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Abstract
The growing availability of high-quality genomic annotation has increased the potential for

mechanistic insights when the specific variants driving common genome-wide association

signals are accurately localized. A range of fine-mapping strategies have been advocated,

and specific successes reported, but the overall performance of such approaches, in the

face of the extensive linkage disequilibrium that characterizes the human genome, is not

well understood. Using simulations based on sequence data from the 1000 Genomes Proj-

ect, we quantify the extent to which fine-mapping, here conducted using an approximate

Bayesian approach, can be expected to lead to useful improvements in causal variant local-

ization. We show that resolution is highly variable between loci, and that performance is

severely degraded as the statistical power to detect association is reduced. We confirm

that, where causal variants are shared between ancestry groups, further improvements in

performance can be obtained in a trans-ethnic fine-mapping design. Finally, using empirical

data from a recently published genome-wide association study for ankylosing spondylitis,

we provide empirical confirmation of the behaviour of the approximate Bayesian approach

and demonstrate that seven of twenty-six loci can be fine-mapped to fewer than ten

variants.

Author Summary

Over the last few years, several approaches for fine-mapping genome-wide association
studies (GWAS) loci have been proposed and used to localize potential causal variants.
However, the performance of these types of tests is often poorly characterized. In this
study, we used extensive simulations to show that statistical fine-mapping can indeed
accurately reduce the number of likely causal variants at common GWAS loci. These
approaches can be further improved by changes in study design, such as the inclusion of
multiple ethnic groups in the study population. Finally, we demonstrate the utility of this
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type of approach on a recently published genome-wide association study for ankylosing
spondylitis, where we could fine-map seven of the twenty-six loci to a number of variants
(n = 10) which is tractable for follow-up in a laboratory setting.

Introduction
As a result of linkage disequilibrium (LD), loci identified by common variant genome-wide
association analyses are often large and may contain hundreds of variants. Characterization of
the specific variants driving these signals has clear benefits, most obviously through highlight-
ing the specific causal molecular mechanisms, which may provide insight into complex disease
pathophysiology. Progress in this endeavor has been hampered by incomplete coverage of
human sequence variation (so potential causal variants are missing from genome-wide associa-
tion study [GWAS] and imputation data sets), and by lingering uncertainties concerning the
frequency spectrum of the underlying risk-alleles [1–3]. However, whole-genome sequence
data (e.g. from the 1000 Genomes Project) now offer near complete coverage across the com-
mon and low frequency allele ranges at least (minor allele frequency [MAF]>1%) in multiple
ancestry groups [4]. At the same time, evidence is accumulating—from large-scale GWAS
[3,5], fine-mapping [5–7], re-sequencing [2,8] and trans-ethnic studies [9,10]–that most
(though not all) GWAS signals are driven by causal variants that are themselves common, with
evidence supporting alternative rare variant association models (e.g. synthetic association [1])
restricted to a few loci (e.g. NOD2/CARD15 in inflammatory bowel disease [8]).

These advances make it possible to perform systematic fine-mapping studies that interro-
gate the vast majority of potential causal variants at GWAS loci. Indeed, several recent studies
have reported successful refinement of GWAS loci [6,7]. These efforts often include a trans-
ethnic component that seeks to leverage ancestral differences in LD patterns between common
SNPs to aid causal variant localization [9–11]. However, substantive questions related to the
reliability, precision and performance of GWAS fine-mapping efforts remain unanswered. In
this study we combined simulation-based and empirical approaches to address these questions.

Results

Evaluating fine-mapping performance using approximate Bayesian
refinement
To quantify fine-mapping precision, we simulated ten association studies of 1,000 cases and
1,000 controls in 1Mb regions from the CEU haplotypes present in the 1000 Genomes Phase 1
dataset [4]. In each region we assigned a single, additive effect, causal variant of varying odds
ratio (OR) and risk allele frequency (RAF). For each combination of OR and RAF, we simu-
lated 1000 random “replicate” regions. On these data, we performed case-control association
testing under an additive model, followed by meta-analysis of all ten studies for each region
(such that the total sample size examined was 20,000). On the basis of the meta-analysis sum-
mary statistics for each of the variants, we generated approximate Bayes’ factors (ABFs)–
describing the evidence in favor of association for a given variant–using the method proposed
by Wakefield [12]. From these ABFs, the posterior probability of each variant to be causal was
derived, and used to assemble “credible sets” that contained all variants with a cumulative pos-
terior probability of a causal variant exceeding a chosen threshold (here, 95% or 99%) for each
of the 1000 replicate regions [6].

Evaluation of GWAS Fine-Mapping Approaches

PLOS Genetics | DOI:10.1371/journal.pgen.1005535 September 25, 2015 2 / 14

and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.



The haplotypes used for the simulations are derived from whole-genome sequencing data
for the 1000 Genomes project [4], and as such represent a “gold standard” scenario with nearly
the entire low-frequency and common variant spectrum covered. Although whole-genome
sequence data are likely to offer the most accurate framework for fine-mapping, currently avail-
able whole-genome sequencing datasets are relatively small and lack power to discriminate
between highly-correlated variants. As a result, most fine-mapping studies rely on the much
larger datasets available from the meta-analysis of GWAS and/or custom array datasets after
imputation. To represent such designs, we filtered these whole-genome data to those present
on the Illumina HumanOmni2.5 BeadChip array, corresponding to genotype data equivalent
to those from dense GWAS or a custom fine mapping array such as the Metabochip [13]. For
this “GWAS” scenario, these variants were subsequently imputed up to the 1000 Genomes
Phase 1, all ancestries, release 3 panel. Additionally, we created a “GWAS with failure” sce-
nario–representing a GWAS with a genotype missingness rate per cohort–where, for each of
the twenty case or control cohorts (each with n = 1000) in an analysis, we removed all geno-
types from 5% of the variants (after downsampling). This equates therefore to an ~0.25% miss-
ingness rate per variant across each set of 20,000 samples.

From the simulated data, we first sought to establish whether the credible sets generated
from these simulations by the approximate Bayesian approach had appropriate coverage of the
simulated causal variant under a model of association. In the gold standard scenario (i.e. unfil-
tered 1000 Genomes data), where the causal variant would always be present in the sample, we
estimated the median coverage of the causal variant at 98.5% and 99.8%, for the 95% and 99%
credible sets, respectively (S1 Fig). In the downsampled GWAS scenario, coverage of the causal
variant was broadly comparable to that under the gold standard – 97.8% for the 95% credible
set and 99.6% for the 99% credible set. The introduction of a random 5% variant drop-out per
study population in the GWAS with failure scenario could result in loss from analysis, in some
of the datasets, of the causal variant, or of variants that are influential with respect to the impu-
tation scaffold. ABFs were rescaled by maximum effective sample size to compensate for geno-
type missingness. Results showed that the introduction of randommissingness primarily
affected simulations with little power to detect genome-wide significant association. At all
other simulated OR and RAF combinations, missing genotype data led to only modest attrition
of the causal variant coverage (S1 Fig).

Having shown that the credible set performance was well calibrated, we next asked how
often the causal variant was identical to the most strongly associated (lead) SNP. In situations
where the two show near complete overlap, more sophisticated fine-mapping strategies would
be unnecessary. In the gold standard scenario where the causal variant had the highest OR
(1.5) and RAF (50%), 79% of the simulations accurately identified the causal variant as the
most strongly associated (Fig 1). However, when the risk allele was less common (RAF 5%)
and the phenotypic effect more in line with that observed at more typical GWAS loci (OR 1.1),
the probability of accurately identifying the causal variant by focusing on the most associated
variant dropped to just 2.4% (Fig 1). All subsequently presented results are based on the
GWAS scenario, as this most closely resembles the majority of contemporary fine mapping
studies. In this scenario, the numbers ranged from 70% (RAF 50% and OR 1.5) to 2.4% (RAF
5% and OR 1.1). These results confirm that focusing solely on the most significant variant is
insufficient for identification of the causal variant at most common variant GWAS loci, so
more elaborate approaches to fine-mapping–such as construction of credible sets–are needed.

Next, we evaluated the properties of credible sets for fine-mapping over a range of associa-
tion models. When the association signal was strong—e.g. RAF 50% and OR 1.5—the median
95% credible set contained only a single variant (and two in the median 99% set). Ninety per-
cent of all replicates generated credible sets containing<11 (95%) and<14 variants (99%)
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(Fig 2A and 2B). In the simulations with lesser power to detect association (RAF 10%, OR 1.2–
58.5% power), the median set contained 15 variants at 95% and 24 variants at the 99% posterior
probability cut-off, but the range was far larger (the 90th centiles now were 96 and 183 vari-
ants–Fig 2A and 2B). Overall, the size of the credible set had a strong log-negative correlation
with the power to detect genome-wide association (r2 = 0.61 and r2 = 0.68 for the 95% and 99%
credible sets–S2 Fig); at lower power, fine-mapping ability was mostly attenuated.

Fig 1. Ranking of the causal variant across simulated loci. Cumulative percentage of simulations (y-axis) with decreasing ranking of the causal variant
amongst all variants in the regions (x-axis). Panels are split by risk allele frequency of the causal variant along the vertical axis.

doi:10.1371/journal.pgen.1005535.g001
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We then asked how many of the loci could be successfully fine-mapped. For this purpose,
we deemed resolution of the credible set to fewer than ten variants to constitute success, on the
grounds that this is a tractable number that would encourage researchers to undertake detailed
functional evaluation. The success-rate for the 95% credible sets ranged from 88.4% for RAF
50% variants (OR = 1.5) to 36.9% for RAF 10% (OR = 1.2) variants in simulations with>50%
power. The equivalent figures for the 99% credible sets were 85.5% and 28.4% respectively. In
the least well performing simulation setting overall (RAF 5% at OR = 1.1), 95.3% of the repli-
cates did not fine-map at all, with the credible sets containing> 500 variants within the 1Mb
region. However, the results showed that the approximate Bayesian fine-mapping approach
provided both good coverage of the causal variant and was often able to successfully refine loci
to credible sets of a size that would support exhaustive functional follow-up.

Impact of different fine-mapping strategies on refinement results
To establish the impact of different fine-mapping strategies and causal variant scenarios, we
compared the approximate Bayesian fine-mapping approach to a more simplistic strategy of
retaining all variants with r2 to the lead variant exceeding some pre-defined threshold (0.5, 0.8
or 0.9). We found that, in simulations with great power to detect genome-wide significant asso-
ciation, the approximate Bayesian approach resulted in smaller credible sets than sets based on
r2 thresholds (e.g. 0.8-fold reduction of r2 >0.9 variant set containing fewer than 10 variants
compared to 95% credible sets at RAF 50% and OR 1.5 –Fig 3A). At replicates with less strong
association signal, stringent r2 thresholds (0.9, and, to a lesser extent, 0.8) often resulted in
smaller fine-mapped variant sets than those generated by the approximate Bayesian approach
(Fig 3A). However, the smaller sets for the r2 approach at lower OR and RAF were accompa-
nied by a substantial increase in the false-positive rate (e.g. 24% of r2 >0.9 sets with fewer than
10 variants do not actually contain the causal variant at RAF 10% and OR 1.2 –Fig 3A). This
increase in false-positives was not seen using approximate Bayesian credible sets (Fig 3A).

Trans-ethnic fine-mapping
Trans-ethnic datasets are widely promoted as a useful adjunct to fine-mapping approaches.
We therefore explored the value of adding samples from a distinct ancestral group, focusing on
individuals of African descent. The reduced LD typically observed in African-descent popula-
tions should support improved fine-mapping, at least at those loci where the same causal vari-
ants are segregating across ancestries. To investigate this, we took the same design of 10
studies, each of 1000 cases and 1000 controls, but generated some to all of these studies (1, 3, 5
or 10) using the Yoruba (YRI) component of 1000 Genomes. The simulated causal variant was
kept identical to that in the CEU simulations, and with the same effect size. However, the RAF
for the causal variant in the YRI haplotypes diverged, and was typically lower than that
observed in CEU. We focused these simulations on the less extreme GWAS scenarios–causal
variant RAFs of 10%, 20% at OR = 1.2 (defined by CEU data)–and saw a marked improvement
in fine-mapping resolution compared to the equivalent CEU-only study. For example, in an
analysis of 5 CEU and 5 YRI samples, the probability that the lead GWAS variant was also the
causal variant increased 1.7-fold (27% to 46%; S3 Fig) for RAF of 10% and 1.3-fold (45% to
60%; S3 Fig) for RAF of 20%. The increased fine-mapping resolution was also reflected in the
credible sets: the number of successfully refined loci (< 10 variants) increased on average by

Fig 2. Refinement of the credible sets. The y-axis shows the number of variants in the 95% (a) and 99% (b) likely credible sets. The boxplots show the
median and interquartile range of the simulations, while each point denotes a single “replicate”. The color of the boxplots/points denotes the RAF of the
simulated causal variant, while each panel is split by the effect size along the horizontal plane.

doi:10.1371/journal.pgen.1005535.g002
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1.5-fold (RAF 10%) and 1.3-fold (RAF 20%) in the 50% YRI design compared to a CEU-only
study (Fig 3B). Failure to see incremental improvements in fine-mapping resolution as YRI
proportion increased (the results for 50% YRI are better than for 100% YRI) could reflect the
advantage in signal localization possible from analyses that can benefit from the divergent LD
patterns across the two ethnicities. However, it might also be due to the causal variant RAF
being derived from the CEU population: as demonstrated in the broad evaluation of the prop-
erties of approximate Bayesian fine-mapping above, ABFs are dependent on power, and sub-
stantially lower risk allele frequencies in the YRI population result in loss of association signal.
Overall, these results confirm the utility of multi-ethnic design for fine-mapping purposes, at
least when the assumption of a shared causal allele is realized.

Inclusion of functional priors in fine-mapping
With the emergence of genome-wide functional annotations, such as those generated by the
ENCODE, GENCODE and NIH Roadmap Epigenomics projects, these data can now be used
to inform fine-mapping [14]. We considered whether including such prior information in the
approximate Bayesian framework would further improve its performance. For illustration pur-
poses, we chose to set an elevated prior on exonic variants, but any other functional annotation
for which there is evidence of disproportionate functional impact, such as islet enhancers in
type 2 diabetes [15], could also have been used. We simulated one thousand 1Mb random
regions containing a causal coding variant of OR 1.2 and RAF 10% as described (see Methods),
but in these replicates the causal variant was limited to exonic sequence. This was followed by
fine-mapping with or without a functional prior of ten-fold greater probability on coding vari-
ants–roughly corresponding to the fold over-representation of coding variants observed in
GWAS studies [16]. The weighted approach resulted in a 1.4-fold reduction in the 95%, and
1.5-fold reduction in the 99% credible set size compared to non-weighted sets derived from the
same data (S4A Fig). In line with this, there was an increase in the percentage of successfully
fine-mapped loci in the weighted scenario, with 35.8% of the weighted 95% credible sets con-
taining fewer than ten variants, compared to 26.9% for the non-weighted sets (S4B Fig). For
the 99% credible sets, the rates of successful fine-mapping were 25.4% and 17.0% respectively
(S4B Fig). Using a model-based approach, it has been shown that, when causal variation was
limited to small genomic regions (100 loci of 10kb each) containing a large amount of the total
trait variance (25%)[16], functional priors increased fine-mapping performance. Our results
show that similar improvements in fine-mapping results can be obtained using the approxi-
mate Bayesian approach at loci containing variants which explain much less of the total
heritability.

Fine-mapping in loci with multiple causal variants
All the above simulations assume a single causal variant at each locus. To determine how the
approximate Bayesian approach would deal with the presence of multiple signals at a locus,
unbeknown to the investigator, we simulated 1000 random regions containing two distinct
causal variants of equal RAF (10%) and effect size (OR 1.2). As might be expected, the size of
the 95% credible sets showed a 1.3-fold increase (median 15 versus 19 variants with a single

Fig 3. Quantifying fine-mapping success. Fraction of the simulations where the fine-mapped set is reduced to fewer than 10 variants for the comparison
with r2-derived sets (a) and multi-ethnic study designs (b). Colors denote whether the set contains the causal variants and only one variant (dark purple),
causal variant and fewer than 10 variants (medium purple), fewer than 10 variants but not the causal variant (light purple), or more than 10 variants (green). In
both panels, the data is split by risk allele frequency (RAF) on the horizontal plane. Panel (a) is grouped by odds ratio (OR) on the x-axis, whereas the OR
was set to 1.2 in all the multi-ethnic simulations.

doi:10.1371/journal.pgen.1005535.g003
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versus two causal variants present), whereas the 99% credible sets increased by 1.5-fold (24 ver-
sus 35 variants–S3C Fig). This was accompanied by a reduction in the number of successfully
refined loci (1.3-fold; S3D Fig). However, this still meant that at 30.5% of replicate loci at least
one causal variant was included in a 95% credible set containing fewer than ten variants–only
in 5.2% were both causal variants present in such a set. In practice, a preliminary round of con-
ditional analysis would allow such instances of multiple association signals at the same locus to
be detected, and fine-mapping efficiency could then be maximized by considering each of the
component signals separately.

Fine-mapping behavior on empirical data
Finally, we used an empirical data set to investigate if we could recapitulate the effectiveness of
the fine-mapping observed in the simulations. We applied the approximate Bayesian approach
(as described in the Methods) to data for twenty six non-MHC loci genotyped at high density
(using the Illumina Immunochip with subsequent 1000 Genomes European ancestry imputa-
tion) for 9,049 cases and 13,607 controls of European origin from a published association study
for ankylosing spondylitis (AS) [5]. The mean RAF 32% (range 5–48%) and OR 1.17 (1.11–
1.65) of the reported lead variants at these loci were broadly in line with the simulated datasets.
Approximate Bayesian fine-mapping resulted in median 95% and 99% credible sets containing
20 (1–295) and 38 (2–1,113) variants, respectively (S1 Table).

In line with the simulations, the success of fine-mapping across these 26 loci was correlated
with the effect size and RAF at each locus (and hence with the power to detect the locus in asso-
ciation testing–Fig 4A). Several of the loci that lie most outside the interquartile range of
observed 95% credible set sizes in the simulations show extensive LD: index variants at the

Fig 4. Fine-mapping the ankylosing spondylitis (AS) regions. a) Correlation between predicted power to detect genome-wide association signals and
size of the 95% credible sets. Boxplots represent the distribution of the simulations at the respective power of each RAF/OR setting. The labelled dots show
the distribution of the empirical AS data. Regression lines in the range of predicted power of the AS loci (15–99.9%) are derived from the simulations
(dashed) and AS loci (dotted with confidence interval of regression line). b) Example FCGR2A region where the 99% credible set (purple dots) could be fine-
mapped to a small region (pink) containing few variant.

doi:10.1371/journal.pgen.1005535.g004
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IL27, NPEPPS and SH2B3 loci all are in LD (r2>0.1) with a proportion of variants in the 1Mb
interval that compare to the top 10 quantile of simulated loci.

Seven of the twenty six loci (27%) were reduced to fewer than ten 95% credible variants (S1
Table). Overall, twenty four of the twenty six credible sets derived from our European-only
analysis included the lead variant reported in the larger multi-ethnic meta-analysis from Cortes
et al. [5]. One example of our approximate Bayesian approach revealing strong functional can-
didates can be found at the FCGR2A locus. The 99% credible set for this locus, which is associ-
ated not only with AS, but with a range of other autoimmune conditions [5,17], contained only
six variants spanning 11kb of the promoter region and first 3 exons of FCGR2A (Figs 4B and
S5). One of these six variants within the credible set was a missense variant (rs1801274) in
FCGR2A, which encodes an immunoglobulin Fc receptor gene found on the surface of many
immune response cells.

In conclusion, simulated and empirical data analyses demonstrate that fine-mapping repre-
sents an effective strategy for causal variant localization, at a subset of loci at least. The simula-
tions also emphasize that trans-ethnic study designs can improve resolution further. It is still
true that the vast majority of GWAS data is generated from individuals of European descent,
and even trans-ethnic studies such as Cortes et al. generally contains only a modest non-Euro-
pean contribution (~14% of the total sample size). Therefore, empirical assessment of the full
value of trans-ethnic over ethnic-specific fine-mapping will ultimately depend on the genera-
tion of large scale non-European GWAS data.

The simulations clearly show that fine-mapping is sample size dependent, so the utility of
this approach is dictated by the availability of large-scale data. Fine-mapping resolution is most
precise at strong association signals, such that for a variant with allelic OR of 1.2 and RAF of
50%, fine-mapping in 10,000 cases and 10,000 controls of European origin can be expected to
reduce the credible set to fewer than ten variants at around 60% of loci. For less strong signals,
resolution is typically less good, but, even here, the generation of well-calibrated credible sets
facilitates integration with genomic annotation data. Indeed, one advantage of the approximate
Bayesian framework used here is that prior information from external data resources such as
ENCODE [18], can readily be included to upweight highly-annotated variants. This can help
prioritize specific signals and aid the selection of appropriate functional assays for follow-up.
In addition, fine-mapping strategies utilizing ABFs are computationally inexpensive and can
be applied to publicly available association summary statistics from GWAS data without the
need to access individual level genotypes. This should allow rapid deployment of fine-mapping
analyses to existing GWAS data sets, and encourage efforts to convert common variant GWAS
data into an improved understanding of disease biology.

Methods

Design of the simulations pipeline
We used sequence data from 85 CEU individuals from 1000 Genomes Phase 1, release 3[4]
(single nucleotide variants only), to simulate 1Mb autosomal genomic regions with HAPGEN2
[19]–an algorithm which resamples known haplotypes and thus maintains experimentally-
derived LD patterns. When evaluating the effect of multi-ethnic study design on the fine-map-
ping resolution, one, three, five or all of the ten studies were simulated based on haplotypes
from 88 YRI rather than 85 CEU individuals from 1000 Genomes Phase 1, release 3.

One thousand non-overlapping 1Mb regions were randomly selected from the mappable
human genome reference. In the center of each region, causality was assigned to a single causal
variant of specified risk allele frequency (RAF; 50%, 20%, 10% or 5%) with an additive pheno-
typic effect (OR 1.5, 1.2, 1.1 and 1.0, the last corresponding to the null model of no association).
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In the evaluation of the impact on fine-mapping of multiple causal variants in a region, 1000
regions containing two distinct variants (CEU r2<0.05) with a MAF~10% in the central 750kb
of the 1Mb interval were selected. Haplotypes were simulated using HAPGEN2 with, with each
of the two variants assigned an additive phenotypic effect (OR = 1.2). For each RAF/OR
parameter setting, genotypes were generated for ten “studies” of 1,000 cases and 1,000 controls
for each of the one thousand “replicate” genomic regions. Case-control association analysis
was performed by logistic regression under an additive model, implemented in SNPTEST, and
summary statistics from the ten studies aggregated by fixed-effects meta-analysis using
GWAMA [20].

We performed these analyses using an unfiltered set of 1000 Genome-derived genotypes,
equivalent to an association study performed on genome-wide sequence data (“gold standard”
scenario). To represent a more typical fine-mapping scenario, variants from each study were
downsampled to the content of an Illumina HumanOmni2.5 BeadChip array (“GWAS” sce-
nario). This is also a similar density to that achieved within established GWAS regions using
recent custom arrays such as Metabochip [13] or Immunochip [21]. To capture the effects of
genotyping failure, downsampling was performed with and without 5% random variant failure
per cohort (n = 1000 cases or controls) in each simulated GWAS (“GWAS with failure” sce-
nario). These GWAS genotypes were then imputed (using IMPUTE2 [22]) up to the 1000G
Phase 1, all ancestries release 3 panel before analysis as above. Only well-imputed variants
(INFO score>0.4) with a MAF> = 1% were included in further analyses.

Deriving approximate Bayesian factors from GWAS summary statistics
While privacy concerns mean that individual-level genotype data for GWAS are generally
unavailable to researchers, large amounts of summary statistics are available online. Summary
data do not allow full specification of disease and null models, but the information contained
within can be used in a Bayesian framework by instead approximating Bayes’ factors as pro-
posed by Wakefield in 2007 [12]. This approximation assumes that the likelihood distribution
for association is summarized by the regression parameters with a prior for association cen-
tered on 0 (which corresponds to the null of no association) and variance dependent onW,
which describes the strength of association conditional on its existence. The value forW is set
at 0.4, which equates to a 95% belief that the relative risk corresponding to departure from the
null model is less than 1.5.

As demonstrated by Wakefield [12], this results in an equation for the approximate Bayes
Factor (ABF) given as

ABF ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1� r

p exp �Z2

2
r

� �

where Z is the Z-statistic describing the strength of association derived from the regression and
r a shrinkage factor

r ¼ W
V þW

defining the ratio of prior variance to total variance. The resulting ABF is dependent the effect
size through Z and the power of the study through the variance of the effect V. ABFs for vari-
ants with missing genotype data were corrected by rescaling variance to the maximum
observed effective sample size (provided sample size was within 30% of the maximum observed
sample size). Posterior probabilities for association were calculated based on the ABFs all vari-
ants in each of the simulated regions.
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Power calculations
For assessing the relation between fine-mapping performance and power to detect genome-
wide association, we used Quanto v1.2.4 (available from http://biostats.usc.edu/Quanto.html).
The software was run in “Gene only” setting, assuming a disease prevalence of 0.55% in line
with that of ankylosing spondylitis. The power for each combination of OR and RAF, for both
simulations and empirical data, was calculated individually.

Supporting Information
S1 Fig. Coverage of the causal variant in the credible sets. Percentage of simulations with the
causal variant included in the credible set (y-axis) by RAF of the causal variant (x-axis). The
figure is split according the OR (horizontal) and simulation scenario (vertical). Colors denote
probability cut-off used for the credible sets.
(TIFF)

S2 Fig. Correlation between fine-mapping performance and power to detect genome-wide
significant association. Predicted power to detect genome-wide association for a disease with
prevalence of 0.55% in each of the simulated scenarios (x-axis) versus the size of the 95% (a)
and 99% (b) credible sets. The boxplots represent the median and 1st to 3rd interquartile range
for all simulations at the given power. The result of the linear regression for y ~ x is shown as
the dashed grey line.
(TIFF)

S3 Fig. Ranking of the causal variant across simulated trans-ethnic loci. Cumulative per-
centage of simulations (y-axis) with decreasing ranking of the causal variant amongst all vari-
ants in the regions (x-axis) based with a causal variant RAF of 10% (a) and 20% (b). The panels
are split along the horizontal by simulation scenario.
(TIFF)

S4 Fig. Fine-mapping success with functional priors (a-b) and multiple causal variants (c-
d). Left panels show the difference in credible set sizes for the weighted versus unweighted (a)
and multiple causal variant (c) scenarios. Boxplots show the median and interquartile range of
the simulations, while each point denotes a single replicate. For each category, the data is split
by credible set type on the x-axis. The right hand panels show the fraction of the simulations
where the fine-mapped set is reduced to fewer than 10 variants in the same order as before.
Colors denote whether the credible set contains only one variant (dark purple), causal variant
and fewer than 10 variants (medium purple), fewer than 10 variants but not the causal variant
(light purple), or more than 10 variants (green).
(TIFF)

S5 Fig. Fine-mapping the ankylosing spondylitis FCGR2A locus. Zoomplot of the FCGR2A
locus with–log10(p-values) rather than log10(ABFs) plotted for each variant on the y-axis.
(TIFF)

S1 Note. Supplementary Note.Memberships of the International Genetics of Ankylosing
Spondylitis (IGAS) Consortium.
(PDF)

S1 Table. Fine-mapping results for the twenty six AS loci from Cortes et al. using Euro-
pean-only data.
(PDF)
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