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Abstract

Botulinum neurotoxins (BoNTs) produced by Clostridium botulinum are the most poisonous 

substances known to mankind. It is essential to have a simple, quick and sensitive method for the 

detection and quantification of botulinum toxin in various media, including complex biological 

matrices. Our laboratory has developed a mass spectrometry-based Endopep-MS assay that is able 

to rapidly detect and differentiate all types of BoNTs by extracting the toxin with specific 

antibodies and detecting the unique cleavage products of peptide substrates. Botulinum neurotoxin 

type E (BoNT/E) is a member of a family of seven distinctive BoNT serotypes (A to G) and is the 

causative agent of botulism in both humans and animals. To improve the sensitivity of the 

Endopep-MS assay, we report here the development of novel peptide substrates for the detection 

of BoNT/E activity through systematic and comprehensive approaches. Our data demonstrate that 

several optimal peptides could accomplish 500-fold improvement in sensitivity compared to the 

current substrate for the detection of both not trypsin-activated and trypsin-activated BoNT/E toxin 

complexes. A limit of detection of 0.1 mouseLD50/mL was achieved using the novel peptide 

substrate in the assay to detect not trypsin-activated BoNT/E complex spiked in serum, stool and 

food samples.
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 Introduction

The neurotoxins produced by Clostridium botulinum (Botulinum Neurotoxins, BoNT) are 

the most poisonous substances known to mankind. The life threatening diseases caused by 

these toxins include food-borne botulism, infant botulism, wound botulism, and adult 

intestinal colonization[1]. BoNTs also constitute a potential biological weapon as they are 

easy to produce[2]. On the other hand, botulinum toxins have been used for therapeutic or 
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aesthetic applications[3]. For all these applications, it is essential to have a simple, quick and 

sensitive method for the detection and quantification of botulinum toxin in various media, 

including complex biological matrices.

The botulinum neurotoxins are synthesized as single chain polypeptides of 150 kDa which 

undergo proteolytic cleavage to generate active holotoxins constituted of two protein sub-

units linked by a disulfide bond: a heavy chain (100 kDa) involved in target binding and a 

light chain (50 kDa) responsible for the toxicity through its peptidase activity[4]. In fact, the 

BoNTs belong to a family of zinc-dependent metallopeptidases. They cleave neuronal 

proteins involved in the exocytosis of neurotransmitters, such as SNAP-25, synaptobrevin 

and syntaxin, at the site specific to each toxin[5; 6]. This cleavage consequently blocks the 

release of neurotransmitter molecules at the neuromuscular junction ultimately leading to 

flaccid paralysis of muscle activity.

The neurotoxin type E (BoNT/E) forms part of a family of seven confirmed, related 

serotypes (botulinum toxins A to G) produced by different strains of Clostridium 
botulinum[7]. BoNT/E is a neurotoxin that causes botulism in both humans and animals. 

The most common intoxication by toxin type E is associated with eating contaminated fish 

[8; 9]. BoNT/E is unique because it is released from the bacterium as a single chain and 

cleaved into an active di-chain form by unidentified host cell proteases or other exogenous 

proteases such as trypsin [10; 11]. Activation of a single chain BoNT/E by trypsin leads to 

an approximately two orders of magnitude more potent neurotoxin than the single chain 

molecule [10; 12].

The mouse bioassay is the historic method for the detection of botulinum toxins[2]. It is very 

sensitive, detecting as little as approximately 10 picograms of active toxin which is defined 

as 1 mouse LD 50 (mLD50), but the assay can be slow in obtaining final results and requires 

the sacrifice of many animals. Therefore, much effort has been undertaken to develop 

alternative in vitro endopeptidase activity assays based on BoNT’s intrinsic enzymatic 

function. Several laboratories, including ours, have developed activity methods, by 

measuring the BoNTs’ cleavage products using synthetic peptide substrates with various 

detection platforms[13].

BoNT/E cleaves specifically one of the SNARE complex proteins, SNAP-25, at the Arg180-

Ile181 bond [14]. Montecucco and coworkers revealed that the minimal length for proteolysis 

of SNAP-25 by BoNT/E includes a SNARE motif starting from Ala141 [15]. Binz and 

coworkers defined the minimal essential domain of SNAP-25 required for cleavage by 

BoNT/E as Ile156-Asp186 [16]. Through saturation mutagenesis and deletion mapping, 

Barbieri and Chen defined a short optimal cleavage domain of Met167-Asp186, where the 

subsite of Met167-Thr173 was considered as a binding domain contributing to substrate 

affinity [17; 18]. These findings led to the development of peptide substrates used in various 

in vitro activity assay platforms for the detection of the BoNT/E toxin. For instance, a 

fluorescence based assay uses a recombinant substrate consisting of the SNAP-25 sequence 

Ile134-Gly206 flanked by a green fluorescent protein (GFP) and a blue fluorescent protein 

(BFP)[19]. A 70-mer peptide of Val137-Gly206 as a substrate is included in an immuno-assay 

where the cleavage product was detected by a specific antibody [20]. The sequence of 
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Ala141-Gly206 with a fluorescent tag on either terminus of the peptide formed a substrate 

included in the BoTestTM kit that uses Förster resonance energy transfer (FRET) technology 

to detect BoNT/E activity [21]. A 61-mer peptide consisting the sequence of Met146-Gly206 

is reported in a capillary electrophoresis method [22]. The peptides of Ile156-Asp186 and 

Ile156-Thr190 are used in a mass spectrometry-based Endopep-MS assay developed in our 

laboratory[23; 24]. During the preparation of this manuscript, a new paper published 

claimed the peptide of Met167-Asp186 and its derivative with two Met replaced by Nle 

residues were effective substrates for the Endopep-MS platform[25]. This report described 

the development of a novel peptide substrate to improve the sensitivity of the Endopep-MS 

assay for the determination of BoNT/E catalytic activity. Through comprehensive 

optimization using approaches of truncation, deletion, single and multiple substitution and 

other modifications, we have developed several highly efficient peptides that showed more 

than a 500-fold improvement than the substrate currently used in the Endopep-MS assay.

 Materials and method

All chemicals were obtained from Sigma–Aldrich (St. Louis, MO) except where indicated 

otherwise. Fmoc-amino acid derivatives and peptide synthesis reagents were purchased from 

EMD Chemicals, Inc. (Gibbstown, NJ) or Protein Technologies (Tucson, AZ). Isotopically 

labeled Fmoc-amino acid derivatives were purchased from Cambridge Isotope Laboratories 

(Tewksbury, MA). The complex forms of the botulinum neurotoxin without pre-activation 

and the trypsin activated BoNT/E toxin were obtained from Metabiologics (Madison, WI). 

Botulinum neurotoxin is highly toxic and appropriate safety measure is required. All BoNT 

neurotoxins were handled in a class 2 biosafety cabinet equipped with HEPA filters. 

Monoclonal antibodies were provided by Dr. James Marks at the University of California, 

San Francisco. Streptavidin coated Dynabeads were purchased from Invitrogen (Lake 

Success, NY). Serum and stool extracts were purchased from commercial source or 

collected from anonymous donors, and no demographic information was obtained (CDC 

IRB 4307).

 Peptide synthesis

All peptides were prepared in house by a solid phase peptide synthesis method using Fmoc 

chemistry on a Liberty microwave peptide synthesizer (CEM, Matthews, NC, USA) or a 

Tribute peptide synthesizer (Protein Technologies, Tucson, AZ, USA). Peptides were 

cleaved and deblocked using a reagent mixture of 95% trifluroacetic acid :2% water: 2% 

anisole:1% ethanedithiol and purified by reversed-phase HPLC using a water:acetonitrile:

0.1% TFA gradient (90-95% purity). Correct peptide structures were confirmed by MALDI 

mass spectrometry. All peptides were dissolved in deionized water as a 1 mM stock solution 

and were stored at −70°C until further use.

 Endopep-MS assay

In-solution or on-bead Endopep-MS assays were carried out as previously described [26]. In 

brief, the reaction was conducted in a 20 μL reaction volume containing 0.1 mM peptide 

substrate, 10 μM ZnCl2, 1 mg/mL BSA, 10 mM dithiothreitol, and 200 mM HEPES buffer 

(pH 7.4) at 37°C for 1 or 4 hrs. For the in-solution assays without antibody-coated beads, 
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various concentrations of BoNT/E, as indicated in the text, were directly added into the 

reaction mixture. For samples including complex matrices, the toxin spiked in matrix was 

first purified by antibodies immobilized on streptavidin beads followed by an activity assay 

as described [26].

After reaction, 2 μL of the supernatant was mixed with 20 μL of α-cyano-4-hydroxy 

cinnamic acid at 5 mg/mL in 50% acetonitrile/0.1% TFA/1 mM ammonium citrate; 2 μL of 

a 1 μM internal standard peptide (isotope labeled peptides resembling the sequence of either 

the C- or N-terminal cleavage product) was added to the solution. The formation of cleavage 

products was measured as the ratio of the isotope cluster areas of the cleavage product 

versus an internal standard.

 MS detection

Each sample was spotted in triplicate on a MALDI plate and analyzed on a 5800 MALDI-

TOF-MS instrument (Applied Biosystems, Framingham, MA). Mass spectra of each spot 

were obtained by scanning from 800 to 4000 m/z in MS-positive ion reflector mode. The 

instrument uses a Nd-YAG laser at 355 nm, and each spectrum is an average of 2400 laser 

shots.

 Results and discussion

 Optimal length of the peptide substrate of BoNT/E determined by truncation, deletion 
and mutation

Endopep-MS assay is a method using mass spectrometry, matrix assisted laser desorption 

ionization (MALDI) or electrospray ionization (ESI), to detect either one or two cleavage 

products hydrolyzed from a peptide substrate by an affinity enriched toxin. Therefore, assay 

sensitivity will not only depend on the hydrolysis efficiency (substrate binding and 

catalysis), but also rely on the ionization of cleaved peptide fragments, which is associated 

with their amino acid sequence. While different lengths of peptides including the essential 

elements for substrate binding and cleavage are applied in various in vitro BoNT activity 

assays as described above, a study on the optimal length of a peptide specifically suitable for 

the detection of BoNT/E by Endopep-MS was lacking. The peptide substrate (Pep-8 in Table 

1) currently used in the Endopep-MS assay was derived from the partial sequence of 

SNAP-25, ranging from the amino acid residues Ile156 to Thr190 [27]. To examine whether 

further improvement can be achieved by optimizing peptide length for our Endopep-MS 

assay, we systematically prepared a series of peptides with extended or shortened sequences 

from either the N-terminal or C-terminal direction of the Pep-8, where the opposite end of 

the substrate remained the same (Table 1). In order to avoid bias caused by sequence-

dependent ionization of cleavage fragments, the hydrolysis of the peptides with variable N-

termini (Pep-1 to Pep-6) was compared by measuring the formation of C-terminal cleavage 

products by MALDI-TOF-MS, while that of the C-terminal varied peptides (Pep-7 to 

Pep-14) was compared with the production of N-terminal cleavage products. For those N-

terminal truncated peptides, the longest peptide (Pep-1) with the SNAP-25 sequences of 

Ala141-Gly206 yielded the highest production of the cleavage product. When 10 or 15 N-

terminal residues were removed (Pep-2 and Pep-3), the cleavage efficiency of these two 
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substrates underwent a slight decrease. On the other hand, further deleting N-terminal 

resides (Pep-4 to Pep-6) led to a drastic reduction or non-detection of the cleavage products. 

For C-terminal truncated peptides, extending amino acid residues all the way to the last 

SNAP-25 residue at the position 206 (Pep-7) did not provide any benefit, compared to the 

activity of Pep-8 substrate which ends at position 190. Further C-terminal truncation of the 

peptides caused a steady decrease in their substrate hydrolysis (Pep-9 to Pep-14). In 

summary, Pep-1 performed the best among the tested BoNT/E substrate peptides of various 

lengths. This likely explained why the peptide itself, or with added fluoresence tags, was 

used as an efficient substrate in other studies and commercial kits (BoTest™ A/E Botulinum 

Neurotoxin Detection Kit, Biosentinel, Inc.). The large size of this peptide (7.5kDa), 

however, raised issues such as difficulty of peptide preparation and low solubility in assay 

buffers. In contrast, the molecular weight of Pep-8 (4.0kDa) is almost half of that of the 

Pep-1, but it has retained 90% of the substrate activity. For these reasons, we decided to use 

this peptide as a template for further optimization.

The next modification to optimize the substrate focused on adding or deleting single amino 

acids to or from either end of the Pep-8 in order to examine whether smaller changes in 

peptide size impact the substrate activity. As shown in Table 2, removing one or two Ile 

residues from the N-terminus of the peptide resulted in a 30 to 40% decrease in cleavage 

efficiency of the newly formed peptides (Pep-15, Pep-16). In addition, extending the 

sequence (Pep-17) by adding a glycine (residue 155 of SNAP-25) to the N-terminus led to 

reduced production of enzyme cleavage products as well. The importance of two N-terminal 

hydrophobic residues led us to speculate that the side chains of these two Ile residues might 

have some direct contact with the enzyme through a hydrophobic-hydrophobic interaction. 

An increase in the cleavage product from Pep-18, after the third Ile residue was incorporated 

into the N-terminus of Pep-8, provided some supportive evidence for this hypothesis. More 

studies attempting to address this issue will be described below.

A remarkable improvement was obtained when one or two additional SNAP-25 residues 

were extended on the C-terminus of the Pep-18. Incorporation of Arg191 and Arg191-Ile192 

into the Pep-19 and Pep-20, respectively, resulted in a 20-fold increase in the detection of the 

C-terminal cleavage products (CT-product) (Table 2). Since the N-terminal products (NT-

product) cleaved from these peptides did not show significant changes, the elevated 

measurement of the CT-product should not come from altered cleavage efficiency of the new 

substrates, but must be due to the contribution of elevated ionization efficiency of the CT-

products measured in positive ion mode by MALDI-TOF-MS, presumably directly 

associated with a positively charged Arg residue. In contrast, deletion of two C-terminal 

residues containing a positively charged Lysine from the Pep-18 led to a peptide (Pep-21) 

with reduced cleavage efficiency, indicated by a 52% production of the NT-product and 

decreased ionization of its CT-product (20%) as well.

In an attempt to shorten peptide size to improve synthesis yields and/or peptide solubility in 

the reaction buffer, internal deletions were applied on the N-terminal portion of the new 

template peptide, Pep-20. Table 3 shows that three peptides, Pep-22, Pep-23 and Pep-24, 

deleting 5 consecutive residues in different regions yielded different consequences. While 

less than 20% of the CT-product was detected from Pep-22 and Pep-23, removal of the area 
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consisting of the sequence of RHMAL in Pep-24 retained 90% substrate activity, revealing 

that the chain of RHMAL did not play a critical role in peptide binding and/or substrate 

cleavage. Further deleting several residues sequentially, flanking either end of this 5-residue 

region, produced seven new peptides, Pep-25 through Pep-31. Among these peptides, 

Pep-29, with two more residues removed, maintained a relative production of the CT-

product (88%) similar to that of the Pep-24. It was also interesting to see how a single 

residue difference significantly altered the cleavage efficiency of newly formed peptides by 

BoNT/E, for instance, Pep-28 (2%) versus Pep-29 (88%). In conclusion, this result 

demonstrated that seven internal residues (RHMALDM) within the BoNT/E peptide 

substrate seem to not participate in enzyme-substrate interaction and hence can be removed 

without significant negative impact on the substrate cleavage. To examine the viability of 

further shortening Pep-29, three new peptides (Pep-32, -33, and -34) were designed, where 

one to three C-terminal residues (T, KT and NKT) were removed but the terminal Arg 

residue was maintained. It was observed that the shortest Pep-34 turned out to be a poor 

BoNT/E substrate whereas the medium length substrate, Pep-33, retained the most substrate 

capability (Table 3). Pep-32, on the other hand, resulted in significant activity improvement 

compared to Pep-29. Pep-32 generated over 30% CT- and NT-products more than Pep-29, 

suggesting that Pep-32 possessed a higher BoNT/E cleavage efficiency, whereas the 

ionization efficiency of its CT-product remained unchanged. This peptide was then used as a 

new template for additional optimization discussed below.

 Further improvement was accomplished by single or multiple substitutions

Based on the sequence of the best substrate, Pep-32, we carried out a thorough single 

mutation study where every single residue was substituted with selected amino acids and the 

peptide mutants were tested as BoNT/E substrates. While about two-third of the mutants 

tested produced less cleavage products than the wild-type did, another one-third of the single 

mutated peptides resulted in a higher substrate efficiency, some of those showed three-fold 

or higher improvement (Fig. 1), demonstrating the power of a mutation approach for 

substrate optimization.

It was interesting to observe that a substantial improvement was accomplished when each of 

three N-terminal nonpolar Ile residues were replaced by Phe residues bearing a more 

hydrophobic side chain. This data emphasized our speculation described above that the N-

terminal residues might be involved in direct contact with the catalytic domain of the toxin 

via hydrophobic-hydrophobic interactions. Substitution with even stronger hydrophobic 

residues probably enhanced such interaction and therefore increased substrate binding 

affinity. To explore whether those putative interactions can be further improved, a series of 

peptides with the modifications of hydrophobic residues in the N-terminal region of the 

Pep-32 were developed (Fig. 2A). A slight increase in detected CT-product was observed as 

the six N-terminal residues were replaced by three Phe residues in Pep-35. On the other 

hand, reduced detection of CT-product resulted when one more Phe was added in Pep-36. 

This suggested that three hydrophobic residues still retained the special enzyme-substrate 

interaction, even in a shorter peptide, but the contact might be impacted by a longer 

hydrophobic chain. When the three N-terminal Ile residues in Pep-32 were replaced by 

residues with a more hydrophobic structure, such as Phe in Pep-37, Trp in Pep-40, and 1-Nal 
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in Pep-42, all new peptides acted as better substrates. In addition, the improvement degree, 

Pep-42 > Pep-40 > Pep-37, seems proportional to the size of the bulky side chain groups (1-

Nal > Trp > Phe, Fig. 2B). This data provided additional supportive evidence for the 

suggestion of a hydrophobic interaction between the BoNT/E enzyme and the peptide 

substrates. Moreover, the hydrophobicity effect was also demonstrated by the fact that the 

double Trp substitution (Pep-39) displayed higher cleavage efficiency than the triple Phe 

substituted peptide (Pep-37) did, and the triple Trp replacement in Pep-40 resulted in better 

substrate efficiency than the double-Trp one in Pep-39, presumably due to the difference of 

their combined hydrophobicity. A similar effect was also observed by comparing the 

cleavage of the double 1-Nal peptide (Pep-41) with the triple Trp and triple 1-Nal ones 

(Pep-40 and Pep-42, respectively). Furthermore, significantly reduced substrate cleavage by 

BoNT/E on the peptides with a cluster of five Phe residues (Pep-38) or four 1-Nal residues 

(Pep-43) suggested that the size of the hydrophobic cluster on the N-terminus of a substrate 

was not unrestricted. In other words, the space of the putative hydrophobic pocket in the 

catalytic domain of the toxin was limited and it might not allow the placement of more than 

three very bulky side chain groups. More study is needed to further confirm or address this 

proposed hydrophobic interaction between BoNT/E protease and its peptide substrate.

Additional effort on further substrate optimization was put on combining single mutations 

that showed enhanced detection of BoNT/E cleavage products. Since some single mutations 

may alter the conformation of mutated peptides or intra- and inter molecular interactions, 

and hence the property of their substrate binding and/or catalysis, it is not realistic to expect 

a best substrate can be obtained by simply placing together in a single sequence all good 

single substitutions derived from the studies described above. However, it is reasonable to 

believe that some combinations of the single mutations may achieve an augmented effect. 

For this purpose, new peptides were designed where different combinations of the amino 

acid substitutions, derived from the studies of single mutation and N-terminal modifications 

described above, were incorporated into their corresponding positions of the template 

peptide (Pep-32). In addition, some unnatural amino acids, such as homoarginine (hR), and 

terminal modifications, such as C-terminal amidation, were introduced in some peptides in 

order to increase peptide stability and reduce their susceptibility to non-specific cleavage by 

other proteases (e.g. Trypsin) present in biological samples. Table 4 lists some of such 

modified peptides (Pep-45 to Pep-62) that showed a comparable or better substrate 

performance than that of the peptide with a single internal substitution (Pep-44). While some 

multiple substituted peptides (e.g. Pep-45, Pep-46, Pep-48 or Pep-55) exhibited similar or 

slightly improved detection sensitivity, in terms of the detection of the C-terminal cleavage 

products, many of the novel peptides achieved a significant improvement with 50% to 300% 

increase in the CT-product detection, revealing that added benefit on assay sensitivity could 

be obtained by combining sound single mutations. Among four candidates displaying three-

fold improvement over Pep-44, Pep-59 proved to be the best in solubility and the Pep-62 

showed highest resistance toward undesired cleavage by nonspecific proteases present in 

clinical samples (Data not shown). The substitution of the arginine at the cleavage site with 

an unnatural homoarginine residue seems to contribute to improved resistance toward the 

cleavage by nonspecific proteases such as trypsin. Therefore, these two optimal peptides 
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were selected to be used in further experiments and in routine analysis of biological samples 

for the BoNT/E detection by the Endopep-MS assay.

 Evaluation of optimized peptides as BoNT/E substrates in the Endopep-MS assay

To evaluate the outcome of the optimization for the BoNT/E substrates, Pep-59, one of the 

four best optimized peptides, was compared to Pep-8, the substrate currently used in the 

Endopep-MS assay. The substrates were hydrolyzed by two forms of BoNT/E toxins: one is 

the single chain holotoxin without pre-activation as a complex with neurotoxin-associated 

proteins, and another is the BoNT/E di-chain complex that had been activated by exposing it 

to trypsin during the manufacturing process. As shown in Table 5, the optimal peptide was 

able to detect the cleavage products at a 500-fold lower level of BoNT/E compared to the old 

peptide substrate, for both not activated and trypsin-activated BoNT/E toxin complexes, 

under the same experimental conditions, demonstrating a dramatic improvement in the assay 

sensitivity using the new peptide substrate. When testing the sensitivity of the Endopep-MS 

assay using the newly developed optimal peptide, the limit of detection of 0.1 mLD50 

(1pg/mL or 5.5 attomole/mL) was accomplished for the detection of not trypsin-activated 

BoNT/E toxin complex spiked in serum and stool extract, two common biological matrices 

used for botulism clinical samples, after a 4 hour cleavage reaction (Fig. 3, S/N > 3). This 

represent an assay sensitivity 10-fold lower than that measured by a traditional mouse 

bioassay. The specificity of the optimal peptides was examined by exposing them to other 

serotypes of botulinum neurotoxins including type A, B, and F, and no cleavage product was 

observed (data not shown). In addition to the specific BoNT/E subtype (E3) used in the 

experiments described above, the optimized peptides also proved to be effective substrates of 

other tested BoNT/E subtypes including E1, E2, E4, E7 and the most divergent E9 (Data not 

shown).

 Conclusion

We developed novel peptide substrates for the mass spectrometry-based Endopep-MS assay 

for the detection of type E botulinum neurotoxin. The systematic and comprehensive 

optimization process included peptide terminal truncation, internal deletion, single and 

multiple substitution, terminal residue modification and incorporation of unnatural amino 

acid residues. Our data demonstrate that one of the four optimal peptides demonstrated a 

500-fold improvement in assay sensitivity than the current substrate, used for the detection 

of both not activated and trypsin-activated BoNT/E toxin complexes. The limit of detection 

for the toxin complex without pre-activation in serum, stool and food samples using the new 

substrate is 0.1 mouseLD50/mL. In addition, the troublesome nonspecific cleavage in blank 

control samples was significantly improved by incorporating an unnatural homoarginine 

residue in the cleavage site of the optimal peptides. A patent application of these optimized 

peptides has been filed and the novel peptide substrates continue to be used in our laboratory 

for routine analysis of clinical samples.
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Figure 1. 
Effect of single amino acid mutations on the detection of cleavage product of mutated 

peptide-32 by BoNT/E. The residues at BoNT/E cleavage site are underlined. X represents 

norleucine.
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Figure 2. 
(A) Cleavage efficiency of the peptides modified with N-terminal hydrophobic residues. (B) 

the structure of some hydrophobic residues. Several N-terminal residues are represented by 

letters and other identical regions of the sequences are represented by lines. O1: 1-1-

Naphthylalanine (Nal).
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Figure 3. 
Product response from the cleavage of Pep-59 by not trypsin-activated BoNT/E of various 

concentrations spiked in serum and stool matrices. Cleavage reaction condition: 37°C, 4 

hours.
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Table 1

Hydrolysis of N- or C-terminal truncated peptide substrates by BoNT/E toxin.

Peptide SNAP-25
position Sequence

CT-prod

(%)
a

NT- prod

(%)
b

Pep-1 141-206
ARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSNKTRIDEANQRATKMLGSG

c 100

Pep-2 151-206 EQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSNKTRIDEANQRATKMLGSG 75

Pep-3 156-206 IIGNLRHMALDMGNEIDTQNRQIDRIMEKADSNKTRIDEANQRATKMLGSG 89

Pep-4 161-206 RHMALDMGNEIDTQNRQIDRIMEKADSNKTRIDEANQRATKMLGSG 28

Pep-5 166-206 DMGNEIDTQNRQIDRIMEKADSNKTRIDEANQRATKMLGSG 19

Pep-6 171-206 IDTQNRQIDRIMEKADSNKTRIDEANQRATKMLGSG 0

Pep-7 156-206 IIGNLRHMALDMGNEIDTQNRQIDRIMEKADSNKTRIDEANQRATKMLGSG 100

Pep-8
d 156-190 IIGNLRHMALDMGNEIDTQNRQIDRIMEKADSNKT 100

Pep-9 156-188 IIGNLRHMALDMGNEIDTQNRQIDRIMEKADSN 81

Pep-10 156-186 IIGNLRHMALDMGNEIDTQNRQIDRIMEKAD 68

Pep-11 156-185 IIGNLRHMALDMGNEIDTQNRQIDRIMEKA 77

Pep-12 156-184 IIGNLRHMALDMGNEIDTQNRQIDRIMEK 38

Pep-13 156-183 IIGNLRHMALDMGNEIDTQNRQIDRIME 15

Pep-14 156-182 IIGNLRHMALDMGNEIDTQNRQIDRIM 10

a
Relative cleavage rate obtained from the analysis of C-terminal cleavage products (CT-prod). Condition: 37°C, 4 hour.

b
Relative cleavage rate obtained from the analysis of N-terminal cleavage products (CT-prod).

c
The cleavage site of BoNT/E substrate is depicted in bold.

d
Pep-8 is the BoNT/E substrate currently used in Endopep-MS assay.
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Table 2

Relative production of the N-or C-terminal product cleaved from truncated or modified peptide substrates by 

BoNT/E toxin.

Peptide Sequence CT-prod
(%)

NT- prod
(%)

Pep-15 GNLRHMALDMGNEIDTQNRQIDRIMEKADSNKT 60

Pep-16 IGNLRHMALDMGNEIDTQNRQIRIIMEKADSNKT 73

Pep-8 IIGNLRHMALDMGNEIDTQNRQIDRIMEKADSNKT 100

Pep-17 GIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSNKT 81

Pep-18 IIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSNKT 123

Pep-19 IIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSNKTRI 2000 100

Pep-20 IIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSNKTR 2177 117

Pep-18 IIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSNKT 100 130

Pep-21 IIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSN 20 52
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Table 3

Relative production of the N-or C-terminal product cleaved from internally deleted peptides by BoNT/E toxin.

Peptide Sequence CT-prod
(%)

NT-prod
(%)

Pep-20 IIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSNKTR 100

Pep-22 IIIGNLRHMALDMGNE________RQIDRIMEKADSNKTR 6

Pep-23 IIIGNLRHMAL________IDTQNRQIDRIMEKADSNKTR 17

Pep-24 IIIGNL________DMGNEIDTQNRQIDRIMEKADSNKTR 90

Pep-25 IIIGN__________DMGNEIDTQNRQIDRIMEKADSNKTR 19

Pep-26 IIIG____________DMGNEIDTQNRQIDRIMEKADSNKTR 43

Pep-27 III_____________DMGNEIDTQNRQIDRIMEKADSNKTR 30

Pep-28 IIIGNL_____________NEIDTQNRQIDRIMEKADSNKTR 2

Pep-29 IIIGNL____________GNEIDTQNRQIDRIMEKADSNKTR 88

Pep-30 IIIGNL__________MGNEIDTQNRQIDRIMEKADSNKTR 33

Pep-31 IIIGNL______LDMGNEIDTQNRQIDRIMEKADSNKTR 53

Pep-29 IIIGNL____________GNEIDTQNRQIDRIMEKADSNKTR 88 100

Pep-32 IIIGNL____________GNEIDTQNRQIDRIMEKADSNKR 117 136

Pep-33 IIIGNL____________GNEIDTQNRQIDRIMEKADSNR 91 84

Pep-34 IIIGNL____________GNEIDTQNRQIDRIMEKADSR 18 36

Deleted amino acid residues from the Pep-20 are depicted in underscore.
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Table 4

Effect of multiple mutations on the cleavage of modified peptides by BoNT/E toxin*.
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Table 5

Comparison of the cleavage of currently used and newly developed peptide substrates by BoNT/E.

Peptide

BoNT/E
Product

(Area ratio)
Relative
productType

Activity
(mLD50)*

Pep-8 not activated 100 0.40 1

Pep-59 not activated 1 2.35 581

Pep-8 activated 0.16 1.07 1

Pep-59 activated 0.0016 5.48 511

*
The specific activities of activated and not activated BoNT/E was provided by the manufacturer. Cleavage reactions were conducted at 37°C for 1 

hour.
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