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Background. Drug resistance poses a serious challenge for the control of tuberculosis in many settings. It is well
established that the expected future trend in resistance depends on the reproductive fitness of drug-resistant Myco-
bacterium tuberculosis. However, the variability in fitness between strains with different resistance-conferring
mutations has been largely ignored when making these predictions.

Methods. We developed a novel approach for incorporating the variable fitness costs of drug resistance-
conferring mutations and for tracking this distribution of fitness costs over time within a transmission model.
We used this approach to describe the effects of realistic fitness cost distributions on the future prevalence of
drug-resistant tuberculosis.

Results. The shape of the distribution of fitness costs was a strong predictor of the long-term prevalence of re-
sistance. While, as expected, lower average fitness costs of drug resistance—conferring mutations were associated with
more severe epidemics of drug-resistant tuberculosis, fitness distributions with greater variance also led to higher
levels of drug resistance. For example, compared to simulations in which the fitness cost of resistance was fixed, in-
troducing a realistic amount of variance resulted in a 40% increase in prevalence of drug-resistant tuberculosis after
20 years.

Conclusions. The differences in the fitness costs associated with drug resistance-conferring mutations are a key
determinant of the future burden of drug-resistant tuberculosis. Future studies that can better establish the range of
fitness costs associated with drug resistance—conferring mutations will improve projections and thus facilitate better
public health planning efforts.
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Drug-resistant forms of tuberculosis are a persistent global health and economic toll [1, 2]. Currently, data to
threat to effective control of tuberculosis in many settings ~ evaluate trends in the burden of drug-resistant tubercu-
and, by any method of accounting, exact a substantial ~ losis are limited: in most countries, sufficiently robust

surveillance is not available to evaluate whether the in-

cidence of drug-resistant tuberculosis is increasing or
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resistant tuberculosis, and to make appropriate plans
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In the absence of robust data on trends, mathematical models
have served as a tool to help guide our thinking about how
drug-resistant tuberculosis epidemics may progress over time
and which factors may influence these trends [3-6]. One of
the most important determinants of drug-resistant tuberculosis
projections is the reproductive number of drug-resistant forms
of tuberculosis, defined as the expected number of secondary
cases of drug-resistant tuberculosis that are attributable to a sin-
gle patient infectious with drug-resistant tuberculosis. When
the reproductive number exceeds the critical threshold of 1,
each existing case of drug-resistant tuberculosis will cause, on
average, at least another case of drug-resistant tuberculosis
through transmission, and the drug-resistant tuberculosis epi-
demic will not be contained. The reproductive number depends
on pathogen biological factors, factors impacting the duration
of the infectious period, and the degree of vulnerability of the
population in which the pathogen is being spread [7].

Drug resistance arises initially in the bacterium that causes
tuberculosis disease, Mycobacterium tuberculosis, via chromo-
somal mutations [8]; these rare sporadic mutants may be select-
ed by suboptimal treatment leading to acquired resistance. After
drug resistance emerges among individuals receiving ineffective
treatment, these forms of resistant M. tuberculosis may be trans-
mitted directly to others, leading to primary (or transmitted)
resistance.

Multiple studies have shown that different mutations can
confer similar resistance phenotypes, but may be associated
with very different effects on the reproductive capacity (“fit-
ness”) of strains [9-12]. For example, resistance to rifampicin
can be encoded by several different mutations in the rpoB
gene [13], each of which has a different effect on in vitro growth
rates [9-11]. These experimental measures of fitness often cor-
relate well with the apparent reproductive fitness in clinical pop-
ulations; in several settings, those mutations that are least costly
are those that are preferentially transmitted [9, 11, 14, 15]. Wor-
ryingly, recent genomic studies have found that in several set-
tings there is already a dominance of multidrug-resistant
(MDR) tuberculosis strains with these lowest-cost mutations
[16-18], as well as strains with compensatory mutations that
can partially ameliorate the initial fitness cost to resistance [19].

Determining the speed with which these different drug-
resistant tuberculosis strains arise and spread is vital for under-
standing the epidemic potential of drug-resistant tuberculosis.
Several previous mathematical models have investigated drug-
resistant tuberculosis spread [3, 5, 20, 21]; however, most mod-
els assume a single reproductive fitness level for drug-resistant
tuberculosis strains. This assumption does not allow for the
possibility that some strains of drug-resistant tuberculosis will
have less costly mutations and may be preferentially transmit-
ted, leading to changes in the mean and distribution of fitness
costs within the population of resistant strains over time. A few

models have allowed for a small number of fitness levels of
drug-resistant tuberculosis strains [22, 23], but consideration
of realistic distributions of fitness costs associated with drug re-
sistance—conferring mutations has not been incorporated into a
simple modeling framework.

Here we use experimental data to parameterize the distribu-
tion of fitness costs at resistance acquisition, and introduce a
novel method for dynamically tracking changes in fitness within
a population with drug-resistant tuberculosis. Using this new
model, we illustrate how heterogeneity in the fitness costs of
mutation impacts the expected future burden of drug-resistant
tuberculosis.

METHODS

We expanded a standard model for tuberculosis transmission to
include a function that tracks the distribution of reproductive
fitness costs of drug-resistant forms of M. tuberculosis over
time. We considered the effect of realistic distributions of fitness
costs on the projected burden of resistance to a new drug over a
20-year time horizon.

Tuberculosis Transmission Model

We modified a previously published model [20], which is struc-
tured similarly to other tuberculosis models [4, 24]. The model
includes 3 basic health states: tuberculosis-uninfected, latent tu-
berculosis, and active (infectious) tuberculosis disease (Figure 1).
Latent tuberculosis is modeled as an asymptomatic and nonin-
fectious state that persists throughout an individual’s life and
may reactivate to active (symptomatic, infectious) tuberculosis
disease at any time. We also allow for rapid progression of dis-
ease upon initial infection, reflecting the fact that the majority of
individuals who develop active tuberculosis do so within 5 years
of their initial infection [25]. The strains causing infection and
disease are classified by resistance phenotype to the new drug
as either drug-susceptible or drug-resistant tuberculosis. Drug-
resistant tuberculosis strains appear first via acquired resistance
(ie, sporadic mutation and subsequent selection among individ-
uals ineffectively treated for active drug-susceptible tuberculo-
sis). These resistant strains may then be transmitted at a rate
determined by the reproductive fitness associated with the spe-
cific mutation responsible for the resistant phenotype.

We calibrated the model by altering the M. tuberculosis
transmission rate to reach a base case steady-state tuberculosis
prevalence of 150 per 100 000 population prior to new drug
introduction. The probability of acquiring resistance was bench-
marked to a baseline scenario of current rifampicin resistance
levels and the level of treatment success for drug-resistant tu-
berculosis set to that for MDR tuberculosis [20]. A table with
all parameter values is available in Supplementary Table 1. It
was assumed that a new drug was introduced at time zero.
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Figure 1.

Model outline. The tuberculosis (TB) transmission model consists of individuals who are not infected with Mycobacterium tuberculosis (M. tb)

and those who are infected with M. tb and in a latent state (noninfectious) or active state (infectious). Drug-resistant M. tb appears first through acquired
resistance among those with active, drug-susceptible disease. Drug-resistant M. tb can subsequently be transmitted. The relative transmission potential of
strains is dependent on the number of individuals with active disease and the mean fitness of the circulating strains. All susceptible strains have a mean
fitness of 1, whereas the resistant strains have a range of relative fitness levels. The changes in this distribution of relative fitness levels are tracked in those

with active diseases (as shown) and latent infection (not shown).

The outputs were the prevalence of active cases with resistance
to this new drug (drug-resistant tuberculosis) per 100 000 pop-
ulation at 5 and 20 years from the time of drug introduction.

Both a deterministic and stochastic version were implement-
ed in R [26]. The stochastic model allows for exploration of
chance events: in particular, this model variant allows us to in-
clude the effect that small drug-resistant subpopulations may
die out by chance, even when the effective reproductive number
exceeds unity. Full details of model implementation are avail-
able in the Supplementary Materials.

Modeling the Fitness of New Resistance Mutations

To parameterize the shape of the distribution of fitness costs as-
sociated with various drug resistance-conferring mutations, we
used previously published data for rifampicin on the frequency
of each resistance-conferring mutation in the set of spontaneous
mutants derived in vitro and their relative fitness levels from
growth competition experiments. The data were available from
2 experimental studies [9, 10] and are shown in Figure 2A and
Table 1. This acquisition distribution had a mean relative fitness
(vs susceptible strains) of 0.87, with most mutations clustered
around a relative fitness of 0.86, and all above 0.5.

In our models, we explored how several B distributions (ex-
amples in Figure 2B) of similar shape to the empirical rifampi-
cin data affected the projected trajectory of drug-resistant
tuberculosis over time. These distributions are bounded be-
tween 0 and 1 and parameterized by 2 shape parameters, which
we selected to produce a range of mean fitness levels from 0.5 to
0.9 and a variance between 0.004 and 0.032.

Tracking the Distribution of Fitness Costs Among Drug-Resistant
Strains Over Time

To capture the effect of the natural history dynamics (Figure 1)
on fitness, we developed a function that tracks the proportion of
active and latent cases with drug-resistant tuberculosis strains at
each level of relative fitness over time (Supplementary Materi-
als). This function accounts for the distribution of fitness costs
associated with new mutations (the acquisition distribution,
captured with different B distributions) and the preferential
transmission of strains with higher fitness. At each time, the
function returns a mean relative fitness of extant drug-resistant
tuberculosis strains among active (ie, infectious) tuberculosis
cases that is then used in the dynamic transmission model to de-
termine the number of subsequent infections (Figure 1). Hence,
relative fitness is here defined as relative ability to transmit (rather
than, eg, relative ability to cause disease after transmission).

Impact of Background Force of Tuberculosis Infection
To test the impact of differing forces of tuberculosis infection on
projections of drug resistance, we performed analyses where we
assumed lower (50/100 000) and higher (1000/100 000) preva-
lence of tuberculosis than in our base case scenario.

RESULTS

Projected Burden of Drug-Resistant Tuberculosis Is Dependent on
the Fitness Cost of Resistance

As expected, if we assume that resistance is associated with a
single, fixed fitness cost, the projected level of drug-resistant
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Figure 2. Acquisition distribution. Distributions of fitness costs associated with new resistance mutations from experiments (4) and generalized via B
distributions as input for the models (B). A, Distributions of fitness costs from pooled data from Gagneux et al [9] and Mariam [10] show that each different
mutation within the rpoB gene conferring resistance to rifampicin has a different relative fitness level as measured by competitive co-culture with a pa-
rental, susceptible strain. The different mutations (shown in different colors) are labeled as original amino acid, codon position of mutation, and subsequent
new amino acid. The frequency is taken from the number of in vitro spontaneous resistance mutations found to have this mutation (Table 1). B, Examples of
the distributions of fitness levels for new mutations that were used as inputs for the deterministic model. Here the examples have 3 mean fitness values
(0.5, 0.75, and 0.9), each with several levels of variance. For example, the 2 curves with the lowest peaks have means of 0.5 and 0.75 and have a variance of
0.03. Note that these are B distributions, which are capped at 1 and have an area under the curve capped at 1.

tuberculosis at 5 and 20 years (Figure 3A and 3B) is strongly
dependent on this cost. For example, if resistance-conferring
mutations confer a 50% fitness cost, then the projected pre-
valence of drug-resistant tuberculosis 20 years after drug in-
troduction is 3 drug-resistant tuberculosis cases per 100 000
(mean of acquisition distribution: 0.5; Figure 3B). If they con-
fer only a 10% cost, then the projected prevalence of drug-
resistant tuberculosis is >5 times higher at 17 drug-resistant
tuberculosis cases per 100 000 (mean of acquisition distribu-
tion: 0.9; Figure 3B).

Projected Burden of Drug-Resistant Tuberculosis Is Also Strongly
Dependent on the Variance of Fitness Costs of Resistance

When we include a distribution of costs associated with resis-
tance-conferring mutations (eg, those in Figure 2B), we find
that the projected prevalence of drug-resistant tuberculosis is
dependent on both the mean and variance of this distribution
(Figure 3A and 3B; Supplementary Figure 3).

While this dependence on variation is less evident at the
5-year time horizon, after 20 years, the projected prevalence
of resistance is clearly affected by the variance in costs of resis-
tance, especially at intermediate values of the mean fitness cost
(Figure 3B). For example, simulations for which we assume a
distribution of fitness costs to resistance with a mean fitness
cost of 20% (mean of acquisition distribution: 0.8) and a vari-
ance of 0.03 produces a 41% higher prevalence at 20 years from
drug introduction than simulations in which we assume a cons-
tant fixed mean fitness cost of 20% (Figure 3B).

Mean Relative Fitness Increases Over Time

When including a distribution of fitness costs, the mean relative
fitness of drug-resistant tuberculosis strains circulating in the
population increases over time (Supplementary Figure 3B).
The rate of increase was faster when there was a higher variance
in the distribution of fitness costs to resistance. This means that
it is possible that resistance-conferring mutations associated
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Table 1. Data on Genetic Background and Mutation, Acquisition Probability, Experimental Condition, and Relative Reproductive Fitness
of In Vitro, Spontaneously Acquired Rifampicin Resistance Mutations in Mycobacterium tuberculosis Strains

Strain (No. of No. of Unique Mutationin  Acquisition Experimental Relative
Colonies Selected) Mutations rooB Probability Condition® Fitness Notes Reference
Harlingen strain 8 SB31W 0.12 Competition 0.67 (.61-.73) 1/3 of spontaneous [10]
(27) H526Y 0.65 against parental g gg (.84-.94) resistances had
mutations not in rpoB
Sb22L 0.23 0.54 (.561-.57)
S531W 0.12 Independent 0.71 (.62-.80)
H526Y 0.65 0.86 (.83-.89)
S522L 0.23 0.95 (.93-.97)
SB31W 0.12 In macrophages 0.28 (.22-.34)
H526Y 0.65 0.63 (.61-.65)
S522L 0.23 0.50 (.34-.66)
CDC1551 (52) 12 S531L 0.31 Competition 0.91 (.86-.97) [9]
H526Y 0.19 against parental g g (75 89)
H526D 0.04 0.78 (.73-.82)
S531W 0.02 0.88 (.78-.88)
H526R 0.19 0.82 (.75-.88)
S522L 0.15 0.88 (.80-.96)
Q513L 0.04 0.83 (.79-.86)
H526P 0.04 0.84 (.8-.89)
R529Q 0.02 0.58 (.55-.61)
T85 (63) 7* S531L 0.46 Competition 0.96 (.93-.99)
H526Y 033 against parental ¢ g1 (78-84)
H526D 0.13 0.85 (.82-.88)
SE31W 0.08 0.79 (.75-.82)
@ This refers to the experimental condition under which relative fitness was determined.
© Only 4 were included in the fitness analysis.
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Figure 3. Model results. Fitness distributions with higher variance are associated with higher levels of resistance at 5 (A) and 20 years (B), from the time
of drug introduction in the deterministic model. When different levels of variance are included (shape scale), the prevalence of resistance is higher (eg,
compare open circles to crosses at a single mean). This effect is more easily appreciated at the 20-year time point (compare results at 5 [A] and 20 years [5]).
Abbreviation: DR-TB, drug-resistant tuberculosis.
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with high average fitness costs may nonetheless lead to high lev-
els of drug-resistant tuberculosis when associated variation
around this average cost is large. For example, the levels of
drug-resistant tuberculosis 20 years after drug introduction
achieved from an acquisition distribution with a mean fitness
cost of 25% (mean of acquisition distribution: 0.75), can exceed
the levels from an acquisition distribution with a mean fitness
cost of 20% (mean of acquisition distribution: 0.8) when the
variance associated with the greater average cost of mutation
is higher (Figure 3B). Worryingly, the prevalence of resistance
achieved from an acquisition distribution with a given mean fit-
ness cost with no variance is comparable to the prevalence
achieved when the mean is 10% smaller but has a reasonable
degree of variance.

Stochastic Effects Slightly Reduce the Expected Levels of
Resistance, but Exhibit Wide Divergence

As in the deterministic model, the long-term levels of resistance
achieved in a stochastic model were dependent on both the
mean and variance of the acquisition distribution (Supplemen-
tary Figure 4). Whereas the stochastic model allows for chance
die out of individual resistant strains, resulting in a slightly
lower mean projected drug-resistant tuberculosis level (Supple-
mentary Figure 5), elimination of resistance is unlikely due to
the continued acquisition of resistance during treatment of
drug-susceptible disease [3]. The stochastic model results are
highly divergent and illustrate that while the expected levels
of resistance are lower than in the deterministic projections,
chance events could also promote even higher levels of resis-
tance (Supplementary Figure 5).

Dependence of Projections in Drug-Resistant Tuberculosis on
Variability of Fitness Costs Is Maintained at Very Different Forces
of Tuberculosis Infection

Our results supporting the importance of variability of fitness
costs are maintained at both much higher (1000 cases/100 000
population) and lower (50 cases/100 000 population) levels of
tuberculosis transmission (Supplementary Figures 6 and 7).

DISCUSSION

Improved projections of the spread of drug-resistant tuberculo-
sis must account for the fact that not all strains of drug-resistant
tuberculosis have the same epidemic potential. Multiple studies
have demonstrated that the same phenotypic resistance can be
conferred by different mutations, each of which may be associ-
ated with different effects on reproductive fitness [27]. Our re-
sults demonstrate that not only the absolute (mean) magnitude
of these fitness costs, but also the variation in fitness cost be-
tween strains, is an important determinant of future epidemic
trajectories of drug-resistant tuberculosis. By better understanding

the relationship between mutations and fitness costs, we can im-
prove predictions of future levels of drug-resistant tuberculosis
and facilitate enhanced public health planning efforts. Specifi-
cally, with this model framework, we can combine laboratory
data on fitness and observational studies on the distribution
of fitness costs associated with resistance-conferring mutations
(eg, [28]) with snapshots of fitness from population studies of
clinical isolates (eg, [29]), to better understand the threat of on-
going transmission of resistance. By extending cross-sectional
data accordingly, this modeling framework can inform better
forecasts of resistance levels and predictions of the impact of in-
terventions for control.

Here, we developed a new approach to model the effects of
variation in fitness costs of drug resistance-conferring muta-
tions on short- and longer-term prevalence of drug-resistant
tuberculosis. Our model suggests that the shape of this distribu-
tion of fitness costs is a key contributor to resistance levels over
time; by considering such variation we find that the projected
burden of drug-resistant tuberculosis could be nearly 50% high-
er after 20 years compared to scenarios in which such variation
is ignored. Similar to an earlier model [22], we find that wide
distributions in the costs of resistance-conferring mutations
allow for increasingly frequent generation of relatively fit resis-
tant strains that can be transmitted and subsequently jeopardize
drug-resistant tuberculosis control even if the current average
drug-resistant tuberculosis fitness within a population is low.

More generally, our finding that a wide variance of fitness
costs associated with resistance is associated with greater epi-
demic potential is closely related to Fisher’s fundamental theo-
rem of natural selection, which states that “the rate of increase in
fitness of any organism at any time is equal to its genetic vari-
ance in fitness at that time” [30]. The link between variation in
fitness and the rate of change of a fitness-associated trait in a
population has been made more formally by Price [31, 32]
and previously applied to models of parasite evolution [33].

Our results suggest that the fraction of resistance mutations
that harbor minimal fitness costs (ie, those in the upper tail of a
highly variable fitness cost distribution, approaching the fitness
of drug-susceptible tuberculosis) is an important determinant
of the epidemic potential of drug-resistant tuberculosis. Once
strains with mutations that confer resistance without substantial
fitness costs appear and are selected for by ineffective treatment,
they will become the preferentially transmitted resistant strains
and will contribute to increases in mean fitness of drug-resistant
tuberculosis over time. Drug-resistant strains with mutations
that confer large fitness costs may also accumulate secondary
mutations that compensate or ameliorate these initial fitness
costs [19, 27, 34], although we have not considered such effects
here. Fitness costs of resistance-conferring mutations are condi-
tional on strain genetic background [8, 35], which could influ-
ence the relative prevalence of specific lineages under the
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selective pressure of tuberculosis drug treatment [36, 37]. These
mechanisms suggest that the mean fitness of drug-resistant
tuberculosis may increase in the long term (>5 years). Hence,
population-based studies that estimate relative fitness should re-
gard their estimates as specific to a particular moment in time
[29]. This increase in fitness may have already occurred in sev-
eral settings where MDR strains of tuberculosis appear to be
readily transmitted [15-18]. This increases urgency for tubercu-
losis control programs to improve the detection and treatment
of MDR and extensively drug-resistant tuberculosis [15, 38], to
minimize the probability that strains with low-cost mutations
appear, are selected for, and subsequently spread.

Although our model was designed to investigate the impact
of variation in fitness costs of resistance-conferring mutations
on short- and longer-term trends on drug-resistant tuberculo-
sis, there are important determinants of the future burden of
drug-resistant tuberculosis beyond biological fitness. Most im-
portantly, as tuberculosis control programs improve their ability
to rapidly detect and effectively treat individuals with drug-
resistant tuberculosis, the duration of infectiousness with drug-
resistant tuberculosis strains, and hence the reproductive
number of drug-resistant tuberculosis, will be reduced. We
did not consider such improvements to tuberculosis control
programs. Furthermore, in the interest of simplicity, we aggre-
gated resistance into a single phenotype in the model, which
does not reflect the heterogeneity in resistance patterns ob-
served clinically. In addition, we have not considered host
susceptibility factors, such as coinfection with human immuno-
deficiency virus, which have complex and time-varying effects
on the incidence of tuberculosis and the spread of drug-resistant
tuberculosis [23]. For these reasons, the projection of trends in
drug-resistant tuberculosis should not be viewed as quantitative
predictions of expected levels of drug resistance in the future.
Despite these caveats, our results strongly support the need
for additional research to better understand the likelihood of
emergence of relatively fit strains of drug-resistant tuberculosis,
whether these occur through the sporadic appearance of low-
cost resistance-conferring mutations or because of the accumu-
lation of compensatory mutations.

This model suggests that even if the mean fitness cost associated
with resistance-conferring mutations is large, if a subset of strains
have much smaller fitness costs or harbor costly mutations that can
subsequently be compensated, these strains will be preferentially
transmitted. This process skews the range of resistance mutations
observed and suggests that those mutations with the lowest fitness
cost should be prioritized for molecular drug resistance tests if the
goal of such testing is to provide an early warning for risk of trans-
mitted resistance. It should be emphasized here that due to the dy-
namic nature of fitness, the most prevalent mutations in the
population may not be associated with the smallest fitness cost—
this distribution will depend on time since drug introduction.

In conclusion, we found that, in addition to the mean fit-
ness cost associated with drug resistance appearance, the var-
iance in fitness costs of specific drug resistance—conferring
mutations is a key determinant of future trends of drug-resistant
tuberculosis. Our results are important both to understand
the factors affecting the useful lifespan of existing antituber-
culosis drugs, but also for projections about the speed at
which we expect to observe resistance to new antituberculosis
drugs in the development pipeline [39, 40]. Given the impor-
tance of the distribution in fitness costs, it would be valuable,
although challenging [41], to design additional studies aiming
to estimate the ranges of such fitness costs at resistance emer-
gence and in populations with drug-resistant tuberculosis
over time. To guard against the appearance and continued se-
lection of fit drug-resistant strains, further investment to im-
prove the capacity of tuberculosis programs to detect and
effectively treat individuals with drug-resistant tuberculosis
is essential.

Supplementary Data

Supplementary materials are available at Clinical Infectious Diseases online
(http://cid.oxfordjournals.org). Supplementary materials consist of data
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sole responsibility of the authors. Questions or messages regarding errors
should be addressed to the author.
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