then 

applying the standard analysis to each imputed data set. The final estimates of the 

parameters and their variances are obtained from the M sets of estimates using Rubin’s rules, 

with accounting for the uncertainty among MIs.[3,4] The objective of MI method is not to 

predict missing values as close as possible to the true values but to handle missing data so 

that valid statistical inferences can be made.[3,4] Rubin’s rules have become the gold 

standard when data are missing at random (MAR).[6–8] By the definition of Little and 

Rubin,[1] the three general types of missing mechanism are: (1) missing complete at random 

(MCAR); (2) MAR; and, (3) not missing at random (NMAR).[1–3] Standard 

implementation of MI relies on an assumption that missing data are either MCAR or MAR, 

while the MI procedure may also be extended to the cases where missing data are NMAR.

[7,9,10]

Variable selection is increasingly important in modern data analysis. Many techniques, such 

as the least absolute shrinkage and selection operator (LASSO),[11] the elastic net (ENet),

[12] and the sparse partial least squares (SPLS),[13] have been developed to select important 

variables that are associated with outcome variables. LASSO minimizes the restricted least 

squares with the constraint on the absolute values of the parameters (i.e. L1 norm), and ENet 

minimizes the constrained least squares with the constraint on the combination of the 

absolute and the squared values of parameters.[11,12,14] SPLS maximizes the correlation 

between outcome variables and the linear combinations of predictor variables (covariates) 

with constraints on the L1 norm of the parameters.[13] The constraint for LASSO can be 

considered as a special case of the ENet, and several studies have shown that ENet performs 

better than LASSO.[12] These methods have assumed that the observations in the data set 

are complete. How to apply these variable selection methods to the situation when there are 

missing values is an important yet unresolved problem.

Several approaches to combine the variable selection methods with MI techniques have been 

proposed recently.[9,15,16] Wood et al. [9] proposed a ‘stacked’ approach by combining the 

multiply imputed data sets into one and using a weighting scheme to account for the fraction 

of missing data in each predictor variable. However, the variable selection method used by 

them was the classical backward stepwise selection approach. Heymans et al. developed and 

tested a methodology combining MI with bootstrapping techniques for studying prognostic 

variable selection.[15] Chen and Wang proposed an MI-LASSO variable selection method 

as an extension of the LASSO method to MI-based data, which is, to the best of our 
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knowledge, the only work combining the penalized least-squares method with MI-based 

data.[16] In the work,[16] the observations with missing values and those without missing 

values are treated with equal importance. In this article, we propose an MI-based weighted 

ENet (MI-WENet) method as an extension of the ENet to the stacked multiple imputed data, 

with a weight accounting for the proportion of the observed information for each 

observation. The cyclical coordinate descent methods [17] are applied to minimize the 

weighted penalized least squares associated with the MI-WENet variable selection method.

To describe our new approach, in Section 2, we first review the two most popular variable 

selection methods: SPLS and ENet, and then we propose the MI-based SPLS (MI-SPLS) 

and the MI-WENet for analysing data with missing values. Then in Section 3, we carry out 

extensive numerical simulations to evaluate the performance of the proposed methods, and 

compare the performance of the proposed methods with the other competing methods. For 

Section 4, we apply the proposed MI-WENet method to examine the predictor variables for 

the maximum effect and the median effective dose in an ex-vivo phenylephrine-induced 

extension and acetylcholineinduced relaxation experiment study. Finally, we provide a 

discussion of the pros and cons of our current approach in Section 5.

2. Methods

Let Yi denote the outcome variable and Xij be the jth predictor variable (j = 1, … , p) for the 

ith subject (i = 1, … , n). Without loss of generality, we assume that Yi and Xij are 

standardized to have zero mean and unit standard deviation. For simplicity, we consider the 

following linear regression model:

(1)

where the regression coefficients β = (β1, … , βp)T are unknown parameters to be estimated, 

and the error term εi are independently identically distributed as N (0, σ 2).

2.1. Review of SPLS and ENet

The SPLS [13] is an extension of partial least-squares regression (PLS) [18] to achieve 

simultaneous dimension reduction and variable selection. The PLS begins with calculating 

the first latent direction vector t1 as , where  is obtained by maximizing the 

correlation between the response variable Y and the linear combination of covariates, Xβ, i.e.

(2)

Suppose the kth (k ≥ 1) direction vector, tk = X  (k), has been obtained. Denote T = (t1, t2, 

… , tk ) and MT = I − T (T TT )−1T T, the (k + 1)th direction vector can be obtained by 

solving Equation (2), with Y replaced by its orthogonal projection onto the complementary 

of the column space of the known direction vectors T , i.e. replacing Y by MT Y . This 

process is repeated to obtain a small number of direction vectors. Regressing the original Y 

on those direction vectors result in a relationship between Y and X due to each direction 
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vector is a linear combination of the covariates X. PLS has become a very popular tool in the 

field of chemometrics and bioinformatics.[19,20] The SPLS achieves the sparsity of the 

coefficients on X by adding the L1 constraints on β.[13] For example, (1) is updated as

(3)

where . The L1 constraint is added to obtain each direction vector.[13] 

SPLS obtains good performance in prediction and variable selection by producing sparse 

linear combinations of the original predictors, and is especially applicable when p is much 

greater than n.[13]

The ENet [12] is a widely applied regulation and the variable selection method. The ENet 

estimator is obtained by undoing the shrinkage for the naïve ENet estimator that is obtained 

by minimizing the penalized least squares

(4)

where

(5)

Here, Pα is the ENet penalty that is a compromise between the ridge regression penalty (α = 

0) [21] and the LASSO penalty (α = 1).[11] Ridge regression is known to shrink the 

coefficients of correlated predictor variables, allowing them to borrow strength from each 

other.[14,21] The ENet penalty with α = 1 − ε, for some small ε > 0, performs much like the 

LASSO but removes any degeneracies and wild behaviour caused by extreme correlations.

[17] For a given λ, as α increases from 0 to 1, the sparsity of the solution to Equation (4), i.e. 

the number of coefficients being zero, increases monotonically from 0 to the sparsity of the 

LASSO solution. The naïve ENet estimator obtained from Equations (4) and (5) does not 

perform satisfactorily,[12] while the ENet estimator that undoes the shrinkage for the naïve 

ENet, performs much better even compared with LASSO and ridge regression. The ENet 

estimator is obtained as

(6)

The ENet penalty is particularly useful in the cases that p is greater than n and there are 

many correlated predictors,[12] which has also been shown in our simulation studies.

2.2. MI-SPLS and MI-WENet

Both the SPLS and ENet methods assume that all covariates and outcome variables are fully 

observed. In the cases that there are missing values, Rubin’s rules provide a general 

framework to handle missing problems provided missing data are MAR or MCAR.[1–4] 

However, Rubin’s rules can not be directly applied to SPLS or ENet, because the variables 

Wan et al. Page 4

J Stat Comput Simul. Author manuscript; available in PMC 2015 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



selected for one imputed data set may be quite different from those based on another 

imputed data set. To the best of our knowledge, there is no standard rule to combine the 

selected variables resulted from different imputed data sets.[8,9,16,22]

To overcome the shortcoming in combining the multiple results from MI data, we propose to 

select variables based on the stacked MI data. To be specific, let us assume that the outcome 

variable is fully observed, but the predictor variables may have some missing values. The 

missing values in the variables are imputed M times independently to generate M imputed 

data sets. We denote the mth imputed data set as , for m = 1, … , M, 

where  is the value of the jth predictor variable for the ith subject in the mth imputed 

data set. If Xij is observed, then we have  and if Xij is missing, then xij 

may take different values in each imputation. Popular softwares for implementing MI 

procedure include the R-packages mice [23] and mi,[24] the SAS software IVEware,[25] and 

a module named MULTIPLE IMPUTATION in SPSS. In the simulation studies, we applied 

the R-package mice that is based on the sequential regression MI, i.e. the multivariate 

imputation by chained equations, to impute missing data.[23,25] In applying the R-package 

mice, users are allowed to specify the conditional distribution of each variable on the other 

variables in the data. The imputation was carried out based on the specified conditional 

distribution for the missing variables.[23]

Once M imputed data sets are obtained, one may stack the M imputed data sets as a large 

complete data set having M × n observations. SPLS and ENet can be directly applied to this 

single stacked data set. These approaches are called MI-SPLS and MI-based ENet (MI-

ENet), respectively. In general, the estimates based on the stacked MI data are unbiased if 

the estimates based on a single data set are unbiased, while the standard errors based on the 

stacked MI data will be under-estimated if they can be estimated.[8] For the MI-ENet 

method, a simple way to correct the under-estimated errors is to apply a weight to each 

observation. Denote this weight by wi for subject i. For the stacked M imputed data sets, one 

could assign wi = 1/M thus the overall weight for a subject is 1. This weighting scheme puts 

the same weight for each subject and ignores the degree of missing information. A more 

legitimate way is to assign weights according to the quality of the observed information. If a 

subject has more missing predictor variables, the weight assigned to the subject should be 

smaller. We propose to assign the weight wi = fi /M, where fi is the fraction of observed 

values for subject i, i.e. the ratio of number of observed variables for the subject i to the total 

number of predictor variables p. This approach is named as the MI-WENet method.

The MI-WENet minimizes the following penalized weighted least squares:

(7)

where β = (β1, … , βp). The penalty here is the same as the ENet penalty in Equation (4). We 

propose to standardize each predictor variable first based on the available data, then carry 

out the MI to get M imputed data sets. In the stacked data, the values for each variable may 
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not have mean zero and variance 1 and the intercept may not be the mean of the observed 

responses anymore. Thus β0 needs to be estimated in the same manner as the other 

regression parameters β. By avoiding any re-standardization in the stacked data, 

 will reduce to , if there is no missing 

predictor variable for subject i. Thus, the objective function is reduced exactly to the 

standard ENet, when there is no missing value at all in the original data.

Denote the objective function (7) as R(β0, β). To solve for (β0, β), a coordinate descent 

method can be applied.[17] Assuming the current estimated  and  are known, we wish to 

update  as  by partially optimizing R(β0, β) with respect to βj (j = 0, 1, … , p). 

Note that the gradient for Δβj at βj = , which only exists if βj = 0, is

(8)

where , one can get

(9)

where . Then βj is updated as follows:

(10)

where , and S(z, γ) is the soft-thresholding 

operator with value

To reduce imputation burden, for a given multiple imputed stacked data set and a given 

weight, one may first calculate and store the following quantities:
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Here  is set to 1 for j = 0. Suppose that  are the available values at 

the previous iteration, one may update βj (j = 0, 1, … , p) by

(11)

The procedure is repeated until convergence to get the estimates for βj (j = 0, 1, … , p). 

These estimates are similar to the naïve ENet estimates,[12] which can be obtained by a 

truncation at λα and a shrinkage with a factor XXjj + λ(1 − α) for βj . A better estimate that 

undoes the shrinkage is obtained by

(12)

The weighted ENet estimates in Equation (12) are used in the simulations in Section 3 and 

the case study in Section 4, and performs well in both variable selection and prediction.

In the present work, we applied 10-fold cross validation method to select the tuning 

parameters α and λ. Here α ∈ (0, 1), and λ> 0. Because (α, λ) determines the soft-threshold 

boundary, we start with a sequence grid value for α. For each fixed α, we compute the 

solution for a decreasing sequence of values for λ starting at the largest value λmax for which 

the entire vector , i.e.

and set λmin = Eλmax with E = 0.001. We construct a sequence of λ values decreasing from 

λmax to λmin on the log-scale. The pair of (α, λ) is chosen such that the cross validation error 

is minimized.

3. Simulation

In this section, we design different simulation schemes to examine the performance of the 

proposed MI-WENet method and compare it with the other methods, such as MI-SPLS and 

MI-ENet. The different simulation scenarios are reported in Section 3.1; the corresponding 

simulation results are reported in Section 3.2.

3.1. Simulation settings

In the simulation studies, we assume that the underlying model is known and has the form of 

Yi = Xiβ + εi , for i = 1, … , n, where Xi = (Xi,1, … , Xi,p), β = (β1, … , βp)T, and εi ~ N (0, 

σ 2). The predictor variables for each subject were generated from a multivariate normal 
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distribution with mean zero and a covariance matrix I:. σ was set as the value such that the 

signal to noise ratio is 2, i.e. 

Simulation scenarios were designed based on various assumptions of sample size n, number 

of predictor variables p, missing mechanism, missing pattern and correlation structure of the 

predictor variables. Correlation structure for the predictor variables of the ith subject (i = 1, 

… , n) was tested under three specifications: (1) compound symmetry with low correlation, 

i.e. corr(Xi,j , Xi
,j1 ) = 0.1; (2) compound symmetry with medium correlation, i.e. corr(Xi,j , 

Xi
,j1 ) = 0.5; and (3) first-order autoregressive (AR(1)), i.e. corr(Xi,j , Xi

,j1 ) = 0.8|j−j |, for j, j1 

= 1, … , p and j = j1, respectively. We set the homogenous variances as 1 for all Xi,j , so the 

covariance matrix I: was same as the correlation matrix. Under each specification, we 

induced missing values under the MCAR and MAR mechanisms, respectively; and for each 

missing mechanism, missing values were generated with independent and monotone missing 

patterns, respectively. In total, 17 scenarios were tested in our simulations, which we believe 

have covered most situations in practical application. The independent missing pattern 

means that the missing observations for different variables are independent, and the 

monotone missing pattern is that a missing observation in xij (where i is the subject index, 

and j is the variable index) implies that all observations xij1 for j ≤ j1 ≤ p are missing.

For each scenario with fixed n, p, I:, missing mechanism and missing pattern, the following 

steps are carried out:

(1) Generate fully observed predictor variables for Xi (i = 1, … , n).

(2) Generate the outcome variable for Yi from the underlying model Yi = Xiβ + εi (i = 1, … , 

n), where εi ~ N (0, σ 2).

(3) Independently generate test data set (xt , yt ) (t = 1, … , nt ) by repeating steps 1 and 2, 

where the sample size nt is larger than n (nt = 1000 in our simulations).

(4) Fit the full data set that has a sample size n and has been generated in steps 1 and 2 by 

using SPLS and ENet, respectively (see the rows named as Full-SPLS and Full-ENet in 

Tables 1–3).

(5) Induce missing values for the predictor variables according to each pre-specified missing 

mechanism and missing pattern.

(6) Fit the data set including complete cases only by using SPLS and ENet, respectively (see 

the rows named as CC-SPLS and CC-ENet in Tables 1–3).

(7) Impute missing values M times (M = 5), and stack the M imputed data sets into an 

enlarged one.

(8) Perform SPLS, ENet and WENet based on the first single imputed data set (see the rows 

named SI-SPLS, SI-ENet and SI-WENet in Tables 1–3), and based on the stacked data set 

(see the rows named MI-SPLS, MI-ENet and MI-WENet in Tables 1–3).
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(9) Repeat Steps 1-8 100 times, and summarize the averaged key performance measures of 

each method.

The key performance measures for each method under each simulation scenario are 

predicted mean-squared error (PMSE), mean-squared error (MSE), sensitivity (SENS in 

Tables 1–4) and specificity (SPEC in Tables 1–4). The PMSE is defined as

where xt and yt are fully observed independent test data generated in Step 3, and  is the 

estimate of the underlying regression parameter β for each model. PMSE is obtained by 

averaging the predicted errors on a large number of observations, where we have set nt as 

1000. The MSE is defined as

where  and β are the same as for PMSE, lower values of PMSE and MSE are desirable. The 

sensitivity is defined as the fraction of variables selected among those whose coefficients are 

not zero in the underlying model, and the specificity is defined as the fraction of variables 

not selected among those whose coefficients are zeros in the underlying model. Larger 

sensitivity and specificity indicate a better performance.

To examine the performance of different methods, we first fixed p = 12, n = 50 and β = (3, 

1.5, 0, 0, 2, 0, 3, 1.5, 0, 0, 2, 0)T, and we considered the combinations of different missing 

mechanism (MCAR and MAR), different missing pattern (independent and monotone) and 

different correlation structure for the predictor variables. Under the MCAR scheme, the 

independent missing pattern was generated by independently removing 16% of the 

observations from each of the first six predictor variables, which resulted in around 50% 

observations containing missing values; the monotone missing pattern was generated by first 

inducing missing values to the 8% of randomly sampled observations from the first to sixth 

predictors, and then repeatedly adding missing values to another 8% randomly sampled 

observations from the second to sixth, third to sixth, fourth to sixth, fifth to sixth, and the 

sixth only predictor variables, which eventually resulted in 48% subjects containing missing 

values. The simulation results for MCAR, with different missing patterns and different 

correlation structures for the predictor variables, are reported in Table 1. For MAR, missing 

values were induced by the following logistic regression model:

(13)

Here,  are indices for the predictor variables in which missing values are to 

be induced, and  are indexes for the completely observed predictor variables. 

When p = 12, p1 is set as 6. For independent missing pattern, the procedure to generate 
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missing values was the same as in the MCAR cases, except that the 16% removed 

observations for each of the six missing predictor variables were selected by the highest 

probabilities calculated from the logistic model (13). For monotone missing pattern, we 

applied the logistic model (13) to the whole data set first, and removed 8% observations 

from the first to sixth predictor variables according to the missing probabilities for the first 

predictor variable. We then applied the logistic model (13) to the remaining data set with 

complete cases only, and removed 8% additional observations from the second to sixth 

predictor variables according to the missing probabilities of the second predictor variable. 

Repeating above procedure until 8% additional observations were removed for the sixth 

predictor variable only, resulted in 48% subjects containing missing values in total. The 

corresponding simulation results for MAR are reported in Table 2.

We also conducted simulations with different combinations of p and n, under the 

specification of monotone MAR and AR(1) correlation structure, so that the performance of 

different methods with large p and small n (say p = 24, 48, and 60, with n fixed at 50) and 

with small p and large n (say n = 50, 100, and 200, with p fixed at 12) can be examined. 

Here, when p > 12, the β in the underlying models were set as the repetitions of (3, 1.5, 0, 0, 

2, 0, 0, 0, 0, 0, 0, 0). The procedures for generating monotone MAR missing values were 

similar as when p = 12 and n = 50. In the cases when p = 24 and p = 48, p1 in Equation (13) 

were set as p/2, and the percentages of missing values in each iteration were controlled at 

4% and 2%, respectively. When p = 60, p1 was set as 24 and the percentage of missing value 

in each iteration was controlled at 2%. The total missing percentage was fixed at 48% under 

each scenario. The corresponding simulation results are reported in Table 3.

The number of simulation runs is 100 in Tables 1–3. To examine whether a large number of 

simulation runs impacts the simulation results, we carried out the simulations with 500 runs 

for each scenario given in Table 3. The corresponding results are reported in Table 4.

3.2. Simulation results

The results for MCAR with different missing patterns and different correlations for X are 

summarized in Table 1, and results for MAR are summarized in Table 2. The results for 

MCAR (Table 1) and MAR (Table 2) explain consistent improvement in the estimation and 

prediction errors using the MI-WENet procedure compared with others. From Tables 1 and 

2, we see that: (1) Full-ENet is consistently having lower PMSE and MSE than those from 

Full-SPLS. When correlations of X are low, Full-ENet has both higher sensitivity and 

specificity compared with Full-SPLS; when correlations of X are medium to high, Full-ENet 

has similar or a little lower sensitivity (within 12%), while the specificity is around 30% 

higher than those from Full-SPLS, indicating that the ENet method has better performances 

than the SPLS method for the variable selection and prediction in our simulations. (2) Based 

on complete cases analysis, both SPLS and ENet (CC-SPLS and CC-ENet) methods have 

much higher PMSE and MSE than all other imputation based methods; the sensitivity for 

CC-ENet dropped 30–50% compared with the Full-ENet, and the specificity for CC-SPLS 

are generally low. All these measurements indicate that CC-SPLS and CC-ENet are not 

recommended. (3) MI-SPLS has a high sensitivity but the specificity is at least 30% lower 

than MI-WENet, indicating that MI-SPLS would select more variables of those should not 
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be selected. (4) In all the tested simulation scenarios, the MI-WENet method generally 

obtains the lowest PMSE and MSE among all competing imputation methods considered 

here with an exception in Table 1. That is, for the independent MCAR case when the 

correlations are following an AR(1) process, the PMSE and MSE for MI-WEnet are slightly 

larger than the other imputation-based Enet method. The sensitivity and specificity of the 

MI-WENet is always close to the full-ENet model. Opposed to that, other imputed ENet 

models gain sensitivity with a significant loss in specificity compared with the full-ENet 

model. MI-WENet also maintains a reasonable sensitivity and specificity across all the 

simulation scenarios. This demonstrates that the MI-WENet method outperforms all the 

other methods.

Table 3 displays the results based on different combinations of p and n, under the 

specification of monotone MAR and AR(1) correlation structure. The first column in Table 

3 shows the performance of different methods for fixed p = 12, when n increases, say n = 

50, 100, and 200. The results demonstrate that: as n increases, (1) the PMSE and MSE for 

each method decreases, which means that the prediction becomes more accurate as n goes 

larger; (2) the sensitivity increases, indicating that as n increases, the percentage of correctly 

selected variables increases; (3) the specificity stays almost the same, indicating that the 

sample size does not impact the percentage of correctly rejected variables effectively; (4) 

among all the imputation methods, the MI-WENet method has the best performance in terms 

of smallest PMSE and MSE, and relatively high sensitivity and specificity compared with all 

the ENet-based imputation methods. However, we observe a higher sensitivity with a 

significant loss of specificity in the SPLS-based imputation methods. Although we see the 

reduced sensitivity in MI-ENet imputations for highly correlated data compared with many 

SPLS-based imputations. The lower sensitivity is not as severe compared with the loss of 

specificity in the SPLS-based imputations. The second column in Table 3 illustrates the 

performance of different methods when the number of predictor variables increases from 24 

to 60 with fixed sample size n at 50, from which we conclude that: (1) as p increases (say p 

= 24, 48, 60), the PMSE and MSE for each method increase apparently; (2) as p gets larger, 

the sensitivity decreases, and the specificity slightly decreases as well for SPLS methods, 

while increase slightly for ENet methods; (3) in general, the performance of MI-WENet is as 

good as the Full-ENet.

To examine whether a large number of simulation runs impacts the simulation results, we 

carried out the simulations of the same scenarios as presented in Table 3 but with 500 

simulation runs. The results are presented in Table 4, from which we can see the results with 

500 runs are very similar to those with 100 simulation runs (see Table 3).

Based on all simulation results, we conclude that the MI-WENet method obtains more or 

less the lowest PMSE and MSE among all the imputation-based methods. The sensitivity 

and specificity of the MI-ENet method is better than all other ENet-based imputation 

methods. In some cases although it looses in terms of sensitivity to some of the SPLS-based 

imputation methods its loss in sensitivity is not as severe as the loss of specificity in some of 

the SPLS-based imputations. Moreover, in most of our simulation scenarios, the PMSE, 

MSE, sensitivity and specificity from MI-WENet are closest to those from ENet on fully 
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observed data. MI-WENet is therefore recommended for variable selection and prediction 

when missing data exist.

In the following section, we applied the MI-WENet method to examine which variables 

were associated with the median effective dose and maximum effect in an ex-vivo 

phenylephrineinduced extension and acetylcholine-induced relaxation experiment.

4. Case study

The high-fat diet and normal chow fed mouse model has been used to examine the 

mechanisms by which high-fat diet impacts cardiovascular function. Early on, high-fat diet 

feeding induces endothelium infiammation, insulin resistance and endothelium dysfunction, 

which precedes the onset of diabetes.[26] Thus, endothelium dysfunction, characterized by 

decreased nitric oxide (NO) production or bioavailability, is used as a robust and early 

indicator of cardiovascular injury.[27] In the mouse model, mice were randomly assigned to 

high-fat diet and normal chow groups. The mice were fed for 12 weeks. Their body weight 

(BW), organ weight, blood variables and an array of plasma compositions and the ex-vivo 

endothelial functional outcomes were measured. Organ weights included heart, liver, kidney 

and spleen weight. The blood variables included percentage of red blood counts (%RBC, i.e. 

hematocrit) and percentage of white blood counts (%buffy). The plasma parameters 

included the counts of cholesterol , triglyceride, albumin, total protein (TP), high density 

lipoprotein (HDL), low density lipoprotein (LDL), alanine aminotransferase, aspartate 

aminotransferase, creatine kinase, alkaline phosphatase, creatinine, haemoglobin A1c 

(HbA1c), insulin, and nitrogen oxide species (NOx , i.e. the sum of nitrite (NO2) and nitrate 

(NO3)), the ratio of HDL to LDL, and the percentage of albumin to total protein (Alb/TP). 

Isolated aorta were contracted with phenylephrine and relaxed with acetylcholine as 

previously published.[28] Percentage relaxation based on maximal contraction was 

calculated for each aorta. The percentage of maximal relaxation is called the Emax, and the 

acetylcholine concentration needed to achieve 50% relaxation is called the effective 

concentration producing 50% response, i.e. EC50. Emax and EC50 are two important 

parameters used to quantify endothelial function. In this section, we examined whether the 

two measurements of endothelial function, Emax and EC50, were related to any of the blood 

variables, plasma parameters, organ and body weights of the mice.

The final data set included 22 mice and 28 measured predictor variables. Some values in the 

predictor variables were missing due to inadequate volume of plasma. In total, eight mice 

had missing observations. In order to include the eight mice in the analysis, we applied the 

MIWENet method to examine what variables were closely associated with the 

measurements of endothelial function. To apply the MI-WENet method, we imputed five 

realizations for each missing value, and stacked the five imputed data sets into one large 

data set. Each variable was scaled to have unit variance before MI, and there was no 

additional standardization carried out after imputation. Thus, the subjects without missing 

values remained the same in the stacked data set. The log-transformation for EC50 was 

applied to ensure the normality of residuals. We applied the MI-WENet method to the 

stacked multiple imputed data set to obtain the coefficient estimates and select the important 

predictor variables. In addition, we applied leave-one-out cross validated samples to 
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construct 95% confidence intervals (95% CIs) for the estimated coefficients. The predictor 

variables whose 95% CIs did not contain zero were selected as the important variables for 

predicting the measurements of endothelial function. The estimates for the selected 

important predictors and their 95% CIs are given in Table 5.

The selected important predictors for Emax were NOx and the ratio of kidney to body 

weight. The selected important predictors for the log-transformed EC50 were NOx , kidney 

weight, the ratio of kidney to body weight, spleen weight, the ratio of spleen to body weight, 

the ratio of heart to body weight, TP, Alb/TP, HDL, and LDL. Endothelium dysfunction is 

commonly associated with decreased nitric oxide production and/or bioavailability.[29–31] 

The current results show that the decreased NOx is associated with decreased Emax and 

increased EC50, which is consistent with previous findings. The other findings, such as 

association between endothelium dysfunction and kidney/BW, are also interesting and may 

be investigated further. The selected important predictor NOx for Emax and EC50 

demonstrates the selection precision of our proposed model, and thus, re-emphasizes the 

importance of using these endpoints to highlight the fundamental role of the endothelium in 

diet-induced cardiovascular injury.

5. Discussion and conclusions

Missing data are common in animal experiments and clinical studies. In this project we 

concentrated on the cases with missing covariate values. One of the frequently used methods 

in practice is the complete case analysis which ignores the covariates with missing 

observations. This method is easy to carry out, while it is inefficient and sometimes 

incorrect because the missing observations may not be a random subset of the whole sample. 

In this paper, we proposed an MI-WENet method (MI-WEnet) for variable selection and 

prediction. Our simulation studies demonstrated that the proposed MI-WENet method was 

able to identify important predictor variables with similar precisions as the SPLS and ENet 

methods would have achieved if the data were completely observed. Sensitivity and 

specificity obtained by the MI-WENet method were close to the results from the ENet 

method based on the full data in all the tested simulation scenarios. In addition, the MI-

WENet method had the lowest MSE and PMSE among almost all methods we have 

evaluated. Our simulations also showed that the use of SPLS and ENet on complete cases 

only resulted in models with poor sensitivity and much larger PMSE and MSE than MI-

WENet, especially when proportion of missing data is high and the missing patterns are 

MAR. This again indicates that the use of MI-WENet is especially recommended when 

proportion of missing values of the covariates is moderate to high.

MI-WENet maintained a balanced sensitivity and specificity in all the simulation scenarios 

and all the imputation schemes. The MI-WENet is also easy to implement. By applying the 

cyclical coordinate descent algorithm,[17] the coefficients of MI-WENet can be easily 

estimated by iteratively minimizing the weighted penalized least squares. The computational 

cost is mainly affected by the number of predictor variables not the sample size. R code for 

implementing the MIWENet method can be obtained upon request. At last, it should be 

pointed out that the weights we proposed account for the available information in an 
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observation; how to account for the available information more accurately is challenging 

and is beyond the scope of the current work.
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Table 1

Simulation results for MCAR scenarios with different missing patterns (independent and monotone) and 

different correlation structures (compound symmetry with low correlation, compound symmetry with medium 

correlation and first-order autoregressive (AR(1))) for p = 12 and n = 50.

Independent MCAR Monotone MCAR

PMSE MSE SENS SPEC PMSE MSE SENS SPEC

Low correlation: corr(Xi,j , Xi,j′ ) = 0.1

Full-SPLS 14.72 3.52 97.2 67.0 15.05 3.96 95.7 70.2

CC-SPLS 28.84 15.34 80.7 47.7 22.08 10.23 84.5 52.0

SI-SPLS 17.72 6.20 91.7 60.3 18.64 7.21 86.8 70.0

MI-SPLS 16.10 4.68 98.3 36.5 16.59 5.24 98.7 42.5

Full-ENet 13.98 2.83 97.7 74.0 14.28 3.07 97.2 74.7

CC-ENet 30.27 18.51 52.5 87.5 21.99 10.47 68.8 89.3

SI-ENet 15.85 4.61 94.5 71.5 17.18 5.96 89.0 75.3

MI-ENet 15.43 4.22 96.3 71.7 16.38 5.16 94.8 72.2

SI-WENet 15.70 4.45 94.5 74.0 16.56 5.29 91.8 75.7

MI-WENet 15.34 4.14 96.0 74.8 15.90 4.66 94.0 72.8

Medium correlation: corr(Xi,j , Xi,j′ ) = 0.5

Full-SPLS 32.86 7.60 90.8 41.0 33.30 7.87 86.5 44.3

CC-SPLS 44.56 17.55 81.5 34.5 37.40 11.01 86.8 31.2

SI-SPLS 34.06 8.76 88.5 36.5 34.76 9.25 86.8 40.0

MI-SPLS 33.98 8.28 93.8 23.2 34.28 8.73 91.5 32.2

Full-ENet 30.63 5.67 87.3 71.7 30.99 5.84 86.0 71.5

CC-ENet 58.10 33.02 33.8 84.0 50.03 24.86 42.7 86.0

SI-ENet 32.45 7.42 82.5 66.2 33.18 8.10 77.0 69.0

MI-ENet 31.72 6.67 84.8 68.2 31.99 6.93 81.8 69.2

SI-WENet 32.00 6.95 83.5 69.7 32.73 7.60 79.3 70.8

MI-WENet 31.35 6.35 86.7 68.2 32.01 6.87 81.8 70.3

AR(1) correlation: corr(Xi,j ,Xi,j′ ) = 0.8|j-j′ |

Full-SPLS 27.77 5.91 87.7 28.3 27.93 6.00 88.3 30.2

CC-SPLS 38.42 15.22 85.8 23.7 31.88 9.41 89.3 22.3

SI-SPLS 28.01 5.95 91.0 23.5 29.40 6.94 85.8 35.2

MI-SPLS 28.26 6.04 94.3 17.3 29.71 7.56 89.7 25.3

Full-ENet 27.14 5.39 78.5 65.8 26.94 4.99 80.0 66.7

CC-ENet 48.79 26.79 36.8 83.0 43.19 21.26 42.7 83.3

SI-ENet 27.33 5.61 76.8 65.7 28.54 6.64 71.3 65.3

MI-ENet 27.07 5.35 78.3 63.7 27.76 5.80 74.8 66.2

SI-WENet 27.20 5.50 77.7 63.8 28.03 6.07 74.8 64.2

MI-WENet 27.40 5.65 77.3 62.8 27.53 5.56 76.8 64.2
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Table 2

Simulation results for MAR scenarios with different missing patterns (independent and monotone) and 

different correlation structures (compound symmetry with low correlation, compound symmetry with medium 

correlation and first-order autoregressive (AR(1))) for p = 12 and n = 50.

Independent MAR Monotone MAR

PMSE MSE SENS SPEC PMSE MSE SENS SPEC

Low correlation: corr(Xi,j ,Xi,j′ ) = 0.1

Full-SPLS 14.45 3.33 94.8 75.7 14.66 3.54 95.3 70.5

CC-SPLS 27.27 12.69 78.7 59.2 33.38 14.95 72.5 56.3

SI-SPLS 18.03 6.61 89.3 68.0 19.66 8.19 84.0 66.0

MI-SPLS 16.52 4.93 98.0 38.7 17.18 5.72 95.0 44.3

Full-ENet 13.83 2.71 96.8 78.8 13.93 2.88 97.2 75.2

CC-ENet 26.83 12.82 64.5 92.0 31.14 15.20 58.8 91.5

SI-ENet 16.90 5.73 90.7 77.2 18.25 7.07 85.2 72.8

MI-ENet 16.38 5.07 92.8 74.7 16.88 5.70 90.0 75.5

SI-WENet 16.57 5.35 91.3 78.3 17.20 5.96 88.7 73.5

MI-WENet 15.96 4.74 93.5 76.5 16.41 5.23 89.8 73.7

Medium correlation: corr(Xi,j ,Xi,j′ ) = 0.5

Full-SPLS 32.28 7.24 90.5 34.5 32.77 7.67 89.0 38.0

CC-SPLS 40.92 16.02 81.3 40.2 49.39 19.42 79.8 38.2

SI-SPLS 35.15 9.57 80.7 45.0 35.49 9.47 81.3 41.5

MI-SPLS 34.69 8.83 91.5 30.8 34.88 8.69 90.7 34.3

Full-ENet 31.27 6.27 83.3 72.8 30.76 6.01 84.2 73.2

CC-ENet 53.89 27.42 47.5 91.3 58.18 28.58 43.8 88.8

SI-ENet 33.21 8.31 77.3 70.5 33.31 8.17 76.2 69.3

MI-ENet 32.72 7.79 78.2 69.0 32.22 7.20 77.5 68.2

SI-WENet 33.47 8.57 76.8 71.3 33.00 8.06 75.8 71.7

MI-WENet 32.63 7.66 78.8 69.0 31.94 6.99 78.2 67.8

AR(1) correlation: corr(Xi,j ,Xi,j′ ) = 0.8|j-j′ |

Full-SPLS 27.36 5.66 89.7 30.2 27.45 5.82 87.5 31.0

CC-SPLS 33.11 11.68 81.0 36.3 43.08 15.44 75.8 35.8

SI-SPLS 30.46 8.28 81.3 40.3 30.33 7.31 81.3 42.0

MI-SPLS 30.96 8.46 91.0 23.5 30.02 7.15 89.2 27.3

Full-ENet 26.91 5.19 78.5 66.8 26.59 5.04 78.5 70.5

CC-ENet 45.50 22.77 41.8 84.5 53.26 28.26 38.0 87.2

SI-ENet 30.21 8.30 67.8 70.5 28.28 6.68 69.3 72.2

MI-ENet 28.76 6.93 72.8 69.2 27.76 6.05 72.7 70.5

SI-WENet 28.81 7.01 70.3 67.5 27.95 6.37 69.0 72.0

MI-WENet 27.97 6.34 73.8 68.8 27.22 5.63 73.5 69.8
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Table 3

Simulation results for scenarios with different combinations of p and n under monotone MAR and AR(1) 

correlation structure specifications based on 100 simulation runs.

PMSE MSE SENS SPEC PMSE MSE SENS SPEC

p = 12, n = 50 p = 24, n = 50

Full-SPLS 27.45 5.82 87.5 31.0 24.25 7.33 87.7 54.4

CC-SPLS 43.08 15.44 75.8 35.8 43.97 18.29 78.2 47.2

SI-SPLS 30.33 7.31 81.3 42.0 26.40 9.15 80.8 59.6

MI-SPLS 30.02 7.15 89.2 27.3 29.33 11.66 91.0 26.8

Full-ENet 26.59 5.04 78.5 70.5 22.81 5.89 82.5 82.7

CC-ENet 53.26 28.26 38.0 87.2 47.90 27.29 41.7 93.4

SI-ENet 28.28 6.68 69.3 72.2 24.17 7.24 75.0 83.2

MI-ENet 27.76 6.05 72.7 70.5 23.15 6.19 78.3 82.7

SI-WENet 27.95 6.37 69.0 72.0 23.78 6.85 78.3 82.7

MI-WENet 27.22 5.63 73.5 69.8 23.03 6.08 79.3 84.3

p = 12, n = 100 p = 48, n = 50

Full-SPLS 24.89 2.96 90.7 35.0 64.14 26.81 84.6 38.7

CC-SPLS 40.66 13.77 80.0 40.5 125.58 63.08 68.1 39.9

SI-SPLS 27.12 4.67 82.8 47.7 71.94 35.72 75.8 44.2

MI-SPLS 26.46 4.13 91.8 33.3 122.30 81.38 87.8 24.7

Full-ENet 24.35 2.44 89.5 68.2 62.51 26.75 55.6 87.1

CC-ENet 46.01 19.01 53.0 86.8 139.63 95.08 16.2 95.6

SI-ENet 26.13 4.06 79.5 70.7 79.43 43.50 45.1 86.8

MI-ENET 25.98 3.85 81.2 70.0 72.33 36.19 52.2 83.0

SI-WENet 25.61 3.71 80.5 69.8 77.47 41.56 47.2 86.9

MI-WENet 25.34 3.41 83.0 72.2 69.98 34.01 53.5 84.4

p = 12, n = 200 p = 60, n = 50

Full-SPLS 23.26 1.53 97.2 35.3 86.32 39.61 85.1 32.0

CC-SPLS 33.61 9.76 87.2 34.8 172.15 89.69 65.5 42.1

SI-SPLS 24.92 3.07 90.0 54.5 95.03 48.63 79.5 38.5

MI-SPLS 24.69 2.83 95.8 39.2 276.42 218.87 91.8 11.6

Full-ENet 22.95 1.20 97.3 71.2 91.66 46.41 48.9 86.7

CC-ENet 38.12 11.94 68.0 83.8 183.00 126.53 14.5 95.4

SI-ENet 24.63 2.76 89.5 75.2 105.60 60.05 40.9 87.2

MI-ENet 24.36 2.48 92.2 71.2 97.83 52.21 46.9 86.8

SI-WENet 23.84 2.06 92.0 72.5 103.51 58.41 41.7 87.9

MI-WENet 23.72 1.97 93.0 69.7 94.69 49.27 47.9 86.6
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Table 4

Simulation results for scenarios with different combinations of p and n under monotone MAR and AR(1) 

correlation structure specifications based on 500 simulation runs.

PMSE MSE SENS SPEC PMSE MSE SENS SPEC

p = 12, n = 50 p = 24, n = 50

Full-SPLS 27.90 6.11 88.1 30.4 24.36 7.16 88.0 52.3

CC-SPLS 44.22 16.62 77.0 38.0 44.36 18.91 77.0 47.1

SI-SPLS 30.82 8.16 79.2 45.6 26.67 8.97 81.2 60.8

MI-SPLS 30.67 8.10 87.4 29.8 29.30 11.45 92.5 27.5

Full-ENet 27.11 5.34 78.2 68.6 22.95 5.93 80.9 82.7

CC-ENet 53.80 28.20 38.1 85.6 47.73 27.26 40.1 93.0

SI-ENet 29.49 7.63 68.4 73.5 24.56 7.53 74.2 82.2

MI-ENet 28.62 6.70 70.7 73.7 23.36 6.34 77.9 82.8

SI-WENet 28.85 7.04 69.8 72.5 24.09 7.03 76.6 82.3

MI-WENet 27.97 6.16 73.0 72.4 23.25 6.20 78.1 83.1

p =12, n = 100 p = 48, n = 50

Full-SPLS 24.80 3.16 92.8 32.7 64.41 27.52 84.9 40.0

CC-SPLS 37.82 12.56 82.2 38.2 117.09 56.28 74.1 36.0

SI-SPLS 26.90 4.79 83.8 48.6 75.06 38.56 75.6 45.2

MI-SPLS 26.34 4.35 91.8 33.0 116.28 76.58 85.4 25.8

Full-ENet 24.18 2.52 90.3 67.2 64.41 28.48 57.2 85.2

CC-ENet 44.37 18.25 54.4 85.2 137.51 93.63 17.0 95.4

SI-ENet 26.15 4.38 79.4 70.2 78.09 42.30 45.5 84.7

MI-ENET 25.63 3.79 82.7 70.5 72.12 36.19 52.5 83.5

SI-WENet 25.21 3.53 83.3 68.9 76.92 40.97 47.1 85.1

MI-WENet 24.88 3.20 85.6 69.1 69.80 33.94 54.7 83.6

p = 12, n = 200 p = 60, n = 50

Full-SPLS 23.27 1.57 96.2 36.7 84.43 37.53 83.6 34.8

CC-SPLS 33.71 9.82 87.8 33.9 164.11 82.84 69.4 39.1

SI-SPLS 24.86 2.98 88.7 55.2 96.66 49.80 76.1 40.4

MI-SPLS 24.55 2.70 96.0 36.9 285.05 225.15 91.0 15.6

Full-ENet 23.02 1.27 97.2 70.0 88.60 43.01 50.6 86.3

CC-ENet 36.95 10.69 70.1 84.8 183.30 128.18 13.8 95.7

SI-ENet 24.49 2.64 88.2 71.1 104.67 59.05 40.6 87.2

MI-ENet 24.26 2.37 92.6 70.4 99.70 54.00 45.3 86.1

SI-WENet 23.76 2.00 91.8 71.5 103.13 57.48 41.4 87.2

MI-WENet 23.60 1.85 94.2 70.2 97.24 51.57 46.3 86.4
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Table 5

The estimated coefficients and their 95% CIs based on leave-one-out samples for Emax and EC50 using the 

MI-WENet method.

Covariate Estimate 95% CI-low X95% CI-up

Emax

NOx 0.1894 0.0792 0.2997

Kidney/BW 0.2664 0.0128 0.5200

EC50

NOx −1.0803 −1.6983 −0.4623

Kidney −1.2246 −1.9112 −0.5379

Kidney/BW −1.7004 −2.6188 −0.7821

Spleen −1.5503 −2.3522 −0.7484

Spleen/BW −1.9629 −2.5398 −1.3860

Heart/BW −0.9037 −1.5152 −0.2923

TP −1.0097 −1.4712 −0.5481

Alb/TP −0.9950 −1.4623 −0.5276

HDL −1.1533 −1.6846 −0.6220

LDL −1.0116 −1.4736 −0.5497
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