
Prefrontal Cortex White Matter Tracts in
Prodromal Huntington Disease

Joy T. Matsui,1,2 Jatin G. Vaidya,1 Demian Wassermann,3

Regina Eunyoung Kim,1 Vincent A. Magnotta,1,4,5 Hans J. Johnson,1,5,6

Jane S. Paulsen,1,7,8* and PREDICT-HD Investigators and Coordinators
of the Huntington Study Group

1Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa
2John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii

3EPI Athena, INRIA Sophia Antipolis-M�editerran�ee, Sophia Antipolis, France
4Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa

5Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa
City, Iowa

6Department of Electrical and Computer Engineering, College of Engineering, University of
Iowa, Iowa City, Iowa

7Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
8Department of Psychology, University of Iowa, Iowa City, Iowa

r r

Abstract: Huntington disease (HD) is most widely known for its selective degeneration of striatal neu-
rons but there is also growing evidence for white matter (WM) deterioration. The primary objective of
this research was to conduct a large-scale analysis using multisite diffusion-weighted imaging (DWI)
tractography data to quantify diffusivity properties along major prefrontal cortex WM tracts in prodro-
mal HD. Fifteen international sites participating in the PREDICT-HD study collected imaging and neu-
ropsychological data on gene-positive HD participants without a clinical diagnosis (i.e., prodromal)
and gene-negative control participants. The anatomical prefrontal WM tracts of the corpus callosum
(PFCC), anterior thalamic radiations (ATRs), inferior fronto-occipital fasciculi (IFO), and uncinate fasci-
culi (UNC) were identified using streamline tractography of DWI. Within each of these tracts, tensor
scalars for fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity coefficients
were calculated. We divided prodromal HD subjects into three CAG-age product (CAP) groups having
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Low, Medium, or High probabilities of onset indexed by genetic exposure. We observed significant
differences in WM properties for each of the four anatomical tracts for the High CAP group in com-
parison to controls. Additionally, the Medium CAP group presented differences in the ATR and IFO
in comparison to controls. Furthermore, WM alterations in the PFCC, ATR, and IFO showed robust
associations with neuropsychological measures of executive functioning. These results suggest long-
range tracts essential for cross-region information transfer show early vulnerability in HD and may
explain cognitive problems often present in the prodromal stage. Hum Brain Mapp 36:3717–3732, 2015.

VC 2015 Wiley Periodicals, Inc.
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INTRODUCTION

Huntington disease (HD) is a progressive neurodegener-
ative disorder characterized by motor, cognitive, and

behavioral disturbances. HD is inherited in an autosomal
dominant fashion where there is an expansion of polygut-
amine (cytosine–adenine–guanine [CAG]) repeats in the
huntingtin gene. The manifestation of motor symptoms is
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used to clinically diagnose the disease. On average, motor
onset occurs in the fourth decade of life, with a life expect-
ancy after motor onset of 15–20 years [Harper, 1991; Hay-
den, 1981]. Unfortunately, present day pharmacologic
options for treatment only target symptoms, and do not
slow or stop disease progression. Therefore, there are sev-
eral studies, such as Neurobiological Predictors of Hun-
tington’s Disease (PREDICT-HD) and TRACK-HD, focused
on identifying biomarkers of disease progression to judge
efficacy of new treatments [Paulsen et al., 2008; Tabrizi
et al., 2011].

Structural magnetic resonance imaging (s-MRI) has
uncovered consistent features of disease progression in
both diagnosed and prodromal HD individuals [Esmaeil-
zadeh et al., 2011]. Atrophy of the caudate and putamen
was demonstrated in symptomatic HD individuals [Jerni-
gan et al., 1991] and shown to be a progressive feature of
HD [Aylward et al., 1997] that was evident many years
prior to diagnosis [Paulsen et al., 2008; Tabrizi et al., 2012].
The degree of basal ganglia atrophy is predictive of years
to disease onset in prodromal HD patients [Aylward et al.,
1996; Harris et al., 1999] and correlated with greater clini-
cal impairment [Campodonico et al., 1998; Harris et al.,
1999]. In addition to the extensively studied basal ganglia
abnormalities, evidence of decreased white matter (WM)
volume is demonstrated in prodromal HD individuals
more than 15 years from diagnosis [Paulsen et al., 2006,
2010]. There is also evidence that WM has a greater associ-
ation with cognitive deficits in symptomatic HD individu-
als than the correlation between decreased striatal volume
and cognitive deficits [Beglinger et al., 2005]. As for spe-
cific regions of WM, features of frontal lobe WM have con-
sistently tracked with the clinical features of HD [Aylward
et al., 1998]. Much like striatal volume, frontal lobe WM
volume loss was first demonstrated in diagnosed HD [Ayl-
ward et al., 1998] and later in prodromal HD individuals
[Stoffers et al., 2010].

Although decrease in WM volume correlates with dis-
ease progression in HD, characterizing WM microstruc-
tural changes (in addition to volume) may be helpful in
understanding clinical manifestations of HD. Diffusion-
weighted imaging (DWI) is a method for detecting and
quantifying tissue microstructure. WM contains significant
restrictions to water mobility and reductions in anisotropy
may reflect altered properties due to disease processes.
Diffusion can be modeled at each voxel as a tensor to com-
pose a diffusion tensor image (DTI) [Basser and Pierpaoli,
1996]. The diffusion tensor model decomposes diffusion
into direction and magnitude with eigenvectors and eigen-
values, respectively, where diffusion tensor scalars are
derived from the eigenvalues. Diffusion tensor scalar
measures are, therefore, numerical representations of dif-
fusion anisotropy degree or magnitude and are computed
at the voxel level or averaged over a region of interest
[Basser, 1995; Basser and Pierpaoli, 1996; Jones et al.,
2013]. Fractional anisotropy (FA) is dimensionless and rep-
resents degree of diffusion anisotropy or ordered diffusion

on a scale of 0 (isotropic or disordered diffusion) to 1
(high anisotropy or ordered diffusion). Therefore, an area
of high FA contains uniform diffusion or minimal crossing
fibers [Basser and Pierpaoli, 1996; Jones et al., 2013]. In
humans, decreases in FA have been used to detect differ-
ences in normal appearing WM in individuals with multi-
ple sclerosis [Filippi et al., 2001] and Alzheimer disease
[Huang et al., 2007] in comparison to controls. Mean diffu-
sivity (MD, units 5 mm2/s) represents average diffusion
magnitude along the three eigenvectors of the diffusion
tensor model [Basser, 1995]. Axial diffusivity (AD,
units 5 mm2/s) is the magnitude of diffusion of the princi-
pal eigenvector, while radial diffusivity (RD, units 5 mm2/
s) is the average magnitude along the second and third
eigenvectors [Basser, 1995]. In animal studies, changes in
RD and AD have been shown to correlate with incomplete
myelination [Song et al., 2002] or myelin injury [Song
et al., 2003, 2005] and axonal injury [Song et al., 2003],
respectively.

WM tracts innervating the prefrontal cortex (PFC) are of
particular interest in HD because of known connections
between the PFC and portions of the basal ganglia
[Alexander et al., 1986] and the importance of PFC-
mediated networks in cognitive and executive functioning
[Roberts et al., 1998]. Early studies of WM volume [Aylward
et al., 1998] provided evidence that the frontal lobe WM vol-
ume is affected in HD subjects. Voxel-based scalar studies
on PFC WM have reported significantly increased and/or
decreased FA and increased MD in both prodromal [Mag-
notta et al., 2009; Reading et al., 2005; Rosas et al., 2006] and
symptomatic HD [Della Nave et al., 2010; Delmaire et al.,
2013; Rosas et al., 2006] participants relative to gene-
negative controls. Regions of interest (ROI)-based scalar
analyses of PFC WM have reported decreased FA and
increased MD in WM passing through the superior frontal
cortex in early HD [Dumas et al., 2012], while increased MD
and RD were seen in inferior and lateral PFC WM in pro-
dromal HD groups relative to controls [Matsui et al., 2014].
In the aforementioned scalar analyses, diffusivity in the HD
participants correlated with poorer performance on cogni-
tive tests such as the Stroop Color and Word Test [Dumas
et al., 2012] and Trail Making Test (TMT) Part B [Delmaire
et al., 2013; Matsui et al., 2014] that are both abnormal in
prodromal HD participants [Paulsen et al., 2013].

This study used tractography to build upon aforemen-
tioned voxel [Magnotta et al., 2009; Reading et al., 2005;
Rosas et al., 2006] and region of interest-based [Dumas
et al., 2012; Matsui et al., 2014] studies in prodromal HD
subjects. Tractography-based methods use DWI to provide
tract-specific information about WM properties and
thereby reveal specific anatomical tracts that show altera-
tions as a function of HD progression. In our study, a
tract-based analysis was performed on four well-
established PFC WM fiber tracts: the prefrontal section of
the corpus callosum (PFCC), left and right anterior tha-
lamic radiations (ATRs), left and right inferior fronto-
occipital fasciculi (IFOs), and left and right uncinate
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fasciculi (UNCs). The PFCC is a large interhemispheric
tract of fibers that projects from the genu of the corpus cal-
losum [Wakana et al., 2004]. These four PFC WM fiber
tracts were selected for their connection to the PFC and
demonstrated relationship to both prodromal HD and cog-
nitive reserve. Previously, a voxel-based WM study [Rizk-
Jackson et al., 2011] indicated the PFCC and UNC together
might be a good imaging biomarker for the prodromal HD
group. The IFO and UNC were also correlated to cognitive
reserve in an Alzheimer disease study in comparison to
the healthy controls [Arenaza-Urquijo et al., 2011]. Previ-
ous tractography-based studies, although not focusing spe-
cifically on the PFC tracts examined here, suggest that the
PFC may be altered in symptomatic HD subjects. Bohanna
and colleagues investigated 12 symptomatic HD patients
and 14 matched controls from a single site and found
higher FA and MD in WM projections from the caudate
and putamen to the PFC [Bohanna et al., 2011]. Recently,
Poudel and colleagues studied 35 prodromal participants,
36 symptomatic participants, and 35 controls from two
sites and found robust alterations in WM connections
between putamen and lateral PFC in both symptomatic
HD and prodromal HD participants. RD was higher in
this tract, although there were no differences in FA. Addi-
tionally, Phillips et al. [2014] analyzed DWI data from 25
prodromal participants, 25 symptomatic participants, and
50 controls from a single site. They demonstrated wide-
spread deep WM changes for symptomatic HD partici-
pants and more limited changes in prodromal HD for
DWI measures of large long-range tracts (including some
portions of the PFC).

This study is a novel in-depth investigation of specific
WM tracts emanating from the PFC measured from 146 pro-
dromal and 65 control participants collected at 15 PREDICT-
HD sites. The PFCC, ATR, IFO, and UNC WM tracts were
selected for their connection to the PFC and demonstrated
relationship to both prodromal HD and cognitive reserve.
To expand on the initial tractography work in HD, we exclu-
sively focused on identifying changes in the prodromal
phase with streamline tractography using the largest sample
(to our knowledge) of imaging and neuropsychological data
collected from prodromal HD subjects. In addition, this
study demonstrates the feasibility of processing and analyz-
ing DWI data on a scale similar to the requirements of pro-
posed clinical trials that often require several hundred
participants from multiple sites to obtain sufficient sample
sizes. We hypothesized that diffusivity differences along
each tract among groups of prodromal HD participants sep-
arated by degree of genetic exposure would be significantly
different from controls. It was also hypothesized that the
strength of differences in diffusivity would be a function of
genetic exposure that was previously well established by
age and CAG repeat length [Zhang et al., 2011], with the
group with the highest genetic exposure showing the great-
est difference. In addition, we hypothesized changes in dif-
fusivity will correlate with cognitive performances in
prodromal HD [Paulsen et al., 2013].

MATERIALS AND METHODS

Participants

Imaging and clinical data collected from 15 PREDICT-
HD sites included 65 controls and 146 prodromal
CAG-expanded individuals. PREDICT-HD is a multisite
collaboration with the goal of utilizing neurobiological
and clinical markers to understand the progression of
HD before diagnosis and provide candidate disease
markers to assist future preventative HD clinical trials.
We obtained written informed consent from each partic-
ipant, and all research was performed in compliance
with the Code of Ethics of the World Medical Associa-
tion (Declaration of Helsinki) and the standards estab-
lished by the Institutional Review Board at each
respective site. Healthy controls were members of HD
families who did not possess the CAG expansion. Based
on their CAG-Age Product (CAP) designation [Zhang
et al., 2011], prodromal CAG-expanded individuals
were stratified into Low (n 5 43; CAP < 287.16),
Medium (n 5 54; 287.16 < CAP < 367.12), and High
(n 5 49; CAP > 367.12) groups of HD diagnosis proba-
bility. The CAP score is similar to disease burden (i.e.,
genetic toxicity) and is an index of cumulative toxicity
of the HD genetic mutation at a given age [Zhang
et al., 2011]. Table I lists a summary of participant char-
acteristics, and their site information is listed in Sup-
porting Information Table SI.

TABLE I. Summary of demographic and clinical data for

healthy controls and prodromal Huntington disease par-

ticipants, including number of participants in each con-

trol and CAG-age product group

Demographic Mean (SD)

Number of
subjects Control Low Medium High

Age (years) 46.4 (11.4) 34.4 (8.6) 40.8 (9.9) 45.3 (12.0)
Educ (years) 15.4 (2.2) 14.7 (2.5) 15.0 (2.3) 14.9 (2.9)
Motor 3.8 (3.6) 2.5 (3.5) 6.1 (4.7) 7.7 (7.1)
SDMT 54.8 (10.4) 60.0 (10.3) 52.0 (9.6) 48.1 (10.1)
S Color 84.7 (12.4) 87.1 (13.6) 78.8 (11.6) 74.9 (14.3)
S Word 104.6 (15.1) 106.9 (17.6) 99.4 (16.6) 98.1 (19.9)
S Interference 49.6 (9.5) 52.5 (11.7) 48.0 (10.4) 44.9 (11.9)
TMTA 21.5 (6.3) 20.6 (6.0) 23.2 (7.7) 25.1 (7.5)
TMTB 51.4 (22.7) 49.9 (16.9) 56.3 (24.8) 60.9 (23.6)
Gender 22M/43F 9M/34F 16M/38F 13M/36F
Total N 65 43 54 49

Abbreviations: Educ, education; Motor, sum of all items of the
unified Huntington’s disease rating scale motor assessment scale;
SDMT, symbol digit modalities test; S Color, Stroop Color and
Word Test—color condition; S Word, Stroop Color and Word
Test—word condition; S Interference, Strop Color and Word
Test—interference condition; TMTA, trail making test, part A;
TMTB, trail making test, part B.
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Measures

Participants were evaluated by experienced clinicians cer-
tified in the administration of the Unified Huntington’s Dis-
ease Rating Scale (UHDRS) [Huntington Study Group,
1996]. Formal diagnosis of HD was based on a diagnostic
confidence level (DCL) rating of 4, indicating the
“unequivocal presence of an otherwise unexplained extrap-
yramidal movement disorder” with >99% confidence
according to the certified motor rater [Huntington Study
Group, 1996]. We excluded participants with a rating of
DCL 5 4 at scan time to restrict this analysis to prodromal
HD subjects. The total motor impairment score (sum of all
the individual motor ratings from the UHDRS) is reported
[Huntington Study Group, 1996]. Cognitive performance
was assessed with the Symbol Digit Modalities Test
(SDMT), the Stroop Color and Word Test, and the TMT.
The SDMT score is the number of correct matches between
numbers and their designated symbol based on a key and
is a reflection of psychomotor speed, cognitive flexibility,
and working memory [Smith, 1991]. The Stroop Color and
Word Test score is a measure of processing speed and exec-
utive function, as it measures the number of correct
responses in three conditions: color naming (name colors),
word reading (read color names), and interference (inhibi-
tion of dominant reading response while naming color)
[Stroop, 1935]. The TMT score is a measure of psychomotor
speed and executive functions. The TMT score is the num-
ber of seconds required to sequentially connect numbers
(TMT Part A, TMTA) followed by a task requiring the alter-
nation of sequential numbers and letters (TMT Part B,
TMTB) both in ascending order [Reitan, 1958]. A greater
time required to complete the TMT results in a higher score
and is interpreted as worse performance or poorer function.
A summary of participant characteristics and scores on the
six cognitive measures is provided in Table I.

Imaging

Imaging data consisted of multimodal structural (T1-
and T2-weighted images) and diffusion-weighted images
collected on 3 Tesla scanners. Due to the multisite nature
of our study, this dataset contains representative datasets
from Siemens, Philips, and GE-manufactured scanners.
Our earlier work [Magnotta et al., 2012] investigated multi-
center reliability of mean DTI scalar measures in lobar
WM: intrasubject coefficient of variation (CV) was typi-
cally <1% and intersite CV only increased to 1–3%. A
diffusion-weighted scan for a single participant consisted
minimally of 30 noncollinear diffusion-weighted gradients
with diffusion-weighting of b 5 1,000 s/mm2 and at least
one b 5 0 s/mm2 (b0 image or subvolume without diffu-
sion weighting) acquisition. Imaging parameters for all the
sites that contributed scans for our study are shown in
Supporting Information Tables SII for DWIs and Support-
ing Information Tables SIII and SIV for structural images.
All scans were transferred to The University of Iowa for
processing and analysis.

Image Processing

An image-processing pipeline was carefully designed and
tested for robust processing of both s-MRI and DWI datasets
acquired from the multicenter PREDICT-HD study.

s-MRI preprocessing

All visual inspections and preprocessing of images were
completed at the University of Iowa Scalable Informatics,
Neuroscience, Analysis, Processing, and Software Engineer-
ing (SINAPSE) Laboratory while blinded to participant
group status. All T1- and T2-weighted images were first vis-
ually inspected and given a quality rating ranging from 0
(unusable) to 10 (best quality). Structural images that
received a quality rating lower than six were excluded from
further processing and analysis, which resulted in excluding
approximately 7% of available structural images. All images
collected in the same scan session (i.e., 1–3 repeats of T1-
and T2-weighted images within a single scan session) were
processed simultaneously using methods previously
described [BRAINSia, 2013; Pierson et al., 2011]. The best-
rated T1-weighted image within a scan session was used to
estimate a consistent AC-PC anatomical orientation with a
constellation-based landmark detection algorithm (BRAINS
Constellation Detector) that uses the anterior and posterior
commissures and the mid-sagittal plane as prominent fea-
tures [Ghayoor et al., 2013]. The remaining T1- and T2-
weighted images that passed visual inspection were rigidly
aligned to the spatially normalized T1-weighted image
[Young Kim and Johnson, 2013]. Each of the multimodal
images were bias-field corrected using an atlas-based classi-
fication algorithm (BRAINSABC), resulting in 17 tissue
probability maps and average images of each modality
resampled to a 1 mm 3 1 mm 3 1 mm voxel lattice. Brain
tissue probability maps were converted to a brain mask and
used to skull-strip the participant’s corresponding average
bias-field corrected T1- and T2-weighted images.

DWI preprocessing

DTIPrep [Liu et al., 2010; Oguz et al., 2014] performed
several quality assurance steps and removed gradient sub-
volumes within the DWI scan that did not meet its mini-
mal quality criteria. If a participant received multiple DWI
scans in a single session, the repetitions were concatenated
end-to-end and processed by DTIPrep. DTIPrep first
detected intensity artifacts (which were often susceptibility
artifacts) by comparing normalized correlation values of
corresponding neighboring slices across all volumes within
a DWI scan. A subvolume containing an intensity artifact
was removed if it possessed a normalized correlation
value outside the designated number of standard deriva-
tions from the average normalized correlation value. Inter-
lace artifacts were detected in a similar manner where
normalized correlation coefficients were computed
between interleaving slices for each subvolume. If a DWI
scan contained multiple b0 images due to concatenation of
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multiple scans within a session or collection of multiple b0

images per scan, DTIPrep also averaged multiple b0

images within a scan to create a single reference average
b0 image per DWI scan. All DWI subvolumes were core-
gistered to the averaged b0 image via affine transform for
eddy-current and head motion artifact correction, as eddy
current-induced distortions can lead to misregistration
between different DWI scans and eventually to error in
the tensor image in all voxels. The final step in DTIPrep
removed subvolumes with remaining residual motion or
translation relative to the averaged b0 image and updated
the diffusion weighting directions based on the rotational
component of the affine transform. DTIPrep excluded an
entire scan if the number of diffusion-weighted subvo-
lumes fell below 30. The final output of DTIPrep contained
an averaged b0 image and only those DWI subvolumes
that passed the above quality assurance tests. Of the avail-
able DWI scans, DTIPrep excluded approximately 13%
from further analysis. The output of DTIPrep was again
visually inspected to ensure that the DWI scan was indeed
free of interlace artifact, dropout, major susceptibility arti-
facts, and incomplete brain coverage. We have previously
reported the multicenter reliability of using DTIPrep, and
used DTIPrep in a DTI scalar study [Matsui et al., 2014].

DTI derivation from DWI

DTIs were estimated using a weighted least squares
method [Kingsley, 2006] in the original DWI space in the
area limited to the brain mask. For each subject, a nonlinear
transform was derived from the average b0 image in the
DWI scan produced by DTIPrep in the previous section to
the corresponding bias field-corrected T2-weighted s-MRI
using the symmetric image normalization (SyN) registration
method [Avants et al., 2008]. The inverse of this nonlinear
transform was used to resample a binary brain mask in s-
MRI space to DWI space to provide optimal brain masking
during the tensor estimation step. A DTI was then estimated
using the preprocessed DWI and the deformed brain mask.
The transformation from the averaged b0 image of a partici-
pant’s DWI to the corresponding bias field corrected T2-
weighted image was then used to resample the resulting
DTI to s-MRI space. In the resampling process, preservation
of principal direction mode with linear interpolation was
used to resample the DTIs in the Log-Euclidean domain
[Alexander et al., 2001; Arsigny et al., 2006; Budin et al.,
2010; Kaiser, 2013] into the s-MRI anatomical space.

Unbiased cross-sectional DTI template building

An unbiased template space was created with the
unbiased template building algorithm originally pro-
posed by Avants and coauthors [Avants and Gee, 2004;
Avants et al., 2010], and was used to create four major
PFC WM tracts: PFCC, left and right ATR, left and right
IFO, and left and right UNC. FA, MD, AD, and RD were
then projected to each derived tract skeleton for the anal-

ysis in relation to groups and cognitive variables. High
anatomical resolution T1-weighted images from all
healthy controls and prodromal HD participants were
equally weighted in the creation of the unbiased T1-
weighted template. Each participant’s DTI was resampled
into the unbiased T1-weighted template space using the
ResampleDTILogEuclidean tool [Budin et al., 2010]. Each
participant’s DTI was previously aligned to the partici-
pant’s T1-weighted image space. Thus, the transform
defined by the template building process was directly
applied to the DTI in order to consistently place them in
template space, as suggested by Tustison and coauthors,
to minimize circularity bias of our study’s experimental
design [Tustison et al., 2014].

Resampled DTIs were then averaged with a tool called
dtiaverage [Kaiser, 2013] to form the final DTI template
that served as the unbiased DTI template for fiber track-
ing. The unbiased DTI template was visually inspected to
ensure valid alignment with its corresponding T1-
weighted template and to ensure orientations of major
fiber tracts were consistent with known anatomical organi-
zation (i.e., inferior tracts were oriented anterior to poste-
rior, while corticospinal tracts were oriented superior to
inferior). Figure 1 shows several axial views of the T1-
weighted template (upper) that was used to construct the
corresponding unbiased DTI template (bottom).

Fiber tracking on the unbiased diffusion tensor template

Full brain tractography was performed on the unbiased
DTI template using the streamline tractography module and
recommended parameter settings available in 3D Slicer
[Fedorov et al., 2012] called TractographyLabelMapSeeding
[Wassermann, 2013b]. The recommended parameter set-
tings for seed spacing of 0.75 3 0.75 3 0.75 mm3 and linear
measure (k1 2 k2/k3) greater than or equal to 0.3 were used
to initiate tractography. Tract termination criteria included
exceeding a length of 800 mm, developing track curvature
less than 0.78 per millimeter, or encountering a voxel whose
FA was less than 0.1. An integration step length of 0.5 mm3

was used and tracts below 10 mm in length were excluded.

Fiber tract selection

Fiber tracts were selected manually with the Tractogra-
phyDisplay graphical user interface tool from the Slicer
toolkit that allows isolation of individual tracts with an
adjustable selection box [Wassermann, 2013a]. Several WM
tractography atlases and references were used for anatomi-
cal reference while selecting the tracts [Catani and Thie-
baut de Schotten, 2008; Oishi et al., 2011; Wakana et al.,
2004, 2007], along with visual inspection of the fiber tracts
by a tractography expert from a national tractography user
group. The following four major WM PFC fiber tracts
were selected for analysis: PFCC, ATR, IFO, and UNC.
The PFCC included projections from the genu of the cor-
pus callosum into the frontal lobe, while the ATR involved
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Figure 1.

T1-weighted (top) and DTI (bottom) templates that are encoded with color maps.

Figure 2.

WM tracts extending to the prefrontal cortex that were examined in this study are highlighted with dif-

ferent colors: left uncinate fasciculus (light blue), right uncinate fasciculus (dark blue), anatomical pre-

frontal WM tracts of the corpus callosum (yellow), left inferior fronto-occipital fasciculus (light red),

right inferior fronto-occipital fasciculus (dark red), left ATRs (light green), and right ATRs (dark green).



radiations to the PFC associated with the mediodorsal tha-
lamic nuclei [Wakana et al., 2007]. The IFO in our study is
based on the definition established by Wakana and coau-
thors, which includes fronto-parietal connections passing
through the external capsule [Wakana et al., 2007]. The
UNC included projections from the anterior temporal lobe
to the medial and lateral orbitofrontal cortex [Catani and
Thiebaut de Schotten, 2008; Wakana et al., 2007].

DTI scalar measure from fiber tracts

A tract probability map (TPM) (whose values ranged from 0
to 1) was computed for each fiber tract using the method
described by Wasserman et al. [2010a, 2010b]. Each TPM was
then skeletonized in the space of the DTI atlas using the tract-
based spatial statistics skeletonization tool [Smith et al., 2006]
from the Oxford Centre for Functional MRI of the Brain’s Soft-
ware Library (FSL, v5.0.4) [Smith et al., 2004]. The skeleton of
each tract was a curved sheet to represent the curved surface
along the center of the tract. DTI scalar values (FA, MD, AD,
and RD) from each participant were then projected to each

tract’s skeletonized TPM. For each voxel on the TPM skeleton,

the DTI scalar map is searched along the direction perpendicu-

lar to the tract within an area restricted by a distance map of

the TPM skeleton to find the maximum DTI scalar value. The

maximum DTI scalar value is then assigned to the voxel on the

TPM skeleton [Smith et al., 2006; Wassermann et al., 2010b].
Figure 2 shows several views of the fiber tracts (UNC,

PFCC, IFO, and ATR) derived from whole brain tractogra-
phy of the DTI templates overlaid on the T1-weighted
template. The tracts are highlighted as left UNC (light
blue), right UNC (dark blue), PFCC (yellow), left IFO
(light red), right IFO (dark red), left ATR (light green), and
right ATR (dark green).

Descriptions of regions containing significantly different
DTI scalar values between CAP groups and controls will
be referred to using the regions identified in Supporting
Information Figures SI, SII, SIII, and SIV for the PFCC,
ATR, IFO, and UNC fiber tracts, respectively. The WM
tract region names in our study were influenced by the
convention FreeSurfer uses to label both cortical gray and
WM regions. The medial orbitofrontal gyrus has been
given a separate label in the IFO and UNC as it is
included in the lateral orbitofrontal region defined by
FreeSurfer [Desikan et al., 2006]. All the regions were
defined in Table II. Supporting Information Figures SI–SIV
contain more detailed figures.

Statistical Analysis

Comparison of mean DTI scalars between controls
and CAP groups

To compare mean values of FA, MD, AD, and RD along
tract skeletons between controls and CAP group, the per-
mutation tests program called randomise [Winkler et al.,

2014] from the FSL 5.0.4 package was used to detect differ-
ences in mean DTI scalars along tract skeletons. Compari-
sons were made between controls and CAP groups using
analysis of covariance GLM models. For each GLM model,
age at scan, years of education, gender, and site of data
collection served as covariates in unpaired two-sample t-
tests using 50,000 permutations. The threshold-free cluster
enhancement (TFCE) method [Smith and Nichols, 2009] in
randomise was used to obtain the distribution of data in
our study to avoid setting a primary statistic threshold on
the tract skeleton of interest before looking for differences
in DTI scalar values between controls and CAP groups.
The main advantage of using the TFCE approach is that it
is designed to find both focal and diffuse areas containing
significant differences in signal. The TFCE approach com-
putes a TFCE score for each voxel that is determined by
the voxel itself and immediately adjacent voxels that are
contributing signal. Using a score for each voxel for statis-
tical inference instead of the raw signal enhances areas of
signal that may be part of a cluster without a primary sta-
tistic image threshold (such as that in cluster-based thresh-
olding), making it easier to discriminate between
background noise and signal. Corrections for multiple
comparisons within tract skeleton and across contrasts
were done on the P-value maps with false discovery rate
(FDR) from FSL 5.0.4 at a criterion of q < 0.05.

Correlations between DTI scalars and cognitive per-

formance in prodromal HD participants

Randomise was used to determine how DTI scalars
(FA, MD, AD, and RD) correlated with performance on
the following cognitive variables: SDMT, Stroop Word,
Stroop Color, Stroop Interference, TMTA, and TMTB
using the TFCE method. Only prodromal HD participants
were included in the correlation analysis with age,
years of education, gender, and site of data collection as
covariates. Again, corrections for multiple comparisons
within tract skeleton and across contrasts were done on
the P-value maps with FDR from FSL 5.0.4 at a criterion
of q < 0.05.

RESULTS

Mean DTI Scalar Differences Between Controls

and CAP Groups

In this section, we review the results when comparing
controls to the three HD CAP groups for each of the mean
DTI scalars (FA, MD, AD, and RD) within each of the seven
PFC tracts (PFCC, IFO[L/R], ATR[L/R], and UNC[L/R]).
Results in Figure 3 provide a summary of the permutation
results indicating the percentage of each tract skeleton that
differed on each of the four scalar measures between
groups. For each of the areas that showed significant differ-
ences, we additionally plotted the mean DTI scalar values
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for each participant in Figure 4 (High vs. Controls) and Fig-
ure 5 (Medium vs. Controls). There were no significant dif-
ferences in any of the tracts for any of the four DTI
measures between the Low CAP group and control
subjects.

Of the four tracts examined in our study, the IFO had
the largest percentage of tract skeleton area where meas-
urable differences between the controls and Medium or
High CAP groups were present for diffusivity measures.
The ATR demonstrated increased MD, RD, and AD for
the Medium and High CAP groups compared to the Con-
trol group for regions immediately adjacent to the cau-
date. The PFCC showed increased MD, RD, and AD for
the High CAP group compared to the Control group
throughout the tract. Increased RD was seen for the
Medium CAP group in comparison to the Control group

in regions immediately anterior to the caudate. The UNC
differences were generally weaker, with detectable differ-
ences only between the controls and the High CAP
group.

Out of the three CAP groups, the High CAP group pre-
sented the most widespread findings across PFC tracts
with regard to all four DTI scalar measures. The IFO tract
showed the most widespread diffusivity difference
between High and Control groups and also presented evi-
dence of FA changes that were not observed elsewhere. It
is important to note that significant differences in MD and
RD were noticeable in all seven PFC tracts when compar-
ing the High CAP and Control groups.

As anticipated, the Medium CAP group presented
changes in areas similar to the High CAP group but were
not as widespread, reflecting the Medium CAP group’s

TABLE II. Four tracks with labeled regions

PFCC IFO

PFCC1 Right medial orbitofrontal WM IFO1 Medial orbitofrontal gyrus
PFCC2 Posterior to right anterior cingu-

late WM
IFO2 Lateral orbitofrontal WM

PFCC3 Lateral to right rostral anterior
cingulate WM

IFO3 Pars orbitalis WM

PFCC4 Inferior to right caudal anterior
cingulate

IFO4 Pars triangularis WM

PFCC5 Lateral to right superior frontal
WM, medial to right rostral
middle frontal WM

IFO5 WM lateral to the putamen,
medial to the insular gyrus

PFCC6 Right superior frontal WM IFO6 WM posterior to the putamen but
does not terminate in the occi-
pital or parietal lobe

PFCC7 Left medial orbitofrontal WM IFO7 WM that projects to the occipital
lobe

PFCC8 Posterior to left anterior cingulate
WM

IFO8 WM that projects to the parietal
lobe

PFCC9 Lateral to left rostral anterior cin-
gulate WM

PFCC10 Inferior to left caudal anterior
cingulate

PFCC11 Lateral to left superior frontal
WM, medial to left rostral mid-
dle frontal WM

ATRs UNCs
ATR1 Thalamus UNC1 Medial orbitofrontal gyrus
ATR2 Lateral to caudate UNC2 Posterior portion of lateral orbito-

frontal WM
ATR3 Lateral to rostral anterior cingu-

late WM
UNC3 Connecting point between tempo-

ral and frontal lobe, lateral to
insular gyrus

ATR4 Lateral to superior frontal WM,
medial to rostral middle frontal
WM

UNC4 Lateral to amygdala, medial to
superior temporal gyrus

ATR5 Superior frontal WM UNC5 Superior temporal WM

Abbreviations: PFCC, anatomical prefrontal white matter (WM) tracts of the corpus callosum; ATR, anterior thalamic radiations; IFO,
inferior fronto-occipital fasciculus; UNC, uncinate fasciculus.
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less severe genetic toxicity. ATR and IFO showed symmet-
rical diffusivity differences for FA and MD and RD and
MD, respectively, between Control and Medium CAP
groups. Mean RD change was observed in the PFCC tract
while there were no findings for the UNC tract. Mean DTI
scalar differences also generally presented with left-right
symmetry, as illustrated in Figure 3.

Association Between Neuropsychological

Performance and DTI Scalar Values

Similar to the results provided in Figure 3, correlational

analyses between neuropsychological performance and

diffusion-tensor metrics are summarized in Figure 6. After

permutation-based correction, we identified the percentage

Figure 4.

(See legend on the following page.)

Figure 5.

(See legend on the following page.)

Figure 6.

(See legend on the following page.)

Figure 3.

(See legend on the following page.)
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of each tract skeleton that correlated with each of the neuro-

psychological variables. Across all regions, lower FA and

higher MD, RD, and AD were linked to greater impairment

in neuropsychological performance. Among the four scalar

measures, correlational findings relating to neuropsycholog-

ical performance were most widespread for MD and RD.

For the PFCC, DTI scalar measures were broadly related to

neuropsychological performance on all but the Stroop Inter-

ference task. Significant relationships between FA, MD, and

RD but not AD with neuropsychological measures were

present in the PFCC. In the ATR, MD and RD were signifi-

cantly correlated with performance on the SDMT, Stroop

Color, Stroop Word, and TMTB tasks. The IFO, MD, and RD

measures were significantly correlated with performance on

the SDMT and TMTA/B tasks and fewer correlations with

performance on the Stroop tasks. Of the four tracts exam-

ined, the UNC showed the lowest correlation with neuro-

psychological performance, with significant associations

bilaterally for TMTB with RD and TMTA with FA. Please

see Supporting Information Tables SVII, SVIII and Support-

ing Information Figure SVII for a more detailed characteri-

zation of these correlational findings.

Figure 3.

Percentages of voxels in each tract skeleton containing significant

differences in DTI scalars between controls and CAP groups. These

results were acquired with the threshold-free cluster enhancement

method at 50,000 permutations and corrected with FDR at a crite-

rion of q < 0.05 for left (l) and right (r). More details are shown in

Figures 4 and 5. Abbreviations: PFCC, anatomical prefrontal WM

tracts of the corpus callosum; ATR(l), anterior thalamic radiations

left; ATR(r), anterior thalamic radiations right; IFO(l), inferior

fronto-occipital fasciculus left; IFO(r), inferior fronto-occipital fasci-

culus right; UNC(l), uncinate fasciculus left; UNC(r), uncinate fasci-

culus right; FA, fractional anisotropy; AD, axial diffusivity; RD, radial

diffusivity; MD, mean diffusivity.

Figure 4.

Detailed differences in DTI scalars between control and High

CAP groups. Plots of mean DTI scalars across tract skeleton vox-

els that contained significant differences between Control and

High CAP groups for each participant. These results were

acquired with the threshold-free cluster enhancement method

at 50,000 permutations and corrected with FDR at a criterion of

q < 0.05 for left (l) and right (r). Abbreviations: PFCC, anatomical

prefrontal WM tracts of the corpus callosum; ATR(l), anterior

thalamic radiations left; ATR(r), anterior thalamic radiations right;

IFO(l), inferior fronto-occipital fasciculus left; IFO(r), inferior

fronto-occipital fasciculus right; UNC(l), uncinate fasciculus left;

UNC(r), uncinate fasciculus right; FA, fractional anisotropy; AD,

axial diffusivity; RD, radial diffusivity; MD, mean diffusivity.

Figure 6.

Percentages of voxels in each tract skeleton containing significant

correlations between DTI scalars and cognitive variables that

showed decreased anisotropy was related to cognitive decline

for prodromal HD participants. These results were acquired

with the threshold-free cluster enhancement method with

50,000 permutations and corrected with FDR at a criterion of q

< 0.05. Abbreviations: TMTA, Trail Making Test A; TMTB, Trail

Making Test B; SDMT, Symbol Digit Modalities Test; S Word,

Stroop Color and Word Test—word condition; S Color, Stroop

Color and Word Test—color condition; PFCC, anatomical pre-

frontal WM tracts of the corpus callosum; ATR(l), anterior tha-

lamic radiations left; ATR(r), anterior thalamic radiations right;

IFO(l), inferior fronto-occipital fasciculus left; IFO(r), inferior

fronto-occipital fasciculus right; UNC(l), uncinate fasciculus left;

UNC(r), uncinate fasciculus right; FA, fractional anisotropy; AD,

axial diffusivity; RD, radial diffusivity; MD, mean diffusivity.

Figure 5.

Detailed differences in DTI scalars between control and Medium

CAP groups. Plots of mean DTI scalars across tract skeleton

voxels that contained significant differences between control and

Medium CAP groups for each participant. These results were

acquired with the threshold-free cluster enhancement method

at 50,000 permutations and corrected with FDR at a criterion

of q < 0.05 for left (l) and right (r). Abbreviations: PFCC, ana-

tomical prefrontal WM tracts of the corpus callosum; ATR(l),

anterior thalamic radiations left; ATR(r), anterior thalamic radia-

tions right; IFO(l), inferior fronto-occipital fasciculus left; IFO(r),

inferior fronto-occipital fasciculus right; AD, axial diffusivity; MD,

mean diffusivity; RD, radial diffusivity; Med, medium.
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DISCUSSION

Prior work has documented the effectiveness of DWI in
studying WM changes throughout HD progression. The
purpose of this study is to describe and examine the diffu-
sivity properties of four major PFC WM tracts in prodro-
mal HD participants and how WM alterations relate to
genetic toxicity and neuropsychological test scores. Our
results are in general agreement with previous prodromal
HD DTI scalar studies that showed decreased FA and
increased MD, AD, and RD associated with increased CAP
scores. We also identified significant increases in MD and
RD profiles between the Medium CAP group and healthy
controls in the IFO tracts.

Decreased FA and increased MD, AD, and RD together
suggest decreased anisotropy that is generally thought to
reflect compromise in the WM cell membranes. This finding
is consistent with at least one animal study showing greater
anisotropic diffusion in areas containing multiple axons ver-
sus those areas with fewer axons, demonstrating that WM
sheaths and greater numbers of axons are important sources
of anisotropic diffusion [Takahashi et al., 2002]. Other animal
studies have shown decreased myelin integrity is specific to
an increase in RD, and is a separate process from axonal
injury [Song et al., 2002, 2003, 2005]. In animal studies, AD
was decreased due to axonal injury in the same studies
showing increased [Song et al., 2003] or unchanged RD [Song
et al., 2002, 2005]. Another animal study showed that both
AD and RD were decreased and the authors attributed this
change to Wallerian degeneration [Sun et al., 2008].

Increased AD has been seen in the WM of HD subjects
in the corpus callosum [Rosas et al., 2010]. Comparatively,
AD also decreases with time in HD subjects [Weaver et al.,
2009]. Collectively, the changes in diffusivity throughout
multiple tracts in our study support previous findings of
global WM volume abnormalities in prodromal HD sub-
jects [Paulsen et al., 2006, 2010; Phillips et al., 2014].

Increased MD and RD and, to a lesser degree, decreased
FA, negatively correlated with cognitive performance for
many of the tracts in our study. TMTA and TMTB perform-
ance time was highly correlated with FA, MD, and RD in
almost all tracts. SDMT also had many significant correla-
tions in the PFCC, IFO, and ATR. Stroop Word Test scores
were limited to significant correlations in the PFCC for FA,
MD, and RD, and in the ATR tracts for MD and RD.
Together, the gradient of effects seen in the differences in
DTI scalar values and their correlations with cognitive varia-
bles that have a documented association with cognitive
changes in prodromal HD participants suggest DWI scalar
tensor values can be reliable markers of disease progression.
For example, the results of our study suggest that monitoring
MD and RD in the IFO while measuring TMT time may serve
as a reliable biomarker to monitor disease progression in the
prodromal HD stage. In addition, correlations between com-
promised cognitive performance and diffusivity changes that
imply decreased WM functionality are consistent with find-
ings of reduced functional brain connectivity seen in prodro-

mal HD individuals that becomes more widespread in
manifest HD [Dumas et al., 2013].

Maturation of the PFCC has been reported to be associ-
ated with language development [Paul, 2011], and altera-
tions in the PFCC have been linked to autism [Jou et al.,
2011]. The ATR runs through the anterior limb of the
internal capsule and connects the PFC to the mediodorsal
thalamic nucleus [Wakana et al., 2004] that is believed to
be involved with declarative memory [Mamah et al., 2010;
Van der Werf et al., 2003]. Robust associations between an
infant’s visuospatial working memory performance and
ATR have also been found [Short et al., 2013]. The IFO
connects the orbitofrontal areas to the ventral occipital
lobe, while coursing through the external capsule [Catani
and Thiebaut de Schotten, 2008; Wakana et al., 2004]. The
IFO is believed to only exist in humans [Catani et al.,
2007] and may have a role in reading [Epelbaum et al.,
2008], attention [Doricchi et al., 2008], and visual process-
ing [Rudrauf et al., 2008]. Alterations in WM properties in
the IFO have been linked to autism [Jou et al., 2011]. The
UNC connects the orbitofrontal cortex to the anterior lobe
[Catani and Thiebaut de Schotten, 2008; Wakana et al.,
2004] and may be involved in episodic memory, language,
and social emotional processing [Von Der Heide et al.,
2013]. Increased mean AD of the UNC was identified in
medial temporal lobe epilepsy patients [Kim et al., 2011].

Overall in our study, MD and RD reliably produced the
most widespread and significant findings in the mean differ-
ences between controls and those with the greatest disease
burden and showed the highest association with cognitive
performance decline. Of all cognitive measures evaluated,
TMT is the most highly correlated with diffusivity changes in
almost every tract. These findings with MD, RD, and TMT
times are consistent with a previous study that investigated
mean scalar values in a limited number of ROI in PFC WM
[Matsui et al., 2014]. Widespread positive correlations between
decreased cognitive functioning measured by increased TMT
times [O’Rourke et al., 2011] and microstructural damage indi-
cators (increased MD and RD and decreased FA) are seen in
our study. Increased TMTA times demonstrated in prodromal
HD participants may be explained by deficits in attention and
visual processing caused by diffusivity changes in the WM of
the IFOs that reflect increased genetic toxicity [Doricchi et al.,
2008; Rudrauf et al., 2008]. Additionally, increased TMTB
times that are indicative of deficits in memory performance
were related to diffusivity changes in the WM of the ATRs
and UNCs that also tracked with increased genetic toxicity
[Mamah et al., 2010; O’Rourke et al., 2011; Van der Werf et al.,
2003; Von Der Heide et al., 2013]. Recognizing that the SDMT
score is a measure of working memory, one may deduce that
decreased SDMT performance is caused in part by the biologi-
cal changes that resulted in diffusivity changes in the ATRs
and left UNC [Smith, 1991; Von Der Heide et al., 2013].

One of the main limitations in this study was the lack of
direct susceptibility distortion correction on the s-MRIs or
DWIs. As we were examining WM in the PFC, susceptibil-
ity distortion correction may have greatly improved our
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results, especially in the orbitofrontal and temporal regions
as they are in close proximity to large air-tissue interfaces.
Although efforts were made to limit the analysis of dis-
torted images, findings in the UNC may have been more
widespread if structural anatomy and WM fiber tracts
were more accurate. Another limitation of this study was
the use of streamline tractography instead of a more
sophisticated fiber tracking algorithm. Many fiber tracking
algorithms that derive tracts from more than a single ten-
sor require performing fiber tracking on DWIs instead of
tensor images and would require a DWI atlas-based
approach. In this study, we did not employ a DWI atlas-
based approach because that would involve nonlinearly
deforming individual DWI subvolumes, which may have
introduced unknown error and further distortion of diffu-
sion information. It will be important for future studies to
compare and contrast different fiber tracking algorithms in
prodromal HD. In addition, although our CAP group anal-
yses point to degeneration of WM tracts as a function of
disease burden, it will be important for longitudinal stud-
ies to identify changes in WM over time. These studies
would benefit from larger sample sizes to more effectively
identify associations between WM and cognitive changes.

Future directions include expanding upon these findings
in the PFC by examining other tracts of interest related to
prodromal HD. In addition to WM in the PFC, it may also
be useful to examine WM extending from the PFC to the
striatum and beyond to characterize how HD affects corti-
costriatal loops in their entirety. Ultimately, the above
analyses will be expanded to characterize changes in indi-
vidual subjects longitudinally.

CONCLUSION

Our study examined the diffusivity properties of major
WM tracts in the PFC in prodromal HD. The effects seen
in the differences in DTI scalar values and their correla-
tions with cognitive performance measures known to track
with genetic toxicity in prodromal HD participants suggest
DWI can be a reliable marker of disease progression. Spe-
cifically, the results of our study suggest that monitoring
MD and RD in the PFC while measuring cognitive metrics
of HD provide a reliable model to further characterize pro-
dromal HD.
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