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The lack of novel antimicrobial drugs in development for tuberculosis treatment has provided an impetus for
the discovery of adjunctive host-directed therapies (HDTs). Several promising HDT candidates are being eval-
uated, but major advancement of tuberculosis HDTs will require understanding of the master or “core” cell
signaling pathways that control intersecting immunologic and metabolic regulatory mechanisms, collectively
described as “immunometabolism.” Core regulatory pathways conserved in all eukaryotic cells include poly
(ADP-ribose) polymerases (PARPs), sirtuins, AMP-activated protein kinase (AMPK), and mechanistic target
of rapamycin (mTOR) signaling. Critical interactions of these signaling pathways with each other and their
roles as master regulators of immunometabolic functions will be addressed, as well as how Mycobacterium
tuberculosis is already known to influence various other cell signaling pathways interacting with them. Knowl-
edge of these essential mechanisms of cell function regulation has led to breakthrough targeted treatment
advances for many diseases, most prominently in oncology. Leveraging these exciting advances in precision
medicine for the development of innovative next-generation HDTs may lead to entirely new paradigms for treat-
ment and prevention of tuberculosis and other infectious diseases.
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Despite identification of many potential bacterial tar-
gets, the current development pipeline for antimicrobial
drugs againstMycobacterium tuberculosis (Mtb) is mea-
ger. Very few drugs of new classes are likely to enter
clinical evaluation within the foreseeable future. In re-
sponse, tuberculosis therapeutic research now includes
efforts to identify adjunctive host-directed therapies
(HDTs), with a focus on drugs already approved or in

clinical development for other diseases [1]. Two impor-
tant factors must help to guide this new research. First,
responses to infections are governed by essential core
regulatory mechanisms that have been conserved in
all eukaryotic cells throughout the course of evolution,
including all immune cells. Second, immune cells of any
lineage must be able to function well as a cell in general
before they can be effective in host defense. When the
core regulatory mechanisms of cellular metabolism and
other functions are pathologically disrupted, all cells,
including immune cells, experience stress and their
functions are compromised. In immune cells, the core
regulatory mechanisms for metabolic and immune
functions broadly intersect. The overlap and interac-
tions between metabolic and immune regulation has
been termed “immunometabolism” [2].

Correspondence: Richard Hafner, MD, Division of AIDS, National Institute of
Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Lane,
Rm, 9E30 Bethesda, MD 20892 (rhafner@nih.gov).

Clinical Infectious Diseases® 2015;61(S3):S200–16
Published by Oxford University Press on behalf of the Infectious Diseases Society of
America 2015. This work is written by (a) US Government employee(s) and is in the
public domain in the US.
DOI: 10.1093/cid/civ621

S200 • CID 2015:61 (Suppl 3) • Mahon and Hafner

mailto:rhafner@nih.gov


Table 1. Candidate Tuberculosis Host-Directed Therapeutic Agents

Drug Class/Target Drug Examples Probable Therapeutic Mechanism

MAPK cascade inhibitors [4]
RAF-B
MEK
ERK
JNK

Vemurafeniba, dabrafenib
Trametiniba [6]
SCH772984
CC-930 [7], sitagliptina

Varies: anti-inflammatoryb/metabolic dysfunction
– OR – interfering with tuberculosis
pathogenic effect on signaling

Small GTPase inhibitors [8]
Ras (RAF-MEK-ERK)
Rho/ROCK [9]

Tipifarnib [10], salirasib [11], fasudilc [12],
statinsa [13], metformina [14]

Same

Wnt inhibitors [15] OMP-54F28 [16], tankyrase inhibitors [17],
clofaziminea [18]

Same, but more complex

Protein kinase inhibitors
Tyrosine kinase inhibitors [19, 20]
c-abl, c-kit
JAK/STAT
VEGF
EGFR

Ser-thr kinase inhibitors
SIK inhibitors

Imatiniba [21, 22] and others
Tofactiniba [23], ruxolitiniba

Pazopaniba [24]
Gefitiniba [25]

Dasatiniba, bosutiniba [26] (approved as TKIs)

Increase autophagy andmyeloid cell mobilization
Anti-inflammatory
Normalize vasculature in granulomas to improve
drug penetration

Increase autophagy, anti-inflammatory

Anti-inflammatory and decrease M2 polarization
AMPK activators [27] Metformina [28], AICAR [29], AZD-769662

Berberinea [30], resveratrola [31],
acetylsalicylic acida

Anti-inflammatory, increase autophagy, and
improve DC, TH1 CD4 cell, and CD8 memory
cell development

AMPA channel receptor blockers Topiramatea [32], perampanela [33] Anti-inflammatory

PARP inhibitors [34, 35] NAD intermediates (NAMa, NRa, NMNa),
tetracyclinesa, olapariba, many in development

Anti-inflammatory, increase autophagy, improve
effector T-cell function, and inhibit Tregs

Sirtuins
Activators [36]

Inhibitors [37]

Resveratrola [31], NAD intermediates, statinsa

[38], metformina, berberinea [30], and many
STACs in development

Sirtinol, cambinol, tenovin, others

Anti-inflammatory and increase autophagy

Increase Th1/Treg ratio
PI3K-AKT-mTOR pathway inhibitors
[39,40]

Direct mTOR inhibitors [41, 42]

Idelalisiba, afuresertib [43], perifosine [44], MK-
2206 [45], GSK-609693, [46], triciribine [47]

Sirolimusa, everolimusa, ridaforolimus

Increase autophagy, decrease M2 polarization,
and improve DC, Th1 CD4 cell, and CD8
memory cell development

Same

PTEN activator Resveratrola [48] Increase autophagy and decrease M2
polarization

p53 activator Nutlin 3A [49] Increase autophagy and decrease M2
polarization

Autophagy inducers [50] Imatiniba/other TKIs, metformina, statinsa,
verapamila, selective serotonin reuptake
inhibitorsa, carbamazepinea, sirolimusa

Increase autophagy: improve pathogen killing,
clearance of proinflammatory organism
components, and processing of antigenic
material for T-cell presentation

Oxidative stress reduction agents [51] Silymarina [52], Tanshinone [53] Anti-inflammatory and improve macrophage
functions, including autophagy

ERS/UPR reduction agents

Inflammasome inhibitors [54]

Phenylbutyratea [55], ursolic acida [56]
Fasudilc [57], tauroursodeoxycholic acida [58]
β-hydroxybutyratea [59], MCC950 [60],
sitagliptina

Anti-inflammatory and improve macrophage
functions, including autophagy

LOX-1 and other scavenger receptor
suppressors

Angiotensin II receptor inhibitors [61]

Ellagic acida [62], coenzyme Q10a [63]
Docosahexaenoic acida [64], sitagliptina, statinsa

[65], Tanshinone derivatives [66]
Telmisartana [67], others

Decrease M2 polarization/foam cell
development, improve macrophage functions

Cathelicidin inducers [68] Vitamin Da, phenylbuturatea, nicotinamidea,
resveratrola, pterostilbenea

Induction of antimicrobial peptides, improve lipid
metabolism, and decrease M2 polarization

Dipeptide dipeptiase-4 inhibitors Sitagliptina [69], others Anti-inflammatory/decrease inflammasomes,
improve lipid metabolism and macrophage
function, decrease M2 polarization, and
preserve CXCL10 on effector T cells

Mevalonate metabolism inhibitors Amino-bisphophonatesa, eg, zolandronate [70] Enhance γδ T-cell activity and bridging between
and innate and adaptive immunity

Highly pleiotropic agents Metformina, statinsa, phenylbutyrate,
Fasudilc, berberinea, sitagliptina
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Although cytokines and interferons are essential for host
immunity, none alone can prevent or eradicate Mtb infection.
Immune responses must be viewed in the context of key genet-
ic/epigenetic programmed regulatory pathways that are being
progressively uncovered by basic molecular biology research.
These discoveries are being applied for the development of an
amazing spectrum of new targeted therapeutics for many dis-
eases, most notably in oncologic, autoimmune, and metabolic
disorders. Although the connections between core immunome-
tabolism regulation and Mtb have only begun to be established,
many studies have documented modification of some cell sig-
naling pathways by Mtb to facilitate its survival. Lack of knowl-
edge of the interactions between Mtb infection and the central
cellular regulation pathways operating in immune cells consti-
tutes a major scientific gap. This review will provide a broad, but
not nearly exhaustive, overview of core immunometabolism
regulation, the known and probable connections with Mtb
pathogenesis, and the many opportunities to leverage new inter-
ventions being developed for precision medicine treatment of
diseases now known to result from dysfunction of these funda-
mental core control processes.

PREVIOUSLY STUDIED TUBERCULOSIS
IMMUNE MECHANISMS WITH NEW HDT
RESEARCH OPPORTUNITIES

MAPK Signaling and the RAS/RAF/MEK/ERK Cascade
Mitogen-activated protein kinases (MAPKs) regulate several
cellular processes, including stress responses, apoptosis,
autophagy, metabolism, inflammation, and immune cell devel-
opment with nuclear factor kappa-light-chain-enhancer of acti-
vated B cells (NF-κB) as a significant downstream activation

target. Innate immune cells recognize pathogen-associated mo-
lecular pattern (PAMPs), through pattern recognition receptors
(PRRs). These receptors signal through a variety of pathways
with dual functions in regulation of inflammation/immunity
and metabolism. PAMP-PRR interaction–initiated signaling
pathways include MAPKs. The 14 human MAPKs include ex-
tracellular signal-regulated kinase (ERK), c-Jun N terminal ki-
nase (JNK), and p38, serine/threonine kinases that regulate
transcription factor activity and have regulatory cross-talk
with several other pathways. MAPK signaling is a progressive
cascade that begins with activation of MAP3K kinases (by up-
stream kinases, small GTPases, or PRR-related adaptors) acti-
vating MAP2K kinases that then activate MAPKs, which have
many downstream substrates [3].

Mtb adversely affects immune cell regulatory and effector
functions by interaction with many of these interconnected
signaling nodes and pathways. Several well-characterized Mtb
ligands modulate immune cells through PAMPs to facilitate
survival in phagocytes [4]. The PRRs of innate immune cells
recognizeMtb PAMPs, including lipoarabinomannan and lipo-
proteins, which modulate MAPK signaling for enhancing Mtb
survival in several ways. For example, prolonged ERK signaling
through Toll-like receptor (TLR) activation by an Mtb lipopro-
tein induces interleukin (IL)-10 production while suppressing
IL-12 secretion and T-helper (Th) 1 cell activation [5]. Inhibi-
tors for several members of the MAPK family and related
cascades are now US Food and Drug Administration (FDA)-
approved or in clinical evaluation for therapy of malignant,
inflammatory, and hyperimmune diseases.

See Table 1 for a list of some potential candidate tuberculosis
HDT drug classes and specific agents with various molecular
targets.

Table 1 continued.

Drug Class/Target Drug Examples Probable Therapeutic Mechanism

Combinations Fasudilc and statinsa (ROCK inhibition) [71]
Vitamin Da and phenylbutyratea [72]
(cathelicidin induction)

Tipifarnib and statinsa [73]
(RAS-ERK pathway inhibition)

Bold text indicates that agent has been evaluated for potential tuberculosis host-directed therapeutic activity in a published study.

Abbreviations: AICAR, 5-Aminoimidazole-4-carboxamide ribonucleotide; AKT, serine/threonine protein kinase; AMPA, α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid; AMPK, adenosine monophosphate-activated protein kinase; DC, dendritic cell; EGFR, epidermal growth factor receptor; ERK,
extracellular signal-regulated kinase; ERS, endoplasmic reticulum stress; JAK, Janus tyrosine kinase; JNK, c-Jun N-terminal kinase; LOX-1, lectin-like oxidized
low-density lipoprotein receptor 1; MAPK, mitogen-activated protein kinase; MEK, mitogen-activated protein kinase; mTOR, mechanistic target of rapamycin;
NAM, nicotinamide; NMN, nicotinamide mononucleotide; NR, nicotinamide riboside; PARP, poly(ADP-ribose) polymerase; PI3K, phosphatidylinositol 3-kinase;
PTEN, phosphatidylinositol-3, 4, 5,-trisphosphate 3-phosphatase; RAF, rapidly accelerated fibrosarcoma; RAS, Rat sarcoma protein; ROCK, Rho-associated
coiled-coil containing kinase; SIK, salt-inducible kinase; STACs, sirtuin activating compounds; STAT, signal transducers and activators of transcription; TKI,
tyrosine kinase inhibitor; UPR, unfolded protein response; VEGF, vascular endothelial growth factor.
a US Food and Drug Administration approved or available over the counter.
b Decreasing inflammatory reaction may allow improved drug and immune cell access to lesions; decrease tissue damage; possibly allow “wake and whack”
strategies to improve antimicrobial response by allowing activation of nonreplicating bacilli with low metabolism levels.
c Approved in other countries with stringent regulatory authorities.
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Small Molecule GTPase Superfamily
Small GTPases include the highly complex Ras, Rho, Rab, Ran,
and ARF (ADP ribosylation factor) superfamilies. The Ras
superfamily in particular has extensive crosstalk with MAPKs
to regulate immunometabolic functions [74].Mtb infection in-
hibits some GTPases and activates others. Mtb nucleoside di-
phosphate kinase binds to and inactivates the small GTPase
Rac1 (a Rho kinase) in the macrophage, causing a defect of
both NOX2 assembly and antimicrobial reactive oxygen species
(ROS) production [75]. Some Rho GTPases activate Rho-asso-
ciated coiled-coil–containing kinase (ROCK) as a downstream
effector to regulate several different metabolic and immune
functions [76]. Overactive Rho/ROCK signaling occurs in path-
ologic inflammatory conditions, including postischemic dam-
age and diabetic complications. The ROCK-specific inhibitor,
fasudil, is approved in some countries for treatment of vaso-
spasm and decreasing stroke damage [9]. Alone, or in combina-
tion with rosuvastatin, fasudil can decrease inflammation by
reducing downstream NF-κB signaling and tissue damage, for
example, in animal models of cerebral ischemia [71].

During mycobacterial infection, Rheb (Ras family kinase) in-
hibits autophagy, and host cells attempt to utilize microRNA-
155 to reverse this inhibition and limit bacterial growth [77].
Mevalonate pathway metabolism can upregulate the activity
of Ras small GTPases through farnesylation. Some Ras mem-
bers are involved with upregulation of inflammation caused
by various etiologies, including in a rheumatoid arthritis
model based on heat-killedMtb. In this model, the Ras inhibitor
farnesylthiosalicylic acid had significant anti-inflammatory ac-
tivity [78]. Tipifarnib, another drug that disrupts Ras farnesyla-
tion, suppresses Ras/ERK signaling and NF-kB induction with
synergistic effects in combination with simvastatin [73]. Selec-
tive targeting of GTPases has been suggested for HDT against
Mtb, but this approach has not yet been studied.

Wnt Signaling Pathway
Signaling by Wnt (19 known ligands) and their 10 different
G-coupled Frizzled (Fz) receptors has pivotal roles in immune re-
sponses to many pathogens [79] and is often induced through
TLR/NF-κB signaling. Downstream Wnt signaling is either ca-
nonical (through β-catenin) or noncanonical (through Ca2+,
JNK, or Rho GTPase signaling). Wnt signaling regulates several
aspects of immunity, including lymphocyte development, den-
dritic cell (DC) differentiation, and cytokine production and has
extensive interactions with other major signaling families, includ-
ing PRR-initiated pathways [80]. Pro- or anti-inflammatory effects
may result, depending on interaction of particular combinations
of the many possible Wnt and Fz ligand–receptor pairings.

The highly complex role of Wnt signaling in tuberculosis has
begun to be explored [81–83]. However, further research is
needed to understand the specific effects of different Wnt

signaling components at different stages ofMtb infection. Ther-
apeutic use of Wnt pathway inhibitors has been slow because of
toxicity issues, but new drug classes may prove to have thera-
peutic benefit [15]. Interestingly, clofazimine inhibits canonical
Wnt signaling in vitro, has several immunomodulatory effects
observed in clinical use, and is in evaluation for treatment of
Wnt-dependent cancers [18].

PROMISING INNOVATIVE TUBERCULOSIS HDT
AGENTS IN PRECLINICAL STUDIES

Protein Kinase Signaling Inhibition: Imatinib
Tyrosine kinases (TKs), both receptor and nonreceptor, are
involved in signaling pathways controlling most cellular pro-
cesses. In many cancers, TKs are dysregulated and targeted by
new-generation anticancer drugs [19]. Imatinib targets Abl
kinase and effectively treats chronic myelogenous leukemia. In
a murine macrophage cell line, imatinib reduced Mtb intracel-
lular survival and bacterial loads with no direct effect on Mtb
[21]. Mechanisms of action are not proven, but likely involve
enhancing autophagy and phagosomal acidification [84, 85].
Imatinib also boosts the number of mobilized myeloid pro-
genitor cells in a murine tuberculosis model [22], possibly by
inhibition of c-kit or other TKs, resulting in “emergency hema-
topoiesis.” Imatinib is currently being evaluated as a treatment
adjuvant in a rhesus macaque tuberculosis model.

Other TKs possibly involved with tuberculosis pathogenesis
include Janus tyrosine kinase (JAK)/signal transducers and ac-
tivators of transcription (STAT) [23], vascular endothelial
growth factor receptor (VEGFR) [24, 86], and epidermal growth
factor receptor (EGFR) [25]. Inhibitors continue to be devel-
oped for these and many other classes of kinases, and several
are now available for clinical use [19, 20]. Other kinase families
are involved in immune/inflammatory and/or angiogene-
sis regulation. For example, inhibition of salt-inducible kina-
ses enhances immune functions of macrophages and DCs in
vitro [87].

AMP-Activated Protein Kinase Activators
Adenosine monophosphate (AMP)–activated protein kinase
(AMPK) senses low cellular adenosine triphosphate (ATP) lev-
els and initiates signaling to increase ATP by decreasing anab-
olism and inducing catabolism [88]. The AMPK/peroxisome
proliferator–activated receptor γ coactivator-1alpha (PGC-1α)
pathway is a key mechanism of antimicrobial defense by activat-
ing autophagy and can also reduce inflammation [29]. AMPK
intersects with several signaling pathways, including blocking
ERK activation and inhibiting the Ras family GTPase Rheb
and its downstream signaling partner mechanistic target of ra-
pamycin (mTOR) complex 1 (mTORC1), an autophagy inhib-
itor [88]. Metformin (MET) has been a useful type 2 diabetes
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mellitus (T2DM) treatment for 50 years and is in extensive clin-
ical evaluation for cancer and cardiovascular disease [89]. MET
both directly and indirectly increases AMPK activity. MET also
has AMPK-independent effects that enhance functions of many
immune cell types, including macrophages [90].

AMPK regulates effector T-cell differentiation during re-
sponses to infections by control of a glucose-sensitive metabolic
immune checkpoint to maintain cell energy levels and viabi-
lity through modulating metabolism. T cells lacking AMPK
displayed reduced mitochondrial bioenergetics and cellular
ATP production in response to pathogenic challenge in vivo.
AMPK is essential for Th1 and Th17 cell development and ef-
fective primary T-cell responses to viral and bacterial infections
in vivo [91]. Also, AMPK monitors energy stress related to glu-
cose levels and facilitates CD8 T-cell memory development by
controlling the transition of metabolically active (primarily

utilizing glycolysis) effector CD8 T cells to metabolically (pri-
marily lipid oxidation) quiescent memory T cells during the
contraction phase of the immune response [92].

In Mtb-infected mouse models, increasing AMPK activity
by MET and other agents improves autophagy and mito-
chondrial function and decreases Mtb growth [28, 29]. Singhal
et al demonstrated that this effect may be mediated by in-
creased macrophage production of ROS upon mitochondrial
recruitment to phagosomes to kill intracellular bacteria [28].
MET also suppressed inflammation by an AMPK-dependent
mechanism with decreased pulmonary damage. Several new
AMPK pathway signaling activators are in development.

Statins: Pleiotropic HDT Effects
Statins inhibit 3-hydroxy-3-methylglutaryl–coenzyme A (HMG-
CoA) reductase to modify cholesterol levels and have well-known

Table 2. Location and Function of the Poly-(ADP-Ribosyl) Polymerase and Sirtuin Families

Name Enzymatic Activity Cellular Location Biologic Function Examples

PARP1 Poly(ADP-ribosyl)transferase Nuclear DNA repair, inflammation, metabolic regulation antiviral, cell
differentiation and death

PARP2 Poly(ADP-ribosyl)transferase Nuclear/cytoplasmic DNA repair, inflammation, metabolic regulation
PARP3 Mono(ADP-ribosyl)transferase Nuclear/cytoplasmic Cell cycle regulation, DNA repair

PARP4 Poly(ADP-ribosyl)transferase Nuclear/cytoplasmic Cellular defense to toxins, tumorigenesis

PARP5a
tankyrase 1

Poly(ADP-ribosyl) transferase Cytoplasmic/stress granules Antiviral, inflammation, metabolic regulation, telomere
maintenance

PARP5b
tankyrase 2

Poly(ADP-ribosyl)transferase Cytoplasmic Inflammation, metabolic regulation, Telomere maintenance

PARP6 Unknown Cytoplasmic Cell proliferation, DNA repair

PARP7 Unknown Unknown Antiviral, cytosolic RNA processing

PARP8 Unknown Unknown Unknown
PARP9 Inactive Nuclear/cytoplasmic Cell migration

PARP10 Mono(ADP-ribosyl)transferase Cytoplasmic Antiviral, cell proliferation, cytosolic RNA processing

PARP11 Unknown Unknown Unknown
PARP12 Mono(ADP-ribosyl)transferase Cytoplasmic/golgi/stress

granules
Antiviral, cytosolic RNA processing

PARP13 Inactive Cytoplasmic/stress granules Antiviral, cytosolic RNA processing
PARP14 Mono(ADP-ribosyl)transferase Nuclear/cytoplasmic/stress

Granules
Nuclear RNA processing, inflammation, metabolic
regulation

PARP15 Unknown Stress granules Cytosolic RNA processing

PARP16 Mono(ADP-ribosyl)transferase Cytoplasmic Unfolded protein response
SIRT1 Deacetylase Nuclear/cytoplasmic Metabolic regulation, anti-inflammatory, Stress response,

cell senescence

SIRT2 Deacetylase Cytoplasmic Cell cycle regulation
SIRT3 Deacetylase Mitochondrial Mitochondrial metabolism and respiration

SIRT4 Mono(ADP-ribosyl)transferase
/lipoamidase

Mitochondrial Metabolic regulation

SIRT5 Deacetylase Mitochondrial Metabolic regulation

SIRT6 Mono(ADP-ribosyl)transferase
/deacetylase

Nuclear Metabolic regulation, DNA repair/PARP1 activation

SIRT7 Deacetylase Nucleolar Cellular homeostasis regulation, stress response,
epigenomic maintenance

Abbreviations: PARP, poly(ADP-ribose) polymerase; SIRT, sirtuin.
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anti-inflammatory and oxidative stress reduction effects indepen-
dent of lipid alterations [93].Statins are highly pleiotropic, causing
a wide spectrum of effects on immune cells, including suppressing
Rho/ROCK and other Ras GTPase pathways to decrease vascular
inflammation [13, 94], improve dysregulated macrophage lipid
metabolism, downregulate matrix metalloproteinases (MMPs),
and enhance autophagy [95]. Simvastatin added to a standard
tuberculosis regimen in a murine model significantly enhanced
bacillary killing in lung tissue [96].Choices of anoptimal statin and
its dosing regimen for clinical evaluation remain to be established.

LEVERAGING INNOVATIVE ADVANCES IN
PRECISIONMEDICINE FOR TUBERCULOSIS HDT
BASED ON TARGETING CORE REGULATORY
PATHWAYS

The “NAD World” Concept
Nicotinamide adenine dinucleotide (NAD) and related metabo-
lites have essential roles in regulation of a vast range of critical cell
functions [97, 98]. The ratio between the oxidized (NAD+) and
reduced (NADH) forms is a critical regulator of energy physiol-
ogy for all eukaryotic cells. Additionally, NAD+ is a substrate for
enzymes that utilize the molecule to either catalyze covalent mod-
ifications of target proteins and/or convert NAD+ into active sig-
naling metabolites. These enzymatic processes, more than redox
mechanisms, can quickly deplete cellular NAD+ levels. Knowl-
edge of NAD biology has played a critical role in the recent ad-
vances in understanding the pathogenesis of and in developing
innovative targeted therapeutics for many diseases.

Three core cell regulatory enzyme families utilize NAD+.
Membrane-bound CD38 (ADP-ribose cyclase/NAD glycohydro-
lase) hydrolyzes NAD+ into cyclic ADP-ribose (cADPR). cADPR
triggers calcium mobilization (via transient receptor potential
cation channel, subfamily M, member 2 [TRPM2] and other
channels), leading to immune cell activation and proliferation
and is involved with many immune and inflammatory processes
[99]. Inhibitors of CD38 enzymatic activity are in preclinical eval-
uation [100]. The other two enzymes, poly-(ADP-ribosyl) poly-
merases (PARPs) and sirtuins, will be a focus of this review due to
their connections with many essential regulatory signaling path-
ways and available therapeutic interventions.

ADP-Ribosylation: Poly-(ADP-Ribose) Polymerases
All eukaryotic cells have PARPs or equivalent enzymes that
form polymers of ADP-ribose (PAR) from NAD+ that are at-
tached to a substrate protein [98, 101]. The mammalian PARP
family includes 17 members (Table 2); the most thoroughly
studied are PARP1 and PARP2 [102]. Despite the nomencla-
ture, only 6 members synthesize PAR. PAR chains are typically
composed of up to 200 linked ADP-ribose units with extensive
branching coupled onto target proteins. Five other members

add only a single ADP-ribose onto a targeted protein [103].
Chromosome structure/chromatin modification, epigenetic
gene expression regulation, RNA processing, telomere mainte-
nance, cell differentiation, aging, and cell cycle control are
among the many key functions of PARP family members.

LPS induces PARP1 activity throughMAPK signaling, causing
an increase in inflammatory mediators, including tumor necrosis
factor alpha (TNF-α), IL-1β, IL-6, interferon gamma (IFN-γ), in-
ducible nitric oxide synthase, MMPs, and adhesion and chemo-
taxis molecules [104], largely driven through NF-κB signaling.
PARP1 and ERK stimulate each other in a positive feedback
cycle during responses to stress inducers [105]. Increased
PARP1 activity occurs in a variety of pathologies including infec-
tions, diabetes, cancer, and neurodegenerative conditions and
increases inflammation and suppresses autophagy [106–110].
PARP activity can also become dysregulated in stressful condi-
tions caused by buildup of free radicals/oxidative stress and mis-
folded proteins, triggering endoplasmic reticulum stress. PARP
activation increases expression of α-amino-3-hydroxy-5-meth-
yl-4-isoxazolepropionic acid (AMPA) receptor triggering ion
channels in many cell types [111], and in a macrophage cell
line, AMPA receptor activity increases TNF-α levels and genera-
tion of ROS [112].

PARPs are known to be involved in regulation of host defens-
es and in pathogenic mechanisms of several infectious organ-
isms. Some pathogens activate PARP1 to modulate host cell
signaling during infection to their advantage. For example,
Helicobacter pylori induces intracellular PAR production during
infection of gastric epithelial cells, playing a role in H. pylori–
mediated chronic inflammation and disease [108].Trypanosoma
cruzi induces the ROS-PARP1-RelA pathway for upregulation
of cytokine expression in cardiomyocytes, resulting in sustained
inflammation [113].Mycoplasma fermentans inhibits host DNA
topoisomerase I by activation of PARP1 via the induction of
MAPK signaling [114]. In contrast, Chlamydia trachomatis
causes degradation of PARP1, most likely to downregulate
inflammation [115]. Several PARPs have key roles in antiviral
defenses by inhibiting transcription and translation [116, 117].

A connection between Mtb and PARPs has yet to be estab-
lished, but Mtb is known to modulate MAPK activity and
other pathways regulated by or regulating PARPs. One potential
link is the recent report that Mtb produces tuberculosis necro-
tizing toxin, a NAD+ glycohydrolase, depletes host cellular
NAD+ levels, and causes macrophage cell death [118]. Produc-
tion of a NAD+ glycohydrolase by Streptococcus pyogenes causes
death of infected cells primarily by NAD/ATP depletion.
However, an early burst of PARP1 activity causes PARylation
leading to release of the damage-associated molecular pattern
molecule, high mobility group box 1 protein (HMGB1) from
the nucleus that contributes to cell death. This release of
HMGB1 appears to be dependent on PARP1 activity [119].
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HMGB1 is released during experimental tuberculosis [120].
One direct connection of these pathways with mycobacterial
infection is a recent finding that Wnt/β-catenin signaling can
inhibit Bacillus Calmette-Guerin (BCG)-induced macrophage
necrosis by increasing the production of glutathione to scavenge
ROS in part through repression of PARP1/AIF signaling [121].
Also, PARP1 regulates functions of many types of immune cells,
including DCs, macrophages, and T and B lymphocytes and
influences Th1 and Th2 differentiation [122]. PARPs down-
regulate Treg cells and function [123].

PARP Inhibitors
PARP inhibitors (including NAD+ intermediates, nicotinamide
[NAM], nicotinamide riboside [NR], and nicotinamide mono-
nucleotide [NMN]) can decrease lipopolysaccharide (LPS)–
induced inflammation and are being studied for treatment of
many inflammatory diseases [34, 35]. Targeted PARP inhibition
with newer drugs has been successful in cancer treatment, and
the FDA has approved olaparib for BRCA-mutated advanced-
stage ovarian cancers [124]. The PARP inhibitor 3-aminobenza-
mide attenuated progression of heat-killedMtb adjuvant-induced
arthritis in a mouse model [125]. Pyrazinamide’s (PZA) structure
is similar to NAM, and PZA may possibly be a PARP inhibitor.

Sirtuins
The other posttranslational protein modification requiring
NAD+ is deacetylation by sirtuins (SIRTs). SIRTs have similar-
ities with histone deacetylases (HDACs), but SIRTs also have
many nonhistone substrates, are not inhibited by drugs target-
ing HDACs 1, 2, and 4, and their activity levels are highly NAD+

dependent [98, 126]. SIRTs are also activated by cyclic adeno-
sine monophosphate (cAMP)/PKA-AMPK signaling indepen-
dent of control by NAD+ levels to deacetylate some substrates
[127]. Seven human SIRTs have been identified, distinguished
by their subcellular locations and deacylation targets [128].
Some SIRTs have additional nondeacetylase activities (Table 2).
SIRT1 is the most studied and has a major role in regulating
transcription. Histone deacetylation by SIRT1 leads to increased
compaction of chromatin and decreased gene transcription.
Also, SIRT1 represses transcription on a continuing basis by re-
cruitment of nuclear enzymes involved in histone methylation
and DNAmethylation, suggesting a broad role for SIRT1 in epi-
genetic gene regulation [129].

SIRT1 also deacetylates a broad range of transcription factors
to regulate target gene expression both positively and negatively.
The promoters for several transcription factors of genes in-
volved in metabolism, inflammation, and oxidative stress, in-
cluding NF-kB, FOXO1, p53, COX-2, and hypoxia-inducible
factor (HIF) 1α, are SIRT1 substrates, making SIRT1 signaling
a vital linkage between energy availability and innate immunity
[128, 130]. In general, activation of SIRT1 results in reduction of

cell stress, inflammation, apoptosis, and rate of senescence
[131]. Disruption of the antagonistic SIRT1 interactions with
NF-kB causes increasing severity of inflammatory and metabolic
disorders, including increased risk of diabetes, atherosclerosis,
and aging-related diseases [132, 133]. SIRT1 activation upregu-
lates expression of phosphatidylinositol-3, 4, 5,-trisphosphate
3-phosphatase (PTEN), an antagonist of phosphatidylinositol
3-kinase (PI3K)–serine/threonine protein kinase (AKT)–mTOR
signaling to enhance autophagy [48].

SIRT1 regulates immune cell differentiation by multiple
mechanisms, including shifting metabolic activity from glycol-
ysis to fatty acid oxidation in monocytes progressing from the
hyperinflammatory stage to the hypoinflammatory stage of sep-
sis [134, 135]. SIRT1 switches the cell energy source by enhanc-
ing downstream peroxisome proliferator-activated receptor
gamma (PPAR-γ) activity through deacetylating PGC-1α.
SIRT1 is a key downregulator of the IL-12/IL-23 balance in
human DCs [136] and also maintains T-cell immune tolerance
[137].

The roles of the SIRT family in Mtb infection remain unex-
plored. However, SIRTs are involved with host defenses against
pathogens, including as evolutionarily conserved broad-
spectrum antiviral host factors [138]. In contrast, SIRT activity
may be modified by pathogens to achieve a survival advantage.
Human immunodeficiency virus (HIV) Tat inhibits SIRT1 de-
acetylase activity resulting in hyperactivation of NF-kB, causing
chronic activation of infected cells [139]. Herpes simplex virus
type 1 modulates the AMPK/SIRT1 axis differentially during
the course of infection [140].During Listeria monocytogenes in-
fection, SIRT2 plays a critical role in an epigenetic mechanism
to reprogram host responses to enhance infection by deacetylat-
ing a specific histone locus in the presence of bacterial factor
InlB [141]. Leishmania infantum hijacks the SIRT1-AMPK
axis to switch macrophage mitochondrial metabolism from
glycolytic metabolism to oxidative phosphorylation crucial for
parasite survival in vitro and in vivo [142].

Sirtuin Modulators
To take advantage of SIRT’s protective effects against inflamma-
tion, oxidative stress, and degenerative diseases observed in a
wide range of animal models of diseases, many pharmacologic
activators have been developed [36]. Resveratrol is a natural
polyphenol being studied for treatment of several disorders in-
volving dysregulated metabolism and inflammation/immunity,
degenerative diseases, and malignancies. Resveratrol has many
mechanisms of action including SIRT1 activation, and the rel-
ative importance of each mechanism is unclear [31]. Resveratrol
induces cAMP signaling by suppressing cAMP phosphodiester-
ase to modulate inflammation and further activate SIRT1 [143].
To target SIRT directly, many SIRT activating compounds
(STACs) are in development [36]. One, SRT1720, decreased
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the severity of pulmonary, renal, metabolic, and cardiovascular
diseases in animal models [144]. Simvastatin attenuates TNF-
α–induced apoptosis via the upregulation of SIRT1 [38]. Over-
all, therapeutically increased SIRT activity has been associated
with improved health and a longer lifespan in several experi-
mental models.

SIRT1 inhibition can improve T-cell–mediated antimicrobial
function by enhancing HIF1α activity in DCs to decrease trans-
forming growth factor beta (TGF-β) expression and increase
DC-derived IL-12 and Th1/T-regulatory cell balance [130]
and increase inflammatory microbial responses. SIRT1 inhibi-
tion could potentially be useful when enhanced immunity is es-
sential (eg, very early during infection) in persons with
suboptimal defensive responses, and possibly for improving
vaccine effectiveness. Several SIRT inhibitors are in clinical tri-
als. Conversely, drug stimulation of SIRT1 activity might be
useful to reduce tissue damage during the later stage of infec-
tions or with a hyperinflammatory response.

PARP-SIRT-AMPK Interactions
SIRT1 and PARP1 have extensive regulatory crosstalk [98]. Both
require NAD+ to function, but PARP1 binds with a higher affin-
ity and can deplete NAD+ when highly active, suppressing SIRT1
activity. Also, intermediates and enzymes of the NAD+ salvage
pathway contribute to regulating PARP and SIRT activity by in-
hibiting PARP1 while boosting SIRT1 [145, 146]. To counteract
PARP1 suppression, SIRT1 interactswith anddeacetylates PARP1
to inhibit PARP1 activity and maintain cellular NAD+ levels and
its own activity. In contrast, SIRT6 increases PARP1 activity by
mono-ADP-ribosylation to promote DNA repair under stress
[147]. Notably, PZA directly inhibits SIRT6 activity [148].

AMPK can cross-regulate SIRT and PARP activity. PARP acti-
vation depletes NAD+ and ATP levels. In response, AMPK is ac-
tivated and induces autophagy, preventing PARP-induced
necrotic cell death. AMPK also phosphorylates PARP1, causing
PARP1 disassociation from intron binding sites of several genes
[149]. SIRT1 and AMPK are cross-activating signaling partners
[150]. SIRT1 is required for AMPK activation through deacetyla-
tion of liver kinase B1 (LKB1). Activated AMPK increases NAD+

levels, enhancing SIRT activity.

PI3K-AKT-mTOR Pathway
In human cell-based screening systems, inhibition of the kinase
AKT (within the PI3K-AKT-mTORC1 pathway) significantly
decreased growth of Mtb [151]. This key pathway also mediates
polarization of monocytes to M2 macrophages [152, 153], and
selective inhibition of AKT/mTOR signaling promotes autoph-
agy [154]. mTORC1 and AMPK have an antagonistic relation-
ship with both able to regulate the other and having opposite
functions in several cellular processes [155]. TLR4 signaling
can induce HIF1α expression by activating MMP9 to cleave

AMPK leading to mTORC1 activation [156]. Since Mtb is
known to interact with TLR4 it may utilize this pathway to sup-
press AMPK activity in infected macrophages. PI3K-AKT-
mTOR pathway activity also can interfere with DC, CD4, and
CD8 T-cell maturation and development.

Several approaches are available to manipulate this pathway,
including sirolimus inhibition of mTORC1. Sirolimus enhances
Mtb killing in macrophages by increasing autophagy and possi-
bly by other mechanisms [157]. Inhibition of mTORC1 has
been used to improve vaccine effectiveness for many types of
antigens in animal models [158], including one for BCG, with
enhanced Th1 responses [159]. Inhibition of mTORC1 has im-
proved generation of antigen-specific memory CD8+ T cells
with vaccinations or viral infections during both the expansion
and contraction phases of response in animals. These cells had
higher proliferation, improved function, and increased longev-
ity. Many newer mTOR inhibitors are in development. Com-
bined PI3K/mTOR inhibitors are now in clinical evaluation
and may be more effective than sirolimus [160].

PTEN and p53 are cooperating tumor suppressor proteins that
have key roles in macrophage polarization [161,162]and enhanc-
ing autophagy [163]. PTEN is a phosphatase that antagonizes
AKT/mTOR signaling, has regulatory roles in innate immune
cell activation [164], inhibits BCG infection of several cell lines
[165], and is induced by resveratrol [48]. AMPK stimulates
PTEN to negatively regulate inflammation [166]. p53 expression
is downregulated in BCG-infected cell lines [167]. p53 expression
activators are now in clinical evaluation for cancer treatment [49].

See Figures 1 and 2 for interactions and outcomes of activa-
tion of these core signaling pathways.

Autophagy
Xenophagy is the form of autophagy that disposes of foreign
materials, enhances efficiency of pathogen killing, clears proin-
flammatory organism components, and processes antigenic
material for T-cell presentation. The relevance of xenophagy
in host immunity to Mtb is well established [168]. However,
the metabolic sensors and signaling pathways that induce au-
tophagy and the optimal pharmacological intervention targets
for infections are not fully characterized. Many of the signaling
pathways discussed in this review modulate autophagy, includ-
ing AMPK and mTOR as focal points [169]. For example, gly-
cogen synthase kinase 3-β (GSK3-β), in tandem with AMPK,
inhibit mTORC1. Canonical Wnt signaling blocks GSK3-β
activity leading to increased mTORC1 signaling and decreased
autophagy [155].

SIRT1 may influence autophagy by deacetylation of key com-
ponents of its induction network, including autophagy-related
proteins 5, 7, and 8. SIRT1 also induces expression of autophagy
components through activation of FoxO family transcription
factors [170]. Enhancement of autophagy to increase clearance

Immune Regulatory Pathways and Tuberculosis • CID 2015:61 (Suppl 3) • S207



ofMtb and decrease excess inflammation and cellular damage is
an exciting new area for HDT research.

CELLULAR STRESS RESPONSES

Cell stress may be caused by harmful oxidants/oxidized mole-
cules andmisfolded proteins. Cells attempt to reverse these stress-
es by initiating inflammatory responses that further disrupt
normal cell functions, and if unsuccessful, will cause apoptosis.
Many pathologies, including diabetes, cancer, and infectious dis-
eases, cause such stress responses that are primarily initiated by
signaling pathways described in this review [171, 172].

Oxidative Stress and Mtb Infection
Reactive oxygen species are byproducts of energy metabolism
and have an important role in signaling pathways and as anti-
microbial effectors [173]. However, high levels of ROS lead to

DNA, lipid, and protein damage that must be limited. Cells con-
trol activity of ROS-generating enzymes and normally produce
sufficient antioxidants to limit damage [174]. Molecular dam-
age caused by excess ROS results in cellular oxidative stress.
Lipid peroxidation products are elevated and antioxidant levels
are decreased in myeloid cells obtained from tuberculosis pa-
tients, resulting in oxidative stress [175, 176]. However, the
full role of oxidative stress in Mtb pathogenesis and the effects
of new agents to reverse oxidative stress have not been well
studied.

Endoplasmic Reticulum Stress/Unfolded Protein Response and
Mtb Infection
Newly synthesized proteins are transported to the endoplas-
mic reticulum (ER) for posttranslational modification, proper
folding, and secretion to their ultimate location. Accumulation
of misfolded proteins in the ER disrupts cell function and

Figure 1. Signaling pathways of immunometabolism and its dysregulation. Growth receptors (including receptor tyrosine kinases) and pattern recognition
receptor (PRRs) induce mechanistic target of rapamycin (mTOR) and poly(ADP-ribose) polymerase (PARP) activation through phosphatidylinositol 3-kinase
(PI3K)/serine-threonine protein kinase (AKT) and c-Jun N-terminal kinase (JNK)/extracellular signal-regulated kinase (ERK) signaling, respectively, to stim-
ulate inflammation, largely by upregulation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB). Phosphatidylinositol-3, 4, 5,-trisphos-
phate 3-phosphatase (PTEN) directly inhibits PI3K activation. Sirtuin (SIRT) and AMP-activated protein kinase (AMPK) cross-activate each other. SIRT
dampens inflammation by blocking PARP directly. SIRT signaling also downregulates NF-kB activation. AMPK inhibits PARP through suppression of ERK
signaling. AMPK stimulates PTEN, blocks mTOR and induces autophagy. Increased reactive oxygen species (ROS)/oxidative cellular stress induces ERK
signaling and PARP activation, and endoplasmic reticulum stress (ERS) increases PARP activation. Both types of stress lead to inflammation, cell damage,
and death, and damage-associated molecular pattern (DAMP) molecule release. DAMPs further increase these signaling patterns, resulting in a vicious
cycle of progressive inflammation and cell death. The stress responses also lead to increased uptake of oxidized low-density lipoprotein (ox-LDL) in mac-
rophages via scavenger receptors. Increased ox-LDL causes lipid droplet formation that may lead to foam cell development. Foamy macrophages are most
often M2 polarized, producing a hypoinflammatory response and increasing susceptibility to Mycobacterium tuberculosis infection. β-Adrenergic and some
G-protein–coupled receptors can activate adenylate cyclase that in turn increases protein kinase A (PKA) and SIRT activities. SIRT activation can also inhibit
cyclic adenosine monophosphate (cAMP) phosphodiesterase (PDE).
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induces the unfolded protein response (UPR) [177]. UPR
utilizes ER-localized transmembrane proteins to restrict
protein synthesis and influx into the ER, while activating
transcription of chaperone proteins to facilitate unfolded pro-
tein removal. If ER stress still progresses, C/EBP-homologous
protein (CHOP) is activated to induce apoptosis.Mtb-induced
ER stress (ERS) in infected granuloma macrophages correlates
with increased apoptosis, and contributes to Mtb survival
[178–182]. Testing of therapeutic agents known to reduce
ERS for use as tuberculosis HDTs should be greatly expanded.

Cell stress induces many proinflammatory effectors, includ-
ing NF-κB. Targeting NF-κB directly is limited by intrinsic
pathway complexity, cross-talk with other pathways, and poor
drug specificity. Efforts to improve NF-κB targeting are ongoing
and may involve multimodal therapies [183]. Most NF-κB sig-
naling inhibitors in development are IκB kinase ε (IKKε) inhib-
itors [184]. Inflammasomes are stress-induced protein
complexes that form around intracellular Nod-like receptors
and upregulate IL-1β and IL-18 production, leading to further

inflammation [54]. Inflammasomes can be inhibited by drug
therapy.

OTHER INNATE IMMUNE CELL TYPES AND
MEVALONATE METABOLISM

The recent review by Bhatt et al clearly presents the pressing need
to study key signaling pathways, master regulators, and cellular
stresses/reactions in other immune cells besides myeloid to deter-
mine how they are affected by tuberculosis and investigate poten-
tial interventions [185]. For example, γδ T cells have been
hypothesized to play important roles in host defense against
Mtb infection as early infection detection sentinels bridging in-
nate and adaptive immunity. Human Vg9Vd2 T cells are
activated by prenyl pyrophosphates produced by mevalonate
metabolism [186]. Drugs targeting the mevalonate pathway by
inhibiting farnesyl pyrophosphate synthase cause upstream
accumulation of the cognate antigen, isopentenyl pyrophosphate,
and can rapidly activate Vg9Vd2 T cells [70]. Whether drugs

Figure 2. Poly(ADP-ribose) polymerase (PARP) and sirtuin (SIRT) effects on immunometabolism. A, PARP “PARylates” many substrates including RelA for
activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in an oxidized nicotinamide adenine dinucleotide (NAD+)–dependent
manner, leading to elevated reactive oxygen species (ROS)–oxidative stress/endoplasmic reticulum stress (ERS) and proinflammatory cytokine production.
PARP hyperactivity also causes chronic inflammation by depleting NAD+ that subsequently decreases SIRT activity and lowers adenosine triphosphate (ATP)
concentrations. SIRT can counteract NF-κB activation through deacetylation of the RelA/p65 subunit of NF-kB. Depleted ATP activates AMP-activated pro-
tein kinase (AMPK), which in turn increases ATP and NAD+ levels, leading to increased SIRT activity and suppressed PARP activity that may bring the cell
back to equilibrium. B, SIRT regulates immune cell metabolic activity largely through regulation of hypoxia-inducible factor (HIF1α) and peroxisome pro-
liferator–activated receptor γ coactivator (PGC-1α). Increased phosphatidylinositol 3-kinase (PI3K)/serine-threonine protein kinase (AKT)/mechanistic target
of rapamycin (mTOR) signaling activates HIF to convert cell energy production mechanism to aerobic glycolysis during immune activation enhancing T-helper
1 cell differentiation. SIRT, along with AMPK, converts T-cell energy metabolism to fatty acid oxidation by blocking HIF activity and activating PGC-1α to
enhance differentiation toward memory T cells and T-regulatory cells.
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enhancing γδ T-cell function by this mechanism may be effective
for tuberculosis HDT is an unanswered question.

LIPID METABOLISM AND MTB INFECTION

Release of free radicals from stressed or damaged cells causes
formation and release of oxidized low-density lipoproteins
(ox-LDLs) and other oxidized lipids. Macrophages express sev-
eral scavenger receptors, including CD36, lectin-type ox-LDL
receptor 1 (LOX-1), and SR-1A, that transport ox-LDL into
cells [187]. Scavenger receptor expression is regulated by Wnt,
PPAR-γ, and SIRT signaling [188, 189] and induced by ERS
[190]. Increased ox-LDL within macrophages causes accumula-
tion of lipid droplets and development of foam cells. Foam cells
often become polarized into M2 macrophages with suppressed
IL-12 production and increased IL-10 expression, and are per-
missive for growth of mycobacteria. Also, a recent study in a
cancer model demonstrated that ERS-induced accumulation
of abnormal lipid bodies within DCs inhibits T-cell activity
by interfering with antigen presentation and immunostimula-
tory activity, suggesting that targeting ER stress response may
be a unique approach to enhance anticancer immunity [191].
Angiotensin II type 1 receptor activity also upregulates the ex-
pression of LOX-1 in several cell types [192] and initiates TLR4
signaling, resulting in oxidative stress [193]. CD36 and LOX-1
expression are elevated in Mtb animal models, whereas in
CD36-deficient mice, tuberculosis infection is attenuated [194,
195]. Several agents are available to evaluate for reversal of these
abnormalities.

VITAMIN D, PHENYLBUTYRATE, AND OTHER
ANTIMICROBIAL PEPTIDE INDUCERS

Vitamin D plays an essential role in modulation of lipid metab-
olism abnormalities and related inflammation and has a prom-
inent role in cellular immune function [196]. Activated vitamin
D enhances expression of antimicrobial peptides [197, 198] in-
cluding cathelicidin [199]. Clinical trials of adjunctive vitamin
D in tuberculosis treatment have not shown consistent benefit
[200]. However, effects of vitamin D in combination with
other HDT drugs have only begun to be explored. Sodium phe-
nylbutyrate (NaPB) is an FDA-approved agent for treatment of
urea cycle disorders that is also an HDAC inhibitor increasing
cathelicidin expression. The combination of vitamin D and
NaPB results in additive enhancement of cathelicidin levels in
cell lines [72]. A pilot clinical trial of this combination as ad-
junctive therapy for tuberculosis treatment demonstrated safety
but no difference in 8-week culture conversion [201]. Determi-
nation of the most effective dose for NPB may need further
study. NaPB also relieves ERS as a protein chaperone. Addition
of resveratrol, pterostilbene, or nicotinamide to vitamin D

causes synergistic induction of cathelicidin and other antimi-
crobial peptides in cell lines [68].

TUBERCULOSIS AND DIABETES MELLITUS:
UNFORTUNATE PATHOGENIC SYNERGY

T2DM is both a metabolic and inflammatory disease with com-
plications caused by many inputs, including high levels of
PAMP-initiated signaling related to the formation of advanced
glycation end products (AGEs) that are ligands for many PRRs,
including receptors of AGE (RAGE) [202].Other inputs include
oxidative stress, ERS/UPR/inflammasome activity, dysregulated
lipid metabolism, oxidized lipid accumulation/foam cell for-
mation, M2 polarization, increased PARP activation, and
decreased SIRT activity. Poorly controlled T2DM causes macro-
phages to produce more inflammatory cytokines and chemo-
kines as part of the ongoing positive feedback loop of chronic
“metaflammation” [203].

T2DM increases the likelihood of active tuberculosis disease,
slower treatment response, and death [204, 205]. Macrophages
from patients with T2DM have reduced phagocytosis and anti-
microbial peptide production, and highly increased ROS and
proinflammatory cytokine secretion. These altered innate im-
mune responses also delay development of adaptive immunity
responses with IFN-γ–producing T cells arriving at infection
sites almost a week later in the presence of T2DM than without
T2DM. After arrival, these T cells produce increased levels of
Th1 and Th17 cytokines and are likely to cause increased
pulmonary tissue damage. Several parallels exist between the
pathogenic mechanisms of T2DM and Mtb, leading to ineffec-
tiveness of macrophage and DC functions (eg, impaired chemo-
taxis, phagocytosis, autophagy, antigen processing), cell
necrosis/apoptosis, and tissue damage. T2DM and tuberculosis
have common and additive mechanisms that disrupt cell regu-
latory signaling that are very likely to play prominent roles in
the worsened course of tuberculosis infection with T2DM.

Given these common features, interventions designed to pre-
vent or decrease diabetic metabolic dysfunctions, pathogenic
mechanisms, and resulting complications may also be useful
for Mtb HDT with and without concurrent T2DM. These in-
clude metformin, other AMPK and SIRT1 activators, imatinib,
and PARP and dipeptidyl peptidase-4 inhibitors (DPP-4I).
DPP-4Is are in wide clinical use and potently inhibit inflamma-
tion in mononuclear cells obtained from patients with diabetes
by downregulating NF-kB expression through TLR2/4 and
JNK signaling [69], and decreasing inflammasome formation
and foam cell development [206, 207]. DPP-4Is can enhance
effector T-cell trafficking to improve antitumor immunity in
mice by preserving the active form of the chemokine CXCL-
10. Sitaglipitin inhibits posttranslational processing (cleavage)
of CXCL-10 by DDP-4 that also produces an antagonistic
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derivative. This derivative binds to its receptor, CXCR3, but
does not induce chemotaxsis [208].

CONCLUSIONS AND THE WAY FORWARD

A revolution based on advances in innovative targeted molecu-
lar interventions and precision medicine is rapidly progressing
in other medical research areas with rich pipelines of potential
interventions that must be leveraged if progress is to be acceler-
ated for tuberculosis HDT research. In the face of increasing an-
timicrobial drug resistance, the movement for developing
tuberculosis HDT is growing rapidly and overlaps with innova-
tive new approaches to develop more effective tuberculosis vac-
cines. New approaches can be based on better understanding of
the master/core controllers of all cells (including immune cells),
how to strengthen host defense mechanisms, and how to reverse
the disruptive effects, as is being done for other diseases. How-
ever, the roles of the master regulator pathways of cellular me-
tabolism and immunity and their linkage (immunometabolism)
inMtb infection have barely been explored. Only two references
were identified addressing the roles of PARPs or SIRTs in tuber-
culosis pathogenesis by a recent literature review [121, 209], and
only a few have addressed the roles of AMPK and mTOR.
Improving knowledge of the effects of cellular dysfunction in im-
mune cells (eg, ERS and oxidative stress) caused by infections is
also critically important for advancing tuberculosis HDT research.

Complexity of the myriads of cell signaling, metabolic, and
immune effector interactions is a huge challenge, and some tar-
geted interventions to modulate fundamental cell regulatory
mechanisms may have unexpected adverse effects. Research
must proceed to determine which HDT targets are most prom-
ising and how to best use the potential interventions to be effec-
tive and safe for improving tuberculosis therapy, as is being
accomplished in oncology. Ongoing development of pathway
inhibitory and activating agents that are highly specific for
individual molecules—for example, active for only 1 of the
PARPs or SIRTs (instead of acting on several of them)—will
be important advances. Oncology trials indicate that many of
the new agents that modulate key pathways are quite tolerable.
Only short-term (8–12 weeks or less) use of these agents may be
needed as adjuvants for tuberculosis treatment. Of course, even
with short-term drug use, long-term safety is unknown and will
remain a concern to be carefully addressed in all future HDT
clinical research. Safety endpoints must include possible wors-
ening of tissue damage/pulmonary function, tuberculosis treat-
ment response, and HIV replication status.

Hundreds of drugs are approved or in various stages of devel-
opment for modulation of regulatory signaling pathways, and
more are being approved for clinical use at a rapid rate. Selected
drugs from the relevant classes that are now approved or in clin-
ical trials can be screened for activity to restrict Mtb growth in

appropriate cell lines. To help address issues regarding feasibil-
ity of application in nations most impacted by tuberculosis and
of patient drug tolerance and adherence, none of the agents list-
ed in Table 1 are biologic, parenteral, or highly toxic traditional
chemotherapeutic agents. Even if only a few of these new-
generation HDT agent classes can be repurposed for clinical
use against Mtb, the number of drugs in the tuberculosis ther-
apeutic pipeline would be greatly expanded. Also, repurposing
allows avoidance of the vast majority of drug development costs.
As with antiretroviral therapy and some other essential/life-
saving medicines, the initially high costs of these agents for
use in developing nations will significantly decrease over time.
Prices of these drugs drop most rapidly after generic versions
can be manufactured in or imported by countries within the re-
gions impacted most by tuberculosis. Such lower-priced gener-
ics now undergo review by the FDA for “tentative approval” to
allow US government funding to be used for their purchase and
distribution to low-income countries.

To quote the Director of the US National Institutes of
Health, Dr Francis Collins, precision medicine interventions are
“. . . drugs and antibodies designed to counter the influence of
specific molecular drivers. Many targeted therapies have been
(and are being) developed, and several have been shown to confer
benefits, some of them spectacular” [210]. Many pathogens
clearly produce specific molecular drivers to subvert the same
core cellular regulatory mechanisms that are modulated bymalig-
nancies. Because precision medicine agents are aimed at funda-
mental immune cell regulatory mechanisms, they are likely to
also be effective for treatment of HIV and many other pathogens.
Awide spectrum of new knowledge, research tools, and candidate
therapies await adaption for tuberculosis HDT development and
should advance powerful and innovative approaches to funda-
mentally transform antimicrobial therapy.
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