
The influence of stress and gonadal hormones on neuronal 
structure and function

Mollee R. Farrell, Tina M. Gruene, and Rebecca M. Shansky
Department of Psychology, Northeastern University

Abstract

The brain is highly plastic, allowing us to adapt and respond to environmental and physiological 

challenges and experiences. In this review, we discuss the relationships among alterations in 

dendritic arborization, spine morphology, and behavior due to stress exposure, endogenous 

hormone fluctuation, or exogenous hormonal manipulation. Very few studies investigate structure-

function associations directly in the same cohort of animals, and there are notable inconsistencies 

in evidence of structure-function relationships in the prefrontal cortex and hippocampus. 

Moreover, little work has been done to probe the causal relationship between dendritic 

morphology and neuronal excitability, leaving only speculation about the adaptive versus 

maladaptive nature of experience-dependent dendritic remodeling. We propose that future studies 

combine electrophysiology with a circuit-level approach to better understand how dendritic 

structure contributes to neuronal functional properties and behavioral outcomes.

Introduction

The brain is highly plastic, allowing us to adapt and respond to environmental and 

physiological challenges and experiences. Dendritic branches and spines can undergo 

remarkably specialized modifications in number, complexity, and morphology, which in 

turn alter the profile of synaptic input for a given neuron. Because the size and shape of 

dendritic arbors determine many functional properties of neurons (Grudt and Perl, 2002; 

Koch and Segev, 2000; Lu et al., 2001; Mainen and Sejnowski, 1996; Rall et al., 1992), 

reorganization of dendritic material may lead to disruption of normal synaptic processing. 

However, despite robust evidence for experience-based changes in neuronal morphology, 

synaptic transmission, and behavior, a clear picture of structure-function relationships in the 

brain has yet to emerge.

A myriad of internal and external environmental manipulations and challenges can alter 

dendritic morphology and spine density that may in turn alter learning and memory. Briefly, 

acute or chronic stress exposure, drugs of abuse, sex steroid manipulation, seasonal changes, 

aging, learning, and environmental enrichment all can induce dendritic remodeling in 
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various brain structures in rats, mice, non-human primates, prairie voles, and tree shrews. 

However, very few studies have tested structure-function relationships directly, and the 

outcomes are correlational at best. Further complications arise when attempting to integrate 

findings across studies, since very few address structural plasticity and behavioral outcomes 

within the same experiment using the same parameters. Variations in environmental 

manipulations (e.g. type and duration of stressor), animal strain or sex, outcome measures 

(e.g. different protocols in memory acquisition and testing), and morphological technique 

(e.g. Golgi method versus iontophoretic intracellular filling) make it impossible to directly 

compare morphological findings with behavioral outcomes across the literature.

In this review, we focus on evidence of structure-behavior relationships in the rodent 

hippocampus and prefrontal cortex (PFC) in response to stress challenges and ovarian 

hormone manipulation, identifying key inconsistencies. Then, we discuss work that probes 

the relationship between dendritic structure and neuronal excitability, which may help us 

understand the adaptive versus maladaptive nature of dendritic remodeling. Finally, we 

propose recommendations for future approaches to better characterize relationships between 

dendritic structure and behavior.

Relationships Between Experience-Dependent Alterations in Hippocampal 

Dendritic Morphology, Spine Density, and Behavior

There is a wealth of evidence linking various chronic stress manipulations to dendritic 

atrophy in the hippocampus (see Table 1). Overall, chronic stressors such as restraint, 

predator exposure, social defeat, immobilization, or chronic unpredictable stress lead to a 

retraction of apical dendritic material in the CA3 region of the hippocampus (Baran et al., 

2005; Kole et al., 2004; Lambert et al., 1998; Magariños and McEwen, 1995; McKittrick et 

al., 2000; Sousa et al., 2000; Vyas et al., 2002; Watanabe et al., 1992b). These same 

stressors are linked to deficits in hippocampal-dependent learning and memory tasks, such 

as performance in the radial arm maze (Gerges et al., 2004; Luine et al., 1994; Park et al., 

2001), Y-maze (Conrad et al., 1996; McLaughlin et al., 2007), Morris water maze (Ma et al., 

2007; Sandi et al., 2003; Song et al., 2006), and contextual fear conditioning (Conrad et al., 

1999). Effects of acute stress (30 min of restraint or tail shock) on hippocampal spine 

density are region- and sex-dependent. Similar to chronic stress, 5 hr of restraint stress on a 

rotator decreased CA3 spine density (Chen et al., 2008). Interestingly, exposure to 

intermittent tail shock resulted in an increase in spine density of CA1 neurons in males but a 

decrease in spine density in females (Shors et al., 2001). Even short, mild stress can have 

region-dependent effects: after acute 1 hr platform stress, male rats had increased spine 

density of thin and mushroom spines in CA1, but a decrease of stubby spines in CA3 

(Sebastian et al., 2013).

Changes in circulating estrogens across the estrous cycle and manipulation of sex steroids 

also have profound effects on spine density within the hippocampus (reviewed in Woolley, 

1998). In female rats, ovarian hormones fluctuate over a 4 to 5 day cycle, characterized by 

elevated levels of estrogens and progesterone in proestrus compared to lower levels of 

ovarian hormones in estrus, metestrus, and diestrus (Butcher et al., 1974). Males and 

ovariectomized (OVX) females have comparable spine densities in CA1, yet intact cycling 
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females have double the spine density of males (Gould et al., 1990; Shors et al., 2001), and 

females in the proestrus phase have the highest CA1 spine density (Woolley et al., 1990).

The relationship between dendritic structure, dendritic spines and synaptic input, and neural 

firing rates (Spruston, 2008) suggests that stress- or hormone-induced structural alterations 

may have important effects on neural function and hippocampally-mediated tasks. In males, 

1 month of chronic unpredictable stress resulted in CA3 dendritic retraction and associated 

deficits in water maze spatial learning, a task mediated by the hippocampus (Sousa et al., 

2000). Predator stress before training produced a deficit in consolidation of water maze 

learning and blocked a training-induced increase in spine density of CA1 basal dendrites 

(Diamond et al., 2006). The same short platform stress that resulted in region-dependent 

spine changes also impaired object placement, while platform stress prior to a retention test 

impaired memory retrieval on a radial arm maze (Sebastian et al., 2013). Thus, exposure to 

pre-training stressors in males impairs hippocampal function, decreases dendritic length and 

either decreases or increases spine density. On the other hand, after enrichment via housing 

in a complex environment, male rats demonstrated enhanced water maze learning and 

increased spine density in CA1 basal dendrites (Moser et al., 1994).

In females, findings are somewhat conflicting. Shors and colleagues have reported 

associations between spine density in CA1 of the hippocampus and performance during 

eyeblink conditioning (Leuner and Shors, 2004; Shors, 2002). In OVX mice, there is a rapid 

increase in spine density in CA1 40 min after estradiol injection (Phan et al., 2012), and 

enhancements of social recognition, objection recognition, and objection placement are seen 

after similar OVX and estradiol treatment immediately after learning acquisition (Fernandez 

et al., 2008; Inagaki et al., 2010; Luine et al., 2003; Walf et al., 2008). Consistent with these 

findings, OVX mice treated with estradiol show enhanced performance on an object 

placement task that is accompanied by an increase in the number of mushroom spines within 

CA1 (Li et al., 2004). Thus, estradiol-mediated increases in spine density in CA1 may lead 

to facilitated acquisition of spatial memory. However, another group looking at chronic 

stress and estradiol administration to OVX rats found a significant negative correlation 

between CA1 spine density and spatial memory on an object placement task (Conrad et al., 

2012). Finally, we have recently reported that heat stress-exposed female rats had increased 

head diameter of mushroom spines within CA3 that was associated with enhanced freezing 

during extinction and extinction retrieval (Gruene et al., 2014).

In summary, there are inconsistencies in how structural changes in hippocampal neurons 

relate to behavioral outcomes in both males and females, and whether increases in spine 

density are associated with memory impairment or enhancement. Discrepancies across 

studies may be due to differences in behavioral tasks or manipulation parameters, but these 

possibilities have not been directly investigated.

Relationships Between Experience-Dependent Alterations in Prefrontal 

Dendritic Morphology, Spine Density, and Behavior

As in the hippocampus, stress and sex hormones can alter dendritic morphology and spine 

density of the PFC (see Table 1). In male rodents, chronic restraint stress produces retraction 
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of apical dendrites of pyramidal neurons in prelimbic region of medial prefrontal cortex 

(Cerqueira et al., 2007; Cook and Wellman, 2004; Garrett and Wellman, 2009; Liston et al., 

2006; Martin and Wellman, 2011; Radley et al., 2006, 2005, 2004). A similar pattern of 

stress-induced retraction was seen for apical dendritic branches of neurons within the 

infralimbic region of medial prefrontal cortex (Izquierdo et al., 2006; Shansky et al., 2009). 

As in the hippocampus, milder episodes of stress (10 min of restraint for 7 days, 3 weeks of 

vehicle injection, forced swimming) are sufficient to produce dendritic atrophy within 

prelimbic cortex (Brown et al., 2005; Wellman, 2001) and infralimbic cortex (Izquierdo et 

al., 2006).

Medial PFC is also sexually dimorphic, with smaller and less complex apical dendritic 

arbors in prelimbic cortex pyramidal neurons of gonadally-intact females than gonadally-

intact males (Garrett and Wellman, 2009; Kolb and Stewart, 1991; Markham et al., 2002). 

Exogenous manipulation of estradiol alone did not have an effect on medial PFC dendritic 

morphology, as OVX had no effect on dendritic morphology within prelimbic cortex 

(Garrett and Wellman, 2009) or in basolateral amygdala-projecting infralimbic cortex 

neurons (Shansky et al., 2010). In contrast, chronic stress (3 hr/day for 7 days or 2 hr/day for 

10 days) resulted in dendritic proliferation within medial PFC neurons of female rats, and 

the stress-induced morphological effect was dependent on estradiol (Garrett and Wellman, 

2009; Shansky et al., 2010).

The functional ramifications of stress- or hormone-mediated structural changes are unclear, 

because investigations of structure-behavior relationships within the PFC are relatively 

sparse. The PFC is critical for behavioral tasks that require executive function, such as 

working memory, cognitive flexibility, and emotional regulation (Holmes and Wellman, 

2009), all of which can be influenced by stress and hormones (Farrell et al., 2013; McEwen 

and Morrison, 2013). Mice subjected to repeated swim stress (10 min/3 days) had deficits in 

retrieval of extinction of conditioned fear, a behavior mediated by infralimbic cortex, and 

accompanied apical dendritic retraction in infralimbic cortex (Izquierdo et al., 2006). 

Chronic (6hr restraint/day for 3 weeks) stressinduced dendritic retraction within the anterior 

cingulate cortex predicted the level of impairment on a perceptual attentional set-shifting 

task (Liston et al., 2006). Finally, prelimbic cortex dendritic spine loss was highly correlated 

with impaired working memory assessed by the spatial delayed alternation task and T maze 

after chronic restraint stress (6hr/day for 21 days) (Hains et al., 2009). After OVX, female 

rats had deficits in performance on a non-spatial object recognition memory task that was 

associated with a decrease in spine density of mPFC neurons (Wallace et al., 2006). 

Reproductive experience also influences mPFC structure-function relationships. Mother rats 

had increased mPFC spine number and improved behavioral flexibility compared to virgin 

rats (Leuner and Gould, 2010), while gestational stress resulted in reduced mPFC spine 

density and impaired reversal learning and extradimensional set-shifting (Leuner et al., 

2014). Thus, although only correlational, there is evidence to suggest that experience-

dependent disruption of prefrontal dendritic integrity is linked to experience-dependent 

deficits in prefrontal function.

Farrell et al. Page 4

Horm Behav. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Inconsistencies in Structure-Function Relationships

Straightforward relationships between remodeling of the dendritic tree and behavioral 

consequences of structural alterations are not always observed. It is possible that changes in 

dendritic morphology of certain brain structures are not associated with changes in 

behaviors to which these structures contribute. Dissociations have been observed between 

hippocampal morphology and fear and spatial learning. For example, preventing chronic 

stress-induced dendritic atrophy of CA3 does not affect the facilitation of contextual fear 

conditioning seen in stressed male rats (Conrad et al., 1999). In this case, Conrad and 

colleagues propose that stress-induced remodeling in the hippocampus leads to 

dysfunctional hypothalamic-pituitary-adrenal (HPA) axis regulation, and it is the HPA 

dysfunction that in turn modulates spatial memory deficits. Similarly, chronically stressed 

OVX females have functional spatial memory despite CA3 dendritic retraction. Chronic 

stress did not alter CA3 dendrites in OVX rats treated with estradiol, yet these same rats 

showed a stress-induced facilitation of water maze performance (McLaughlin et al., 2005). 

The authors propose that other regions of the hippocampus, namely the CA1, change in 

response to chronic stress to produce alterations in spatial learning and memory.

Further examples of inconsistencies in structure-function relationship patterns are present in 

the addiction and drug abuse field. In the prefrontal cortex, opiate administration decreases 

spine density (Robinson and Kolb, 2004), while stimulants increase dendritic arborization 

and spine density (Robinson and Kolb, 1999). However, despite opposite effects of opiates 

versus stimulants on dendritic morphology, both classes of drugs induce similar behavioral 

effects (Russo et al., 2010). To resolve this point, Russo and colleagues suggest that 

morphological changes may mediate addictive phenotypes in a bidirectional pattern such 

that a positive or negative change in baseline dendritic structure can alter behavior 

responses. Alternatively, experience-dependent alterations of dendritic complexity may not 

be accurate predictors of experience-dependent changes in synaptic strength, and synaptic 

efficacy, electrophysiological synaptic changes, and circuit-specific changes may better 

account for functional consequences (Russo et al., 2010)

Functions of Dendritic Remodeling

One hypothesis regarding the function of dendritic retraction is its role as a maladaptive 

response, in that dendritic atrophy, whether due to stress or hormone depletion, is associated 

with impaired function and may underlie stress-, sex-, or age-related psychopathology 

(Holmes and Wellman, 2009; Leuner and Shors, 2013). In this case, dendritic hypertrophy 

would be seen as adaptive, allowing for increased surface area for more synaptic 

connections and improved cognitive function (Fu et al., 2012). Alternatively, dendritic 

retraction can be seen as a compensatory mechanism to protect the neuron from prolonged 

excitation (Meller et al., 2008; Rhodes and Llinás, 2001), and thus shorter dendrites would 

correlate with better performance on a task mediated by a particular brain region. In this 

case, dendritic proliferation, as seen in the chronically stressed female medial PFC (Garrett 

and Wellman, 2009; Shansky et al., 2010), would represent a maladaptive profile, 

potentially exposing neurons to overstimulation. Given that a number of factors can alter the 

direction of stress-induced morphological changes (for example: brain structure, type/
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duration of stressor, sex/age of animal), it is likely that the sum of overall dendritic 

remodeling processes and changes in neuronal excitability may be most important for 

functional consequences.

Structure and excitability

As reviewed above, there are inconsistencies in the findings on the relationship between 

dendritic morphology and behavior. That leads to the question of how dendritic morphology 

can affect excitability and firing patterns on a single neuron level. Intuitively, one might 

think that reduced dendritic length would result in reduced excitability as there is less space 

for synaptic input. However, evidence from computational models and electrophysiological 

recordings suggests that the relationship between structure and function on a single neuron 

level is more complicated than that. Kole and colleagues (2004) performed whole-cell 

recordings of CA3 pyramidal cells from rats that underwent chronic social defeat stress, and 

subsequently analyzed dendritic morphology of recorded neurons. In accordance with 

previous findings, chronic social defeat stress induced retraction of distal CA3 apical 

dendrites and impaired long term potentiation (LTP) induction. However, reduced apical 

length and branch number was related to increased excitability as measured by EPSP onset 

latency (Kole et al., 2004). In line with these findings, a computational modeling study 

simulating stress induced dendritic atrophy in CA3 pyramidal cells showed that reducing 

apical dendritic length results in increased somatic EPSP amplitude after dendritic 

stimulation (Narayanan and Chattarji, 2010). In the same computational model, dendritic 

atrophy of CA3 neurons led to increases in firing rates and changes in firing patterns: 

bursting cells switched to regular spiking cells with increased atrophy (Narayanan and 

Chattarji, 2010). This effect is in line with previous findings from computational modeling 

experiments showing that CA3 neurons with smaller dendritic trees have lower stimulation 

thresholds for switching from burst to regular spiking (Krichmar et al., 2002). The 

relationship between dendritic morphology and burst firing patterns is not exclusive to 

hippocampal neurons. A computational model study using visual cortex pyramidal neurons 

has shown that both decreased and increased apical length leads to a switch from burst firing 

to regular firing in pyramidal neurons (van Elburg and van Ooyen, 2010). Additionally, 

merely rearranging the dendritic tree could switch burst firing neurons to regular spiking 

neurons, suggesting that dendritic length is not the only factor affecting firing patterns (van 

Elburg and van Ooyen, 2010).

In the hippocampus, burst firing is associated with facilitation of LTP (Pike et al., 1999; 

Thomas et al., 1998). Thus, stress induced dendritic remodeling and the reduction in burst 

firing cells that goes along with it could account for the impairment in hippocampal LTP 

after stress exposure (Kim and Diamond, 2002; Kole et al., 2004). The relationship between 

burst firing and LTP seen in the hippocampus cannot be generalized to all brain regions, 

however. In the somatosensory cortex, for example, burst firing is associated with 

facilitation of long-term depression (LTD) (Birtoli and Ulrich, 2004). In the mPFC, burst 

firing in IL seems to be necessary for fear extinction consolidation and the degree of burst 

firing after extinction learning correlates with extinction recall (Burgos-Robles et al., 2007). 

It is tempting to speculate that stress induced dendritic remodeling could lead to reduced 

Farrell et al. Page 6

Horm Behav. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



burst firing in mPFC, thus contributing to extinction learning deficits seen after chronic 

stress.

The computational modelling studies described above are advantageous because they can 

investigate causal relationships between dendritic morphology and physiological properties 

of neurons. However, these studies only look at morphology of the dendritic tree and do not 

account for the possible influence of dendritic spines. It is unclear if changes in spine 

density or morphology can influence neuronal firing patterns. But in the hippocampus, 

higher spine density is associated with increased neuronal excitability (Mucha et al., 2011). 

Thus, increased excitability in neurons with reduced dendritic length could be either 

countered by reduced spine density or enhanced by increased spine density. In addition to 

potential differences in spine density, spine head volume and distinct spine head 

morphology have emerged as potential mechanisms of plasticity (Humeau et al., 2005; 

Matsuzaki et al., 2001). However, many morphology studies look at either morphology of 

the dendritic tree or morphology of dendritic spines, rather than looking at both measures, 

which makes it more difficult to infer functional implications of morphological changes. 

Differences in spine density in an examined brain region may be present without differences 

in overall dendritic branch number and length. For example, long-term estradiol 

administration did not alter total dendritic length and branching of pyramidal neurons in 

prelimbic cortex of female rhesus monkeys. However, estradiol administration increased 

both apical and basilar dendritic spine density and enhanced the number of thin spines (Hao 

et al., 2006), an effect that would have been obscured by looking at dendritic morphology 

alone. On the other hand, differences in overall dendritic branch number and length can be 

observed in absence of changes in spine density. Chronic stress (28 days psychosocial 

stress) produced apical dendritic atrophy but did not alter spine density in tree shrews 

(Magarinos et al., 1996). Measuring dendritic length and branching together with dendritic 

spine morphology in future studies will increase our understanding of the relationship 

between dendritic spines and dendritic length and its implications on a single neuron level 

and for behavioral outcomes. Additionally, investigating dendritic morphology together with 

electrophysiological properties in the same neurons will be necessary to understand how 

morphology relates to changes in excitability and firing patterns.

Circuit-level structural changes

In the previous sections, most of the studies reviewed have investigated relationships 

between morphological changes within a single structure and a behavior mediated by the 

same structure. Though morphological alterations are found in specific regions linked to a 

behavior (for example, greater spine density in CA1 is associated with better performance 

during eyeblink conditioning (Leuner and Shors, 2004; Shors et al., 2001), most behavioral 

outcomes are more likely attributable to experience-dependent dendritic remodeling in 

multiple structures within a circuit of interest (Leuner and Shors, 2013). For example, in 

male rats, chronic restraint stress can remodel dendritic arbors across multiple structures: 

within the CA1 and CA3 structures of the hippocampus, the prelimbic region of the medial 

PFC, the basolateral amygdala (BLA), and BLA-projecting neurons in the infralimbic 

cortex. It is important to consider how structural alteration of regional networks can affect 

behavioral outcomes. Thus, looking at multiple structures within a circuit is necessary, as 
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the balance of relative strength of synaptic activity within circuits may be a better predictor 

of behavioral outcomes than dendritic or spine changes within a single structure.

In addition, limitations of the Golgi method have prevented a complete neuroanatomical 

profile of neurons undergoing structural changes. For example, some morphological changes 

may be specific to a certain population of neurons dependent upon their efferent target. We 

have explored sex differences in circuit-specific responses to chronic stress within the 

medial prefrontal cortex-basolateral amygdala pathway. The interconnectivity between 

prefrontal cortex and amygdala is important for prefrontal inhibition of amygdala activity 

(Quirk and Gehlert, 2003; Sotres-Bayon et al., 2004), and connections between these two 

regions are critical modulators of a model of the regulation of emotional behavior, fear 

conditioning and extinction. Though chronic stress-induced dendritic retraction of medial 

prefrontal cortex has been demonstrated in male rats (McEwen, 2010), these neurons were 

selected at random and therefore little is known about their projection targets. However, 

when infralimbic cortex neurons that project to the BLA are identified via a retrograde 

tracer, neurons within this specific pathway do not show stress-induced alterations (Shansky 

et al., 2009). On the other hand, female rats showed stress-induced dendritic proliferation in 

prelimbic cortex neurons, and this effect was estradiol-dependent (Garrett and Wellman, 

2009). In contrast to the circuit-specific effect seen in males, BLA-projecting infralimbic 

neurons of female rats showed dendritic proliferation in response to chronic stress while 

unlabeled, randomly selected neurons were not altered by chronic stress (Shansky et al., 

2010). Additionally, Radley and colleagues (2013) examined chronic stress effects on 

dendritic morphology in anterior bed nuclei of the stria terminalis (aBST) projecting PL 

neurons. While there was no difference in stress induced dendritic retraction and reduction 

of overall spine density between aBST-projecting and randomly labelled neurons, aBST-

projecting neurons were especially vulnerable to reductions in mushroom spine density. 

Thus, it is important to identify specific neural circuits that may be especially important 

mediators of behavior, and intra-circuit dendritic changes may be more revealing of 

structure-function relationships than extra-circuit dendritic changes.

Conclusions and Future Directions

In order to directly assess a causal relationship between neuronal structure and function, it 

will be necessary to directly measure synaptic strength. Though changes in spine 

morphology have been conventionally used as a marker for synaptic strength, there are still 

many unanswered questions. What is the identity of inputs synapsing on plastic spines? 

What does the localization of changes in dendritic morphology or spine density (proximal 

versus distal to the soma) confer about the functional properties of the neuron? Are 

compensatory mechanisms in play that may obscure experience-dependent morphological 

effects? Converging electrophysiological data with measures of dendritic morphology are a 

first step in better demonstrating the link between dendritic arborization and behavior. 

However, the electrophysiology studies reviewed in this paper were done in slice 

preparations, in which many synaptic connections are severed. Future studies could 

alternatively use approaches combining in vivo recordings with juxtacellular labelling of 

neurons for morphology analysis as was done by Inokawa and colleagues (2010). 

Additionally, future research should analyze morphology of specific subtypes of neurons 
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that have a closer link to behavioral outcome measures. This can be achieved by combining 

retrograde tracer labelling (Gruene et al., 2014; Radley et al., 2013; Shansky et al., 2010, 

2009) with iontophoretic microinjection, or by targeting neurons that express a marker of 

neuronal activity indicating their involvement during a certain behavioral paradigm. Finally, 

a more direct way to uncover a causal link between dendritic structure and function is to 

pharmacologically manipulate dendritic length or spine density and then determine a 

behavioral outcome. For example, tianeptine treatment prior to restraint prevented both 

stress-induced dendritic retraction in CA3 of the hippocampus and stress-induced 

impairment of radial maze learning (Conrad et al., 1996; McEwen et al., 1997; Watanabe et 

al., 1992a). However, because tianeptine delivery was not localized to a specific brain 

region, a causal relationship between CA3 structure and function cannot be confirmed. A 

more recent study utilized viral-mediate gene transfer to selectively manipulate Rac1, a 

small GTPase involved in cytoskeleton remodeling, to alter spine density within the nucleus 

accumbens and behavioral responses to cocaine exposure (Dietz et al., 2012). With the 

increased availability of optogenetics and DREADDs technology, similar approaches should 

be used to investigate structure-function relationships in the hippocampus and mPFC. It is 

clear that further study is required to explore the complex causal relationships among 

dendritic arborization, spine morphology, and behavior.
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Highlights

1. Stress and gonadal hormones alter neuronal structure in the prefrontal cortex 

and hippocampus

2. Direct evaluation of the functional significance of structural plasticity is 

difficult.

3. Integrating electrophysiological measures with behavior and neuroanatomy may 

lead to better insights.
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