
RESEARCH ARTICLE

Genome-Wide Assessment of Outer
Membrane Vesicle Production in Escherichia
coli
Adam J. Kulp1, Bo Sun2, Teresa Ai2, Andrew J. Manning3, Nichole Orench-Rivera3, Amy
K. Schmid2,4☯‡*, Meta J. Kuehn1,3☯‡

1 Dept. of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710,
United States of America, 2 Dept. of Biology, Duke University, Durham, NC, 27708, United States of
America, 3 Dept. of Biochemistry, Duke University Medical Center, Durham, NC, 27710, United States of
America, 4 Duke Center for Systems Biology, Duke University, Durham, NC, 27708, United States of
America

☯ These authors contributed equally to this work.
‡ These authors are joint senior authors on this work.
* amy.schmid@duke.edu

Abstract
The production of outer membrane vesicles by Gram-negative bacteria has been well docu-

mented; however, the mechanism behind the biogenesis of these vesicles remains unclear.

Here a high-throughput experimental method and systems-scale analysis was conducted to

determine vesiculation values for the whole genome knockout library of Escherichia coli
mutant strains (Keio collection). The resultant dataset quantitatively recapitulates previously

observed phenotypes and implicates nearly 150 new genes in the process of vesiculation.

Gene functional and biochemical pathway analyses suggest that mutations that truncate

outer membrane structures such as lipopolysaccharide and enterobacterial common anti-

gen lead to hypervesiculation, whereas mutants in oxidative stress response pathways

result in lower levels. This study expands and refines the current knowledge regarding the

cellular pathways required for outer membrane vesiculation in E. coli.

Introduction
Outer membrane vesicles (OMVs), derived from both pathogenic and commensal Gram-nega-
tive bacteria, are formed from the budding and release of the outer membrane (OM), leading
to the formation of lipid-encapsulated spheres that range from 20–200 nm in diameter [1].
Periplasmic cargo is encapsulated in the lumen of OMVs, protecting it from degradative envi-
ronmental factors [2, 3]. Membrane-bound cargo is found on the surface of OMVs, including
outer membrane proteins (OMPs) [4], lipopolysaccharide (LPS) [5], and in some cases, quo-
rum signaling molecules [6]. Because OMVs contain biologically active proteins, it is no sur-
prise that they partake in a multitude of biological functions, including the delivery of toxins
during infection [7–9], biofilm nucleation [10, 11], defense against antimicrobials [12],
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nutrient acquisition [13–15] and even DNA transfer [16, 17]. Many studies have described
OMV contents and activities, but little is known about the process of OMV biogenesis. Uncov-
ering this process will increase our understanding of a well-conserved and important bacterial
pathway and may yield insights into other membrane-bounded secretion systems.

A strong body of evidence indicates that OMV production and OMV cargo loading result
from regulated mechanisms and not from random occurrences or cell death [18–21]. These
studies determined that the protein and lipid contents differ between the Gram-negative enve-
lope and OMVs, suggesting that material is specifically packaged into OMVs or excluded from
sites of OMV biogenesis. For example, the lipids of OMVs from Pseudomonas aeruginosa are
mainly composed of a highly charged form of LPS known as B-band LPS, even though this
molecule is only a minor component of the bacterial OM [22]. Such consistently observed
enrichments rule out random membrane shedding or lysis, which would be expected to pro-
duce vesicles that are identical to the cell envelope in composition.

Studies aiming to describe the mechanism of vesiculation have led to several different mod-
els describing how Gram-negative bacteria produce OMVs. Data showing that OMV lipids dif-
fer from the lipids of the OM, such as the aforementioned report on Pseudomonas OMVs, have
led to a model in which membrane curvature is induced by the accumulation of LPS molecules
with atypical structures or charges. LPS is the major constituent of the outer leaflet of the OM
of most Gram-negative bacteria. The LPS molecules themselves are not homogeneous; the
length and content of the polysaccharide chain varies among the different molecules. It is pro-
posed that subsets of these molecules may gather in patches along the OM, inducing higher
degrees of membrane curvature at particular locations, either due to charge repulsion [22] or
their molecular shape [23].

A second, but not necessarily mutually exclusive, model of vesiculation has been proposed
involving protein determinants. In this model, vesiculation occurs at sites where proteins link-
ing the OM and the underlying peptidoglycan layer have been excluded, disrupted or otherwise
modified [24]. The OM is tethered to the peptidoglycan by an assortment of proteins that link
the two layers (e.g. OmpA, Braun’s lipoprotein, Lpp, and Tol/Pal). Disruption of the Tol/Pal
links, for instance, causes membrane instability and increased OM shedding [25]. Mutations
have been used to show that vesiculation levels are dependent upon the proteins crosslinking
the OM to the cell wall [24, 26, 27]. Supporting this model, Lpp is depleted in OMVs from
Escherichia coli [28], and cells with deletion mutations in membrane-wall bridging proteins,
such as the Tol-Pal complex and OmpA, exhibit increased vesiculation levels [29, 30].
Although mutants completely lacking these crosslinks exhibit severely compromised mem-
brane integrity, native vesiculation occurs without causing gross membrane instability [31]. A
linkage-based mechanism would therefore need to be tightly regulated.

Insights into the regulation of OMV production have resulted from genetic studies, analysis
of OMV composition, and the identification of conditions affecting vesiculation. Vesiculation
levels change with different growth conditions. For example, oxygen stress increases vesicula-
tion in P. aeruginosa and Neisseria meningitidis [32, 33], DNA damaging antibiotics stimulate
OMV production in P. aeruginosa via the SOS response [34], media composition influences
vesiculation in Lysobacter sp. XL1 [14], and envelope stress increases vesiculation in E. coli
[35]. In fact, the ability to induce vesiculation is critical for growth under some conditions [35,
36]. Based on these studies, we hypothesize that the mechanism of vesiculation has a genetic
basis. Although previous studies, including a transposon mutagenesis screen, have implicated
more than 20 genes in the process of vesiculation [31], no saturating screen has yet been per-
formed, and thus the entire genetic potential of E. coli vesiculation has remained unexplored.

In this study, we assessed the genetic basis of OMV production by measuring vesiculation
levels for the deletion mutant strains of the E. coli Keio library [37]. Nearly 150 mutant strains
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not previously known to be involved in OMV production exhibited significant vesiculation
phenotypes. These mutants were used to evaluate the biological systems that govern OMV bio-
genesis. Specifically, systems analysis of vesiculation phenotype data in the context of gene
functional ontologies and biochemical pathway datasets led to two novel predictions: (1) sur-
face-exposed oligosaccharides negatively affect vesiculation; and (2) an intact oxidative stress
response is required for wild type vesiculation levels. To our knowledge, this study provides the
most comprehensive mutational analysis of bacterial vesiculation to date, and the data support
a system in which both OM structures and response to abiotic stress are crucial to the mecha-
nism of vesiculation.

Materials and Methods

Strains and growth conditions
Unless otherwise indicated, the Keio collection [37] was used for all mutants, and the
BW25113 strain was used as the wild-type. Unless otherwise indicated, cultures were grown in
Miller LB media containing 50 μg mL-1 kanamycin or 250 μg mL-1 ampicillin as necessary.

High-throughput OMV phenotype assessment
Strains from the Keio collection E. coli knock out library were inoculated into 96-well U-
bottom plates (BD, Franklin Lakes, NJ, USA) containing 150 μl of LB with 50 μg mL-1 kanamy-
cin and incubated at 37°C with shaking at 200 rpm overnight. To prevent evaporation, the
sides of the plates were sealed with Parafilm. After the incubation, cells were pelleted by centri-
fugation at 1000 x g for 5 minutes. Using a vacuum manifold, 15 μl of supernatant from each
well of a plate was passed through a 0.45 μm polyvinyl difluorine (PVDF) filter (Pall Scientific,
Ann Arbor, MI) onto a nitrocellulose membrane (Pall Scientific). The nitrocellulose mem-
branes were blocked in TBST (50 mM Tris-Cl, pH 7.4, 150 mMNaCl, and 1% Tween-20) con-
taining 2% nonfat dry milk for one hour at room temperature, then incubated with polyclonal
antibodies against E. coli LPS (1:1,000 in TBST; Affinity BioReagents) overnight at 4°C. The
blots were then washed in TBST 6 times for 5 minutes each, followed by incubation with
mouse-conjugated anti-rabbit secondary antibodies (1: 10,000 in TBST; LI-COR) for 1 hour at
room temperature. The blots were again washed 5 times in TBST for 5 minutes each and once
in TBS for 5 minutes. The blot was imaged using the Odyssey infrared imager (LI-COR), and
the accompanying software was used to perform densitometry for the blot. This experimental
procedure is summarized in Fig 1B. To account for day-to-day variations in blotting intensity,
the densitometry values were normalized to the mean value of the membrane. At least two bio-
logical replicate trials were performed for each mutant strain in the library collection, and these
values were averaged for each mutant. To assess the reproducibility of the assay, a subset of
mutants were chosen at random for 3–5 additional biological replicate trials.

Growth rate measurements across the Keio collection
To rule out that defects in OM vesiculation were due to impaired growth or cell lysis, the
growth rate of 97% of the Keio collection mutant strains mutants was quantified. Strains were
grown in Miller LB media containing 50 μg mL-1 kanamycin in flat-bottom 96-well plates (BD)
for 18 hours (i.e. the same growth conditions as for the high throughput vesiculation assay),
measuring optical density at 600 nm (OD600) every 30 minutes using a BioTek EL808 micro-
plate reader (BioTek, USA). Growth was measured in three independent replicate trials, and
the maximum growth rate was calculated using Gompertz regression [38] using custom
MatLab scripts (github.com/amyschmid/GrowthFitting). Growth rates with poor fits to the
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Fig 1. Outline of experimental and computational approaches used in this study. (A) Flowchart of experimental and computational analyses used to
measure and select mutants with vesiculation phenotypes significantly different from the mean of the Keio collection (see Methods). (B) Flowchart of the
high-throughput dot-blot method to determine vesiculation values. Cultures grown in 96-well plates were centrifuged to pellet cells. Using a vacuummanifold,
supernatant from each culture was passed through a filter to remove remaining cells (blue) and through a nitrocellulose membrane to capture OMVs (red).
The membrane was then probed using anti-LPS antibodies to detect captured OMVs, and densitometry was employed to quantify vesiculation levels. (C)

Global Assessment of OMV Production in E. coli

PLOSONE | DOI:10.1371/journal.pone.0139200 September 25, 2015 4 / 16



Gompertz model (R2 � 0.7) were filtered out. The remaining strains falling outside one stan-
dard deviation of the mean of growth rates for all strains across all three independent growth
curves were considered to have a defective growth phenotype and excluded from subsequent
analyses. The remaining 3,800 mutants with normal growth were considered in subsequent
analyses. These procedures are outlined in Fig 1A and 1C.

Data analysis
Mutants were considered to have significant over- or under-vesiculation phenotypes if they
exhibited normal growth (see above) and their average vesiculation value was outside two stan-
dard deviations from the mean vesiculation value of the entire mutant collection (greater than
0.377 or less than -0.423). This cutoff was chosen to account for the per-gene variability (S1
Table). To further assess data reproducibility, additional replicates were conducted for ran-
domly selected subsets of the library, with 272 mutants run thrice, 138 run four times, and 76
run five times. The coefficient of variation of unlogged vesiculation values (CV, mean / stan-
dard deviation) was calculated for each mutant in the collection. The mean CV for the 3,800
mutants that passed the growth filter is reported in the text. For the 171 total resultant mutants
passing the significance cutoff (two standard deviations from the vesiculation mean of the pop-
ulation), significant enrichment (p� 0.05) in Gene Ontology (GO) functional categories was
calculated using AmiGO database from the Gene Ontology Consortium [39]. Because the GO
database is not annotated for the BW25113 strain, the closest relative, MG1655, was used for
all evaluations. GO categories with significant enrichment are given in Table 1, with individual
gene memberships given in S5 Table. Metabolic pathway analyses were conducted by down-
loading KEGGxml files from Kyoto Encyclopedia of Genes and Genomes (KEGG, [40]) or
pathway information from EcoCyc [41]. Visualizations shown in the Figures were produced
using the KEGGScape plug-in to Cytoscape v 3.1.0 [42]. All mappings between gene name and
unique identifiers were conducted using the EcoGene [43] and PortEco [44] databases.

Flask-grown culture OMV preparation (FCOP)
To validate the results from the high throughput method, vesiculation levels were assessed
using large volume cultures and a previously described, established method [31] with some

Growth rates were calculated for each of the mutants tested for vesiculation to rule out lysis or poor growth. Each box represents a growth curve for one
strain. The dotted line (right) represents the remaining growth curves not shown. Growth rates were calculated from raw data (blue dots) using Gompertz
regression fit to the data (green line). For clarity, a growth curve for one mutant is shown in zoomed view below.

doi:10.1371/journal.pone.0139200.g001

Table 1. Gene Ontology (GO) functional enrichment for mutants with defects in vesiculation.

GO term (GO Biological Process ID)a Backgroundb Samplec p-valued

Lipopolysaccharide biosynthetic process (GO:0009103, GO:0008653)e 82 15 1.96E-06

ADP-L-glycero-beta-D-manno-heptose biosynthetic process (GO:0097171) 3 3 3.65E-03

Glutathione metabolic process (GO:0006749) 6 3 2.76E-02

Response to oxidative stress (GO:0006979) 75 8 4.27E-02

aThe most specific GO categories are reported.
bNumber of genes in the genome that are members of the GO category
cNumber of genes identified in the analysis
dSignificance calculated using the hypergeometric test
eAlso GO:0046401 and GO:0009244. The related GO category with the most conservative value is reported in the table.

doi:10.1371/journal.pone.0139200.t001
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modifications, herein referred to as the FCOP method. Specifically, test and wild type control
strains were grown in 250 mL cultures at 37°C overnight while shaking at 200 rpm. The lpxL
and lpxM deletion mutants were grown in Lennox LB for FCOP measurements due to their
sensitivity to high salt concentrations. After the incubation, a 1 mL aliquot of the culture was
used to determine the number of colony forming units (CFUs) by dilution plating. Cells were
removed from the culture by centrifugation at 10,000 x g for 10 minutes followed by filtering
the supernatant through a 0.45 μm PVDF filter (Millipore). OMVs were pelleted from the cell-
free media by centrifugation at 38,000 x g for 3 h at 4°C. The supernatant was decanted, vesicles
were resuspended in the remaining supernatant, then collected by a second round of centrifu-
gation at 100,000 x g for 1 hour at 4°C in a tabletop ultracentrifuge. The media was decanted
from the tubes, and the collected OMV pellets were resuspended in 100 μl of DPBSS, salt-sup-
plemented Dubelco’s phosphate buffered saline containing additional salts (200 mMNaCl, 8.1
mMNa2HPO4, 2.68 mM KCl, 1.47 mM KH2PO4, 0.9 mM CaCl2, and 0.5 mMMgCl2). The
OMVs were quantified using the lipophilic fluorescent dye FM4-64 (Invitrogen) as described
previously [31]. Vesiculation values were determined by normalizing the FM4-64 measure-
ment to the CFUs and to the average vesiculation value of wild type control strains across at
least 3 replicate trials.

Results and Discussion

Establishment of a high-throughput assay to quantify vesiculation
recapitulates known vesiculation phenotypes and identifies novel
pathways
The current methods to measure vesiculation levels accurately are based on large-scale, multi-
step, expensive and time-consuming assays, making genome-wide studies of vesiculation
genetics infeasible. To gain global insight into the mechanism of OMV production in bacteria,
we designed experimental and analytical methods to test a wide variety of mutant strains in a
high-throughput, cost-effective manner (Fig 1A). Insoluble secreted extracellular material
(mainly, but not exclusively vesicles) from all non-essential mutant strains representing 98% of
the Keio collection grown in 96-well plates were sterile-filtered (0.45 μm) then trapped on
nitrocellulose membranes. Vesicles were then quantified by high throughput immunostaining
using anti-LPS antibody and densitometry (Fig 1B, Methods). Vesiculation values for the
whole collection are given in S1 Table. We note here that our earlier work characterizing the
membranes and cell integrity of vesiculation mutants that were detected using a similar assay
showed no direct correlation between membrane integrity defects and vesicle production [31].
To rule out low vesiculation values that were due to growth impairments or high vesiculation
values that were due to lysis (since the detection of LPS cannot distinguish cell fragments from
vesicles), growth of strains across the collection were monitored in liquid medium in a plate
reader under conditions matching those used for the vesiculation assay (Fig 1C, S2 Table). Of
the initial 3,905 strains tested, 105 exhibited growth rates outside one standard deviation from
the mean of the collection under the conditions tested here. These were discarded from subse-
quent analyses (Fig 1A, Methods, S3 Table). The vesiculation values for strains passing this
growth rate filter approximated a normal distribution (mean value -0.023, Fig 2). To assess
data reproducibility, additional biological replicates were conducted for randomly selected
mutants in the library (Methods, S1 Table). The average coefficient of variation for vesiculation
values across all replicates was 27.8%, which is expected given the biological variability of the
phenotype [31]. To account for variability in the data, strains with vesiculation values outside
two standard deviations from the population mean were considered to exhibit a significant
vesiculation phenotype (Fig 2). This yielded 171 strains with significant vesiculation
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phenotypes and no growth defects (Figs 1A and 2, S4 Table). Of these, 73 mutants exhibited
over-vesiculation phenotypes and 98 showed under-vesiculation phenotypes.

Previous work implicated 23 mutants in the process of vesiculation in E. coli K-12 [29–31,
45]. Of these 23, 17 showed over-vesiculation and 6 under-vesiculation phenotypes, although
vesiculation was only assessed qualitatively for 3 of these mutants [29, 30, 45]. The values of 7
of the 23 mutants with previously identified vesiculation phenotypes were recapitulated here
(>2 SD from the mean). Three of the 23 mutants (tolB, ompR and degP) previously identified
as an over-vesiculating [30, 31] exhibited defective growth in the high-throughput assay condi-
tions here and were therefore not considered for further analysis in this study. The remaining
12 mutants exhibited vesiculation values deemed not significant based on the stringent statisti-
cal criteria used here. Four of these 12 were close to the 2 SD cutoff and exhibited the same
qualitative phenotype (over- or under-vesiculation). Differences in mutation types (e.g. trunca-
tions or insertions in previous studies as compared with knockouts here), different growth con-
ditions, and different strain backgrounds may account for the discrepancies between previous
and current results. Nevertheless, the assessment of the Keio collection presented in this study
agreed with published data for a significant subset of the strains (hypergeometric probability
p< 1.16 x 10−5).

To determine which biological functions were represented, those 171 mutants with signifi-
cant vesiculation phenotypes in the high throughput assay (S4 Table) were analyzed for signifi-
cant enrichment in Gene Ontology (GO) functional categories. Genes involved in the
lipopolysaccharide (LPS) biosynthesis pathway and in stress response (e.g. oxidative stress, glu-
tathione synthesis) pathways were overrepresented among vesiculation mutants (Table 1, S5
Table). Taken together, the results of the high throughput analysis of OM vesiculation assay:
(a) recapitulate and quantitatively refine known vesiculation phenotypes; and (b) implicate
genes and pathways in the process of vesiculation in E. coli. This high throughput method

Fig 2. Analysis of high throughput vesiculation experiment. The range of the vesiculation scores from
the high throughput method is displayed on the histogram. Mutants with log10 vesiculation scores outside
two standard deviations from the mean of the distribution (vertical dotted lines) were considered in
subsequent analyses.

doi:10.1371/journal.pone.0139200.g002
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rapidly, quantitatively, and reliably identifies vesiculation phenotypes for the entire Keio collec-
tion, representing a rich and novel dataset for exploration.

An intact stress response is required for vesiculation
Significant enrichment was detected in glutathione biosynthesis and oxidative stress response
GO categories. Whereas vesiculation has previously been linked to oxidative stress for other
species [33, 46], a relationship between oxidative stress and vesiculation has not been previ-
ously identified for E. coli. The association between glutathione synthesis and vesicle produc-
tion was novel. Of the 81 genes in the genome included in these two categories, 11 mutants
tested here exhibited significant vesiculation defects (Table 1). The majority of these mutants
(8 of 11) exhibited under-vesiculation phenotypes (S4 and S5 Tables). Specifically, under-
vesiculation was detected for mutants in genes whose products are required for transcriptional
regulation of oxidative stress response (oxyR) and neutralization of oxidants (e.g. catalase-
encoding katG) as well as glutathione biosynthesis genes. OxyR is a transcriptional activator
of three of the genes with under-vesiculation phenotypes (katG, gor,mntH [47, 48]) suggest-
ing a regulatory link between oxidative stress and OMV production. These findings are con-
sistent with previous work suggesting that oxidative stress stimulates OMV production in
Pseudomonas [46]. However, this study newly implicates specific oxidative stress production
genes and potential transcription regulators in E. coli OMV production. Together these results
suggest that an intact oxidative stress response is required for wild type OMV production lev-
els in E. coli.

Vesiculation levels increase in mutants that truncate LPS
An unprecedented number of genes encoding enzymes in the LPS biosynthesis pathway were
implicated in OMV production (Table 1, S5 Table). Excluding the O-antigen synthesis genes
that are inactive in K-12 strains, there are 81 genes listed in the Gene Ontology (GO) category
for LPS biosynthesis. Of these 81 genes, deletions of 15 of the non-essential LPS biosynthesis
genes resulted in significant vesiculation phenotypes, with 10 exhibiting over-vesiculation
and 5 under-vesiculation (Fig 3, S4 and S5 Tables). When complemented by the expression
of rfaD in trans, the hypervesiculation phenotype of a representative mutant ΔrfaD was
reduced, as expected, although not to wild type levels, likely due to the nonnative expression
levels of the gene (S1 Fig). Note that three of these 15 genes participate in enterobacterial
common antigen (ECA) biosynthesis (rffC, rffA, wzzE), which are discussed in more detail
below. Interestingly, when integrated with LPS metabolic pathway information, we observed
that the majority of the 15 genes encode enzymes required to synthesize the sugar chain built
upon the KDO-lipid (Fig 3), with mutants in the majority of these genes increasing
vesiculation.

These findings are in agreement with prior studies in E. coli [31] as well as other studies in
P. aeruginosa [22, 49] and Porphyromonas gingivalis [23], with the polysaccharide chain and
LPS structure being implicated in the process of OM vesicle production. However, data pre-
sented here extend and refine these previous observations by identifying the full suite of non-
essential genes related to the LPS pathway, which are required for wild type vesiculation levels.
These genes encode enzymes involved in constructing the core sugar chain as well as two of the
acyltransferase genes. Mutations to these genes result in LPS molecules with truncated polysac-
charide chains or lipid cores that lack one of the six acyl chains [50](Fig 3). Taken together,
these data are consistent with the hypothesis that the structure of LPS affects the vesiculation
levels of E. coli, with incomplete structures yielding more OMVs.
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Fig 3. Biosynthesis of immature LPS alters vesiculation. Vesiculation phenotypes of the LPS core sugar biosynthesis pathway are depicted in the
pathway diagram. Colored boxes represent vesiculation values for mutants of enzyme-coding genes at each step of the pathway. The vesiculation score for
the mutants of each respective enzyme are indicated by the color of the box (see legend). Pathway adapted from KEGG [40].

doi:10.1371/journal.pone.0139200.g003
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Vesiculation levels are inversely proportional to ECA chain length
Among the mutants with significant vesiculation phenotypes represented in the GO category
entitled “LPS biosynthesis”, ΔrffA (wecE), ΔrffC (wecD), and ΔwzzE (o349) were detected.
These genes are known to play additional roles in construction of the membrane-bound poly-
saccharide enterobacterial common antigen (ECA; [51]). Upon integration of these data with
the currently known ECA biosynthesis pathway, we observed significant over-vesiculation in
the case of the ΔrffAmutant and under-vesiculation for ΔwzzE (Fig 4). The phenotype of ΔrffA
was restored to wild-type level by complementation with rffA expressed in trans. The expres-
sion of wzzE in trans increased the level of vesicle production of the ΔwzzEmutant in the com-
plementation assay (S1 Fig). WzzE is the ECA chain length regulator [52], whereas RffA and C
catalyze the assembly and elongation of the polysaccharide chain [53]. Several other mutants in
enzyme-coding genes for this pathway also exhibited over-vesiculation phenotypes that were
close to but missed the two standard deviation cutoff (Fig 4). Although the structure and

Fig 4. ECA biosynthesis regulates vesiculation. The network for ECA biosynthesis is shown. Colors, arrows, boxes, and dots are as in Fig 3. Pathway
adapted from EcoCyc [41]. Abbreviations for sugar intermediates are as follows: UDP-GlcNAc, UDP-N-acetyl-glucosamine; UDP-ManNAc, UDP-N-acetyl-
mannosamine; UDP-ManNAcA, UDP-N-acetyl-mannosaminouronate; UndP-UDP-GlcNAc, undecaprenyl phosphate-UDP-N-acetyl-glucosamine; glucpyr,
glucopyranose; dTDP-thomoNAc, dTDP-N-acetylthomosamine.

doi:10.1371/journal.pone.0139200.g004
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biosynthesis of ECA are understood, little is known about the function of this molecule [52–
54]. ECA forms a capsule around E. coli either in free cyclic form or bound to the bacterial sur-
face through covalent bonds with peptidoglycan or LPS [55]. Recently, ECA biosynthesis has
also been shown to influence vesiculation in Serratia marcescens [56], supporting our data (Fig
4). Here we have expanded the understanding of which enzyme-coding genes in the ECA path-
way are required for vesiculation. Taken together, the vesiculation data are consistent with the
hypothesis that ECA structure in E. coli is associated with vesiculation.

Hypothesis testing and validation of high throughput data
To test the hypothesis that immature ECA and LPS chain length promote vesiculation and to
validate our high throughput data, 10 individual mutants of the ECA and LPS biosynthesis
pathways as well as 10 other randomly chosen mutant strains were analyzed using a flask-
grown culture OMV preparation (FCOP) method. FCOP is a higher culture volume assay that
uses a membrane dye rather than immunostaining to quantify vesicles, providing an orthogo-
nal metric to quantify vesicle production (Methods, [31]). Good correlation between the high
throughput and FCOP methods was detected (Cp = 0.40; p< 0.04). The direction of vesicula-
tion (over- vs. under-vesiculation) corresponded for the majority of strains (14 of 20) across
methods (Fig 5). In some cases where the phenotypes did not correspond (e.g. ΔlpxL, ΔlpxM,
ΔrffC), these results could be linked to discrepancies in growth conditions between the two
assays, since some of these mutants are known to exhibit growth defects and/or lysis in large
volume cultures, which was not observed in the 96-well plate conditions (S2 Table, [57]). Nev-
ertheless, vesiculation phenotypes for a significant number of mutants in genes encoding

Fig 5. Validation and hypothesis testing. Vesiculation levels were tested using the established FCOPmethod for selected mutants with vesiculation
values significantly different from the mean according to the high throughput dot-blot method. Bar graph compares vesiculation values as measured by the
whole genome high throughput screen (HTP) vs. large-scale vesicle preparation (FCOP). Each bar represents the average of at least 3 biological replicate
trials. These mean values and standard error are given in S4 Table.

doi:10.1371/journal.pone.0139200.g005

Global Assessment of OMV Production in E. coli

PLOSONE | DOI:10.1371/journal.pone.0139200 September 25, 2015 11 / 16



chain-elongating enzymes in both LPS and ECA pathways as well as other randomly chosen
genes were recapitulated with FCOP (Fig 5, hypergeometric probability p< 1.63 x 10−16).

Whether LPS and ECA play a direct or indirect role in vesiculation remains as an important
question for follow-up study. For example, the impact of producing immature versions of these
structures on the physical properties of the cell surface may influence vesiculation by altering
fluidity, the propensity to curve, or the ability to bind peripheral proteins that influence vesicu-
lation ([23, 58–60]; K. Bonnington and M.J. Kuehn, unpublished observations). Alternatively,
biosynthetic intermediate cell surface structures that accumulate in the mutants could affect
envelope homeostasis and alter transcriptional or other regulatory pathways [26, 51, 61–64],
leading to differences in vesiculation. Specifically, disruptions to either the LPS or ECA biosyn-
thesis pathways activate the σE envelope stress response pathway [51, 65], which has been
linked to vesiculation in E. coli and other Gram-negative bacteria [31, 35, 66, 67].

In summary, these validation tests: (a) support the validity of the high-throughput method
in identifying true positive vesiculation phenotypes; and (b) provide further support for a novel
hypothesis that truncated ECA and LPS chain lengths promote vesiculation in E. coli.

Conclusion
Here we have developed a high-throughput method to measure vesiculation phenotypes for
mutants in the Keio collection in a quantitative, reproducible, and cost-effective manner. The
results of this study reveal that LPS and ECA structures play roles in vesiculation in E. coli. In
addition, this study shows an association of stress response pathways with vesiculation. Overall,
these findings suggest that wild-type levels of OMV production depend on mature bacterial
surface structures and unstimulated compatibility with the extrinsic environment, whereas
deviations from OMV production can be caused by perturbations in cell surface components
or by stimulation of bacterial stress responses. Overall, this study has implicated nearly 150
new genes influencing process of vesiculation, suggesting that OMV production can be stimu-
lated or inhibited through a multi-faceted mechanism.
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