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Abstract

Segments of genome inherited from a common ancestor by related individuals are said to be 

identical by descent (IBD). Modern genetic marker data provide information to infer such 

segments among multiple related members of a population, even when pedigree relationships are 

unknown. Previous methods have been proposed for detection of pairwise IBD, but computation 

of probabilities of trait data under many trait models requires an IBD estimate jointly consistent 

among individuals and slowly varying across genome locations; we refer to such an estimate as an 

IBD graph. In this paper, we develop a novel method that builds IBD graphs sequentially among 

related individuals from a population sample using either phased or unphased genetic marker data. 

We show how IBD graphs realized conditionally on marker data provide a form of linkage 

mapping score, analogous to a LOD score, and propose a permutation approach to normalize this 

mapping score. Using a simulated quantitative trait dependent on the (unobserved) genotype at a 

major locus, we apply the approach to two samples containing both closely and remotely related 

individuals, among whom there are complex patterns of IBD. We compare the results of our 

approach with an alternate approach based on estimation of local kinship. We show that pairwise 

estimates derived from a joint IBD graph give significant improvements in LOD score estimation 

over estimates derived from an intrinsically pairwise approach.
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Introduction

Segments of genome inherited from a common ancestor by multiple individuals are said to 

be identical by descent (IBD). Two individuals share a gene copy IBD if they inherited the 

gene copy from a common ancestor who lived more recently than a specific time point. This 

time point is understood to be recent relative to the mutation process, so that IBD segments 

have nearly the same DNA sequence. Moreover, although the probability that two gametes 

are IBD at a locus declines exponentially with the number of meioses since their common 

ancestor, given that they are IBD, the expected length of the IBD segment declines as the 
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inverse of the number of meioses [1]. Thus, given some recent IBD between two 

individuals, the IBD segment is likely to be long enough to detect by modeling sequence 

similarity reflected in dense genetic marker data [2, 3, 4, 5, 6]. IBD segments detected in 

groups of individuals not known to be related may be used in a variety of analyses of 

population data, including questions of disease mapping [3], haplotype phasing [4], and 

copy number variation [5].

The IBD resulting from the descent of DNA to related individuals also underlies linkage 

analysis [7]. Segments of shared genome among multiple related affected individuals 

provide strong evidence of locations of causal genes [8]. Global and local estimates of 

pairwise kinship, together with clustering of individuals into related sets [9], have provided a 

basis for mapping of quantitative trait loci (QTL) using the same mixed-model approach as 

had previously been used in pedigrees [10]. Among close relatives, who share several 

segments of autosomal genome IBD with high probability, it is more informative to generate 

detailed realizations of pairwise IBD states across the genome [11], providing estimates of 

degree of relationship or even information to correct misspecified pedigrees. These 

realizations can also be used in follow-up mixed-model QTL mapping studies [11].

The classical linkage LOD score [12] also remains a key tool in the genetic mapping of trait 

loci, and the focus of this paper is in estimating an analogous linkage mapping score using 

inferred IBD among individuals. The LOD score is a (base-10) log likelihood-ratio 

comparing the numerator hypothesis of a trait locus (or loci) at given position(s) on a marker 

map with null hypothesis of the same underlying genetic model for the trait but with causal 

location(s) unlinked to the genetic markers under consideration [12]. On known pedigrees, 

the model of Mendelian segregation provides probabilities or realizations of descent that are 

then used to compute the LOD score [13, 14]. This LOD score computation is feasible for 

many models for either quantitative or dichotomous traits, including, but not limited to, 

single-locus trait models with phenotype probabilities or probability densities defined for 

each modeled but unobservable trait-locus genotype. A single set of realizations of IBD 

conditional on genetic marker data can be used to estimate the numerator probability in the 

LOD score, not only for multiple hypothesized trait locus positions [7] but for multiple traits 

and trait models [14]. If IBD can be inferred from genetic marker data on related individuals 

in a population sample, the same approach will provide an estimate of this key component of 

the LOD score in the absence of any assumed pedigree.

The remainder of this paper is as follows. In the Methods section, we first summarize 

relevant background models and methods for the inference of IBD segments. We then 

present our new approach to realization of joint IBD among multiple individuals and across 

the genome, and show how these realizations may be used in linkage inference. We describe 

two example data sets. In both cases, the simulated quantitative trait is based on a single-

locus major gene model. The marker data of the first example is simulated on an extended 

human pedigree, using real marker data to generate the underlying marker properties. The 

second example uses real marker data from an animal data set [15]. On the first example, we 

describe methods used to compare our approach with an alternate approach developed by 

[9]. In the Results section we present the outcomes of our analyses on the two example data 

sets. Although the data derive from pedigrees, they are analyzed without reference to the 
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pedigree. We show that in these examples that IBD can be accurately estimated without 

knowledge of the true pedigree, and that this results in a Monte Carlo estimate of a gene 

mapping score analogous to a LOD score. We also present results of our comparison 

analyses. We show that in regions of the genome where there are complex patterns of IBD 

among sampled individuals, pairwise estimates derived from our joint IBD estimates 

outperform those based on direct estimation of pairwise IBD. We end with a Discussion.

Methods

IBD in pedigrees and populations

A set of n diploid individuals is most easily considered as the set of their 2n paternal and 

maternal gametes (haploid genomes). At a locus, the IBD state of a set of gametes is a 

partition of the set. Gametes are in the same block of the partition if they are IBD: that is, 

their DNA at the locus descends from DNA in a single ancestral gamete. We denote the 

space of possible IBD states (partitions) by . Table 1 shows the classical 15 states of gene 

identity among the four gametes of two individuals, A and B. These states are the elements 

of  and range from the first where all 4 gametes are IBD, to the last, where none are IBD: 

grey shading indicates IBD. Each individual has a paternal gamete (subscript p) and a 

maternal gamete (subscript m). In the depiction of the states, individual A is on the left, and 

B on the right, and paternal gametes are above and maternal below. Thus, for example, in 

state numbered 6 in Table 1, the paternal gamete Ap of A is IBD to both gametes of B, but 

the maternal gamete Am is not IBD to the other three. Also given in Table 1 is the 

conditional kinship (sometimes referred to as local kinship [9]) corresponding to each state. 

This is the probability that there is IBD at this locus in gametes segregating from each of A 

and B. For example, in state-6, this takes the value 1/2, since A segregates Ap or Am each 

with probability 1/2: Ap is necessarily IBD with either gamete from B, and Am is not.

IBD is defined relative to a set of founder gametes. In a specified pedigree, the pedigree 

founders form the relevant set of ancestors; two gametes are considered IBD at a locus if 

their DNA traces to a common ancestor within the pedigree. In a population, where no 

relationships among individuals are known, the founder set is the set of gametes of all 

individuals alive at a fixed point in time. If we consider the (usually unknown) full pedigree 

ancestry of current individuals back to this time point, the population and pedigree 

definitions of IBD coincide. In Figure 1 we show a simple example of coancestry between a 

pair of individuals A and B. The mothers of A and B share common ancestors in the 

reference founder population, as also do the fathers. At any locus this leads to four possible 

IBD states: those numbered 9, 11, 14, and 15 in Table 1. The individuals A and B may be 

IBD in their maternal gametes, their paternal gametes, or both, or neither.

In diploid organisms, the IBD state varies across the genome because of recombination. In 

the example of Figure 1, a state of maternal IBD ({Am, Bm}) will become non-IBD ({Am}, 

{Bm}) due to any recombination in the meioses in the maternal chain of coancestry, and 

similarly for paternal IBD ({Ap, Bp}). Once in a state of non-IBD, maternal/paternal IBD 

will be regained only when all the meioses again align to provide that IBD. With the simple 

coancestry as depicted in Figure 1, maternal IBD in A and B is independent of their paternal 

IBD, so transitions among the four possible states occur as shown in the right side of the 
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figure. This process of losing and regaining IBD across a chromosome is not Markov [1], 

although it is approximately so.

More generally, a natural model for IBD across the genome arises from the coalescent [16] 

and from the ancestral recombination graph (ARG) of [17] and [18]. The ARG defines the 

changing coalescents arising along the chromosome as a result of recombination, and the 

coalescent at a locus defines the IBD partition relative to any fixed ancestral time. Across 

the genome, the model of changing partitions at a fixed time point induced by the ARG is 

therefore a natural model for changes in IBD state. Although the coalescent model with 

recombination is not Markov along the chromosome [19], and thus neither is the induced 

IBD process at a fixed time point, we approximate this process by a Markov model with a 

small number of parameters.

Sobel and Lange [20] introduced the descent graph to express the IBD state at a locus 

among members of a pedigree. The nodes of the graph denote founder genome labels 

(FGLs) assigned to founder gametes. The edges represent the individuals; each edge 

connects the two FGL nodes of that individual at that locus. Thus the set of edges at any 

node denote that the corresponding individuals share that FGL and hence share genome 

IBD. Note that the node labelling is arbitrary; what is significant is the IBD not the FGL. 

This enables the descent graph to represent IBD also in a population context, where there are 

no specified founders. Further, all graphs with the same IBD structure among the labeled 

edges are equivalent for purposes of analysis of genetic data [21]. Extending this graphical 

representation of IBD at a locus along the chromosome, we use the term IBD graph for a 

series of IBD states indexed by genome location.

Model-based IBD detection among individuals in populations

There have been many methods developed for detecting IBD in pairs of gametes or of 

individuals: for a review see [22]. Model-based approaches are based on a hidden Markov 

model (HMM), permitting efficient computation [23] and flexible model specification. The 

hidden space is some specification of the IBD at a locus; for example, for a pair of 

individuals, the 15 states of Table 1. The genetic marker data at successive loci are assumed 

to be independent conditional on the hidden IBD state. In a pedigree, the IBD at adjacent 

marker loci has a transition model determined by the recombination process in the meioses 

of the specified pedigree. Without a pedigree, there are no explicit constraints on the 

possible locus-to-locus changes in IBD state among a set of gametes, but the transition 

model expresses the fact that adjacent states are likely to be similar. For example, in the 

small example of Figure 1, maternal or paternal IBD may be lost or gained, but loss of both 

paternal and maternal IBD between two close loci is very improbable.

Here we summarize the HMM model of Brown et al. [6] which we use in our approach. The 

model is a generalization of the two-gamete model of Leutenegger et al. [24]. The latent 

HMM process in that model had two parameters: the probability β of IBD between the pair 

of gametes at any point in the genome, and the rate parameter α of potential changes in IBD 

state along the chromosome. The more general model of [6] also has these two parameters, 

with the IBD partition of the gametes at any point having the probability distribution given 

by the Ewens sampling formula or ESF [25]. Here we reparametrize the ESF in terms of the 
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population kinship, β: that is, β is the prior probability of IBD between any two gametes at 

any point in the genome.

The HMM transition model across the chromosome is specified as a continuous time 

Markov chain. That of [6] is based on a modification of the Chinese Restaurant Process 

(CRP) [26]. This one-parameter stochastic process on set partitions has the ESF as its 

stationary distribution. Two IBD states have non-zero infinitesimal transition rates if one can 

be transformed to the other by moving a single gamete among subsets of the partition. The 

rates of possible transitions are parametrized by the population kinship, β, with an overall 

scaling of rates given by the rate parameter α and the number of gametes n in the HMM.

In [6], the HMM model was applied to pairs of individuals, using the 15 IBD states among n 

= 4 gametes. The genetic marker data were were diallelic single nucleotide polymorphisms 

(SNPs). Over loci, the observed alleles are assumed independent given the underlying IBD 

state. At any locus, DNA that is IBD is of the same allelic type, while the allelic types of 

gametes that are not IBD at this locus are independent draws from the population. 

Population allele frequencies must be provided as input. Genotyping errors are modeled as a 

small probability that the reported allele differs from the true allele. Differences in allelic 

types in IBD DNA that are due to mutation are indistinguishable from errors.

The HMM approach can be applied either to phased or unphased genetic marker data. New 

technologies potentially provide sequence data over long segments of genome [27], so that 

phased data may be observed, but most current microarray and next-generation sequencing 

technologies detect variants on short segments of genome, so the data produced are 

unphased. While statistical phasing methods [28, 4, 29] can be applied, it is also desirable to 

be able to analyze unphased data directly. The model of [6] accommodated unphased data 

by redefining the latent Markov chain, conflating IBD states at a locus that are genotypically 

equivalent [30]. However, in our current approach, we work with the latent state space for 

2n identified gametes of n individuals regardless of the form of the data. To use the full 

latent space with unphased data, we modify the emission model. It is shown in Appendix A 

that averaging the phased data-probabilities over groups of genotypically equivalent latent 

states provides the correct model for unphased data.

Probabilities of the IBD states at each locus conditional on the complete (phased or 

unphased) marker data are computed using the standard forward-backward algorithm for 

HMMs [23]. A discretization of the hidden process is used to avoid computing matrix 

exponentials when calculating locus-to-locus transition probabilities. Provided the markers 

are tightly spaced relative to the rate of state transitions, the prior probability of a change in 

IBD state between adjacent markers is small and the discrete approximation is accurate. In 

order that all transitions have non-zero probability locus-to-locus (as they do under the 

continuous model), a small fraction ε of the stationary distribution is mixed with the discrete 

jump chain. Using this model, [6] studied the detection of IBD segments among the four 

gametes of pairs of individuals, under varying levels of linkage disequilibrium in the 

population, using both phased and unphased genetic marker data.
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Although the model of [6] can be extended to an arbitrary number of individuals, the HMM 

forward-backward calculations are intractable for the model on more than three or four 

diploid individuals. Time complexity is quadratic in the number of hidden states [23], and 

the number of partitions grows dramatically with the number of gametes. There are more 

than 105 IBD states for five individuals, and more than 1013 for ten.

Building joint IBD states from pairwise realizations

It is possible to estimate IBD probabilities between all pairs of individuals, incurring a cost 

that grows only quadratically in the group size, but in many situations a model for the entire 

group is necessary. For example, if pairwise IBD estimates are used to calculate covariances 

among individuals, the resulting matrix may not be positive semi-definite, leading to 

aberrant results in variance-component analyses. For any major gene model, if a probability 

of jointly observed trait data is to be computed conditional on inferred IBD, a valid IBD 

graph is necessary.

Glazner and Thompson [31] presented an attempt at estimating group IBD states by merging 

IBD inferred among individuals within specified pedigrees with separately inferred IBD 

resulting from unknown relationships among the distinct pedigrees. The method used two 

sources of inferred IBD: IBD graphs estimated in the known pedigrees using pedigree-based 

MCMC methods [14], and pairwise marginal probabilities of IBD estimated among all pairs 

of individuals using the population-based model of [6]. At each locus, the pedigree IBD 

graphs were combined to create an initial joint IBD state, and the pairwise states were 

arranged in descending order of probability. Then, each pairwise state was added to the joint 

state if it did not conflict with the existing joint state. The aim of this approach was to 

include as much pairwise information as possible in constructing the joint state, without 

creating an invalid joint state. The method was shown to be capable of accurately 

reconstructing LOD scores in a large pedigree using only information about relationships in 

small subpedigrees. Among the method’s shortcomings were its inability to express 

uncertainty in the pairwise inferences and the lack of smoothing across marker loci.

Here we propose a new algorithm for building a joint IBD graph incrementally from 

sampled paths from the pairwise HMM, adding each individual in turn to the IBD graph. As 

in previous HMM approaches to inferring IBD [6, 31], the hidden states of the pairwise 

HMM are the 15 states of  shown in Table 1. However, by conditioning at every stage on 

the IBD graph across the chromosome sampled among previously considered individuals, 

we produce joint IBD states consistent among individuals and across the chromosome. That 

is, at each locus, our output IBD state on a group of n individuals is an element of , and 

we build this element of  incrementally out of elements of : that is, from pairwise 

relationships represented by the 15 IBD states of Table 1. This is possible because each 

element of  uniquely defines a vector of  elements of , one for each pair of the 

n diploid individuals. This space of vectors is denoted . The target of our inference is 

the subset of  corresponding to elements of , which we will call valid configurations. 

Similarly, a collection of  elements of  corresponding to the pairs in a set of k 

individuals is valid if it corresponds to an element of .

Glazner and Thompson Page 6

Hum Hered. Author manuscript; available in PMC 2016 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



It is straightforward to check if an element p of  is a valid element of . IBD at a locus 

is an equivalence relationship on a set of gametes: gametes that are IBD are in the same 

subset of the IBD partition. Consider the relation R formed by taking the union of all the 

 states in p, treated as equivalence relations. If R is an equivalence relation, then p is 

valid and corresponds to an element of . Reflexivity and symmetry hold trivially, so the 

condition is satisfied if R is transitive: i.e. for any three chromosomes a, b, and c, aRb and 

bRc implies aRc. Conversely, if p is not valid, there is some nontransitive triple {a, b, c}. 

Any set of three gametes {a, b, c} are in at most three individuals.

To check validity of p, first any two of the pairwise states composing p that have an 

individual in common must agree on the IBD status of the two gametes of the common 

individual. Then, assuming no pairs conflict, we only need to check trios of individuals to 

ensure that the configuration is valid for all individuals. If the pairwise states in p for all 

trios of individuals do not create a nontransitive relation, p is a valid configuration. Figure 2 

shows an example of an invalid configuration. The IBD of the three pairwise comparisons 

are shown, with each individual’s paternal gamete above and maternal gamete below. Any 

two of the three pairs is compatible: in no case is any of A, B, or C implied to have two IBD 

gametes. However the three pairs are not jointly compatible, since A’s paternal gamete and 

C’s maternal gamete are both IBD with B’s paternal gamete, but not IBD with each other.

This procedure illustrates that we can determine valid states by considering at most three 

individuals at a time. This property is used to build a joint state among any number of 

individuals. Starting from the IBD state inferred for a single pair of individuals, we 

successively add individuals to the configuration. In adding the k th such individual, we 

infer the pairwise IBD of this individual with each of the previous k−1 in a way that respects 

both the constraints of previously inferred IBD and the model for IBD across the 

chromosome. This is achieved by eliminating from the hidden state space any IBD states 

which would create an invalid joint configuration, and performing HMM calculations on the 

reduced state space. This is feasible since only trios involving the current individual and 

each pair of previous ones need be considered in determining the relevant constraints. A 

more rigorous specification of the algorithm is given later, but since trios form the core of 

the method we first consider in detail the case of a single trio.

The case of three individuals

To illustrate the method, we examine the dependence among the pairwise IBD states at locus 

t among the trio of individuals A, B, and C. Separately, each of the states p4(AB), p4(BC), 

and p4(AC) can take any value from the fifteen states in  (Table 1). However, there are 

only | | = 203 IBD states the trio can be in, so the set of consistent pairwise states is a small 

subset of the 153 = 3375 elements in  ×  × . Fixing p4(AB), the value of p4(BC) can be 

any state in which the IBD status of B’s two gametes agrees with p4(AB). Once p4(AB) and 

p4(BC) are fixed, p4(AC) can only be one of a small number of states: at most seven, usually 

three or less, and sometimes only one. Continuing the example of Figure 2, suppose the 

states p4(AB) and p4(BC) are as shown. There are then only two possibilities for the IBD 

state between individuals A and C: the paternal gamete of A must be IBD to the maternal 

gamete of C, since both are IBD to the paternal gamete of B. Additionally, the maternal 
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gamete of A may or may not be IBD to the paternal gamete of C. This shown in Figure 3. 

The left part of the figure show the IBD constraints imposed on pairs AB and BC, while the 

right part shows the two possible states for pair AC. Any other of the 15 states will produce 

an invalid configuration.

The vector p4(ij) of IBD states between two individuals i and j takes values in . Suppose 

that over several consecutive loci p4(AB) and p4(BC) are constant with the values in Figure 

3. The transition process for p4(AC) between the two permitted states is exactly that of the 

full process on  restricted to the two states; the transition matrix is the full matrix after 

removing the rows and columns of all but the permitted states. We can do HMM 

calculations and sample p4(AC) over these loci, conditional not only on the marker data of A 

and C but also on p4(AB) and p4(BC). This is possible for any fixed values of p4(AB) and 

p4(BC), although the permitted state space will change accordingly.

This conditional model for p4(AC) must allow for changes in p4(AB) and p4(BC) along the 

chromosome. Suppose C stops sharing maternally with B between loci t and t + 1, so that 

there is no longer any IBD among the four gametes of B and C. Since A and B share 

paternal gametes, C can no longer share IBD with A’s paternal gamete. The set of permitted 

states for p4(AC) at locus t + 1 changes to the following: A’s maternal gamete may be IBD 

to C’s paternal gamete, maternal gamete, or neither, The transition matrix between these two 

loci is now the full transition matrix restricted to transitions beginning in the two states 

allowed at locus t and ending in the three states allowed at locus t + 1.

If these sets of states are disjoint, p4(AC) is forced to change states. Such a change is always 

possible because there is non-zero probability of going from any state to any other under the 

continuous transition model, and also under the discretized transition model as implemented 

by [6] (see Model-based IBD detection among individuals in populations). Further, p4(AC) 

will be able to reach at least one of the new permitted states in a single transition as long as 

the change in p4(AB) and p4(BC) is due to a change in the ancestral origin of a single 

gamete. Any single transition in the hidden model can be described (not always uniquely) as 

a change in the ancestral origin of a single gamete which causes the gamete to jump IBD 

groups. If the transition in one or both of p4(AB) and p4(BC) is due to a change in one of B’s 

gametes, the IBD state between C and A is unchanged and no transition is forced. If it is due 

to a change in A or C, then it can be reached in a single transition in the state between A and 

C. While this fact is not necessary for specifying a valid conditional model, it does ensure 

that single transitions in p4(AB) and p4(BC) will not force transitions in p4(AC) which 

violate the CRP model.

A conditional HMM can also be constructed for sampling p4(BC) conditional on p4(AB). In 

this case, the only restriction on the state space is that IBD status of B’s two gametes in 

p4(BC) must match p4(AB). Subject to this restriction, p4(BC) can be in any state, since for 

any values of p4(AB) and p4(BC) there is at least one consistent value of p4(AC). We reduce 

the transition matrix accordingly and sample a trajectory for p4(BC).

We can now specify a procedure for generating a sample of p6(ABC), the vector of states in 

 for the trio:
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• simulate p4(AB) unconditionally,

• simulate p4(BC) conditional on p4(AB), and

• simulate p4(AC) conditional on p4(AB) and p4(BC)

all conditional on the marker data of the two individuals being sampled.

As demonstrated above, this procedure will produce a consistent configuration of pairwise 

states that specifies a state in . We now justify its use as an approximation to sampling 

from the joint distribution Pr(p6(ABC) | xA, xB, xC), with xi the vector of marker data for 

individual i. The distribution decomposes as:

The sampled states come from the distribution:

where Q indicates the sampling distribution of the HMM with the state space constrained 

according to the previously sampled IBD. The difference between the two is that each pair 

of individuals is sampled conditional only on the data for those two individuals. We are 

ignoring the dependence of IBD states on other individuals’ data, and the sampling 

distribution depends on the order in which the individuals are considered. We therefore 

randomize over orderings of pairs of individuals to obtain a procedure which is 

exchangeable in the input data.

The case of n individuals

We now return to the general case of n individuals, considering first the sampling 

approximation to the full joint probability distribution. Li and Stephens [32] used a 

sequential procedure based on products of approximate conditional likelihoods to calculate 

likelihoods in a coalescent model with recombination. In similar fashion we decompose the 

sampling distribution of the trajectory through :

where x is the data of all individuals. We then replace the terms on the the right side with 

their approximations: letting x(ij) be the allele data of individuals i and j,

The approximation step is to sample each pairwise configuration conditionally only on the 

allele data for that pair. The sampling distribution of a pairwise trajectory for a pair of 
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individuals given their allele data and a set of already sampled pairwise trajectories is 

defined as follows: the hidden trajectory distribution of the basic HMM, with the state space 

modified to contain only states which do not create (or force the later creation of) an invalid 

configuration.

The algorithm for any number of individuals is given in Table 2; the references to steps of 

the algorithm below refer to the numbered lines of this table. As in Li and Stephens [32], the 

approximate sampling distribution is not exchangeable in the individuals. Thus for each 

independent iteration of the sampling algorithm, we first randomly permute the individuals 

(Step 2). Beginning with an empty group state, each individual is added to the group in the 

permuted order. Additionally, as each individual is added, the individuals already in the 

group are permuted (Step 5) to obtain the order in which to sample the pairwise trajectories 

for the new individual each of them. Since many samples must be generated in any case, this 

resampling over orderings does not create an additional computational burden.

To build a joint state, we first sample a trajectory of IBD states for a pair of individuals 

using the basic HMM (Step 3). Then a trajectory for one individual and a third individual is 

sampled, subject to the constraints imposed by the first pairwise trajectory. We sample a 

trajectory for the third side of the triangle, conditional on the other two. We now have three 

compatible pairwise states which form a joint IBD state for the three individuals.

To illustrate we use again the example of Figure 3. Assume now that pairwise trajectories 

across loci have been sampled for pairs AB and BC. The left part of Figure 3 shows, at a 

single locus, the incomplete joint state being constructed. The IBD in pairs AB and BC 

constrain the IBD for pair AC to only the two IBD states shown in the right part of the 

figure. Constraining the state space in this way is minimal in the sense that the only states 

ruled out are those which lead to an invalid configuration. That is, the support of the 

sampling distribution matches that of the true conditional distribution; no possible valid joint 

configurations are eliminated. Figure 4 shows the sampling of a trajectory between two 

individuals where some of the 15 states have been precluded by previously inferred IBD. 

The precluded states are shown in grey while the permitted states are shown in black. The 

trajectory is sampled according to the relative probabilities of permitted states in the 

restricted HMM.

This restricted HMM process is then repeated for the pairwise IBD between the new 

individual and each individual already considered (Step 7). The appearance of  in the 

conditioning of the HMM sampling distribution Q indicates that the space of possible states 

for the pair of individuals under consideration is reduced to only those states which do not 

conflict with the group IBD state in the process of being constructed. Appendix B 

demonstrates that the constrained state space when adding an individual k is never empty at 

any locus. There is always at least one allowed state for a pair to be in, given an existing 

configuration of all pairwise states for a group and some of the pairs of formed by individual 

k and the group.

The software package ibd_stitch implements this algorithm, and is available at https://

github.com/cglazner/ibd_stitch. Further details of the algorithm are given in Appendix B.
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Trait mapping inference using IBD graphs

In order to make inferences about the location of genes affecting a trait, we need to connect 

IBD graphs to a likelihood model parametrized by a hypothesized trait locus. The traditional 

mechanism for doing so is the LOD score [12], defined for a particular locus as the log 

likelihood-ratio between the hypothesis of a trait driven by a gene at the locus and the 

hypothesis of an unlinked trait.

Given marker data x and trait data y on a group of individuals in a pedigree, we compare the 

models Γ and Γ0, where Γ(t) hypothesizes a trait location t on the chromosome of the 

markers, and Γ0 assumes that the trait and marker data are independently distributed on the 

pedigree. Because it assumes this independence, model Γ0 can be factored into a trait model 

ΓT and a marker model ΓM:

(1)

On large pedigrees, the numerator cannot be calculated exactly. Following [7] we express 

the likelihood under Γ as an expectation over all possible IBD patterns  on the pedigree:

In this equation, ΓT(t) is the marginal trait model, ΓT, augmented by the trait location 

hypothesized in Γ(t). Simulating B realizations pi from Pr(p | x) and computing the 

likelihood of the trait data as a function of p, we obtain a Monte Carlo estimate of L(t):

(2)

Tong and Thompson [33] developed methods for efficient MCMC sampling of IBD graphs 

on large pedigrees, and implemented LOD score estimation using equation (2). Equation (2) 

also permits the separation of IBD inference and trait likelihood computation: IBD graphs 

may be realized conditional on marker data, and stored in a compact format. These graphs 

can be used as input to compute L̂(t) for any t without further reference to the marker data or 

pedigree structure [14]. Additionally, equivalence of IBD graphs across realizations and 

across locations can be determined [21], and used to ensure each distinct LOD score 

contribution is computed once only.

This suggests an approach to estimating a LOD score in the absence of a pedigree. IBD 

graphs are sampled using ibd_stitch, and then used to calculate trait likelihoods as in 

equation (2). However, this is insufficient to obtain the LOD score (1). Without a pedigree, 

there is no basis to compute the denominator of the LOD score. Moreover, in a pedigree, 

variation in IBD across loci is limited by the tightly constrained changes in descent patterns 
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in the pedigree. When IBD is estimated without pedigrees, the average level of IBD tends to 

vary across the chromosome, so the variation in L̂(t) is driven more by average relatedness 

than by concordance between the trait and the estimated IBD pattern at a locus.

To normalize L̂(t) in a way that compares the degree to which different hypothesized causal 

locations have IBD patterns which accord with the trait, we adopt a permutation approach 

analogous to that of population-based case-control studies. That is, we permute the trait 

values assigned to the edges of our sampled IBD graphs. We generate D random 

permutations σj of the trait data. For a particular IBD graph pi, the term

gives a measure of trait likelihood at t holding fixed the sampled structure of IBD at the 

locus disassociating the IBD from trait values. Summing this quantity over sampled IBD 

graphs, we obtain the estimator

(3)

which, at each locus, measures the relative likelihood of the trait given the sampled IBD 

graphs to that given only the sampled IBD structures at the locus. We can view log10(L̃(t)) 

as analogous to a LOD score because we expect it to be highest when the IBD reflects the 

allelic similarity driving the trait. The null hypothesis for the permutations at each locus is 

that the individual-specific joint IBD at the locus is independent of the individuals’ trait 

values.

Data simulation 1: Simulations on an Iceland pedigree

Two simulated datasets were created to assess ibd_stitch. The aim in both cases was to 

create realistic study populations with high levels of relatedness and a trait driven by a 

genome segment shared IBD in the population. For purposes of illustration, we use the same 

major-gene model for this trait locus as was used by [31].

The first set of test data was one for which the true descent pattern was known. The data 

were generated using a subset of a large Icelandic pedigree [34]. The pedigree subset spans 

twelve generations and contains 107 individuals. We assume that this extended pedigree 

represents unknown relationships that connect several recent 3-generation pedigrees. The 

members of three such families, with a total of 31 individuals, were designated as 

“observed” individuals.

The descent pattern and haplotypes for this data were both simulated. A trait locus was 

chosen, and at this locus one FGL of one founder was designated the “trait allele” q. A 

descent pattern was generated which propagated this allele to each of the three observed 

families, but was not otherwise constrained. A quantitative trait on the 31 “observed” 
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individuals was generated by assigning mean trait values according to the presence of allele 

q or alternate “normal” allele Q. That is, the model for the vector y of trait values for the 

observed individuals is

(4)

For our example, μ = 0, 4, and 5 for trait genotypes QQ, Qq, and qq respectively, and the 

residual variation e is a vector of independent Normal variables with variance 4.0.

Descent across the rest of the chromosome was simulated according to Mendelian laws and 

the linkage map, conditional on the pattern at the trait locus. Once the descent within the 

pedigree is simulated, assigning haplotypes to founders determines haplotypes for the entire 

pedigree. In order to produce realistic haplotypes, founder haplotypes were simulated using 

the beaglesim procedure on the BEAGLE model [35] generated by [6] in a real-data 

analysis. This procedure generates haplotypes that have, probabilistically, the local linkage 

disequilibrium (LD) structure of original haplotypes input to BEAGLE, but no features of 

the original haplotypes are identifiable. As described by [6], the beaglesim procedure also 

allows for relaxation of the LD via a parameter which is the probability that the local 

haplotype structure is randomly “broken” at each marker. For the current simulation, a value 

0.2 was used, limiting LD to a range of 5 markers, on average.

A total of 10,188 markers were simulated over 200 cM of chromosome, and the resulting 

haplotypes of the 31 “observed” individuals constructed. The methods described above were 

used to obtain realized IBD graphs across the chromosome. These graphs were used to 

obtain estimates both of the numerator log-likelihood log10 L̂(t) ( equation ( 2)) and of our 

LOD-score analogue log10 L̃(t) (equation (3)) based on the trait data y under the trait model 

(4). In analyzing the trait data y, trait genotypes are of course unobservable. In these 

analyses, a value 0.2 was used for the allele frequency of hypothetical trait allele q [31].

Data simulation 2: real marker data on a Pig Pedigree

A second study of ibd_stitch was performed using a dataset for which only the trait was 

simulated, with the marker data and underlying relationships among individuals coming 

from real data. Genus PIC, a pig genetics firm, provided a data set containing 5772 

individuals genotyped at 6973 markers on one chromosome. These data overlap with the 

genotypes made publicly available by Genus PIC and described in [15]. The data provided 

by Genus PIC also included a pedigree containing 11,544 members and a genetic map for 

the chromosome of the markers.

SNPs were filtered as follows: markers were discarded if the genotypes were missing in 

more than 5% of individuals, as were individuals missing more than 5% of their marker 

genotypes. The markers were further thinned to speed computations and reduce the level of 

LD in the dataset, since high LD impacts accuracy of IBD inference [6]. To retain the (on 

average) most informative markers for which relative allele frequencies can be most 

accurately estimated, markers with minor allele frequency less than 0.3 were also discarded. 
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The final SNP dataset contained 1034 markers typed on 5742 individuals. Population allele 

frequencies were estimated from these data.

Five subpedigrees of pigs were chosen for analysis. To obtain closely related genotyped 

individuals, a pool of subpedigrees was created by choosing random proband individuals 

and selecting all individuals within three parent/child meioses of the proband. The candidate 

subpedigrees were then inspected manually, to remove subpedigrees with few genotyped 

individuals. Five subpedigrees with a high proportion of typed individuals were selected, 

comprising a total of 69 individuals.

The trait used in the analysis was simulated based on IBD observed in the selected 

individuals. Preliminary samples of IBD graphs on the individuals were generated. A locus 

which appeared to show a small number of well-resolved IBD groups was chosen as a good 

candidate for simulating a trait. Additionally, the cleaned marker data for the selected 

individuals were analyzed using version 3.3.2 of BEAGLE [36] as an independent method 

of IBD detection. With the default settings, BEAGLE was also used to fit a model of 

haplotype clusters in the sample. At the candidate trait locus, only two clusters were 

detected, defining a diallelic trait locus, with alleles q and Q. This “trait locus” was used as 

the basis for generation of a quantitative trait y using the same model equation (4) as above. 

Again, in analysis of trait data, “trait genotypes” are unobservable. As for that example, IBD 

graphs were realized from the marker data. These IBD graphs then provided estimates of the 

L̃(t) function (equation (3)), under the trait model (4) for the observed y.

Comparison with a pairwise approach

Our approach provides jointly consistent IBD realizations among individuals and across 

loci, and thus may be used with any trait model. However, these realizations may also be 

reduced to estimates of pairwise IBD at each locus and so provide location-specific 

estimates of “local kinship” (Table 1). Our method may thus be compared with a random-

effects QTL mapping approach such at that of [9] who also proposed a method of LOD 

score estimation for that model using “local kinship” inferred from marker data. We make 

this comparison using the simulated data of the Iceland example. Since the descent is 

simulated we have the true IBD state for each pair of individuals at every locus.

The approach of [9] begins with a moment-based estimate of IBD from marker allelic 

similarities between the two members of each pair of individuals. This provides pairwise 

estimates of global (genome-wide) and local kinship coefficients (Table 1). These are then 

used to fit random-effects variance-component models to the quantitative trait data [10]. The 

full model is

(5)

where 1 is a vector of ones, and e is a vector of independent Normal components each with 

variance . The random effect zj attributable to location j is Normal with mean 0 and 

variance  where Φj is the local kinship matrix at locus j. The global additive genetic 

effect za is Normal with mean 0 and variance , where Ψ is the global kinship matrix. 
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Since our approach does not assume availability of genome-wide marker data, we have no 

basis for the marker-based estimation of Ψ. However, since even using the true pedigree-

based kinship there was scant evidence for a global additive genetic variance term (see 

Results), we ignored this component in subsequent analyses.

We first compared estimates of local kinship Φj at locations j chromosome. For the kinships 

from ibd_stitch, we simply averaged the locus-specific kinship for each pair of individuals 

and each locus position over the realized IBD graphs. For the allelic similarity (identity-by-

state: IBS) approach we followed [9] as closely as feasible. We used a moment-based 

estimator of local kinship (equation (2) of [9]) over small windows of about 100 Kb to each 

side of each SNP. These windows are somewhat larger than the 50Kb advocated by [9] due 

to our more sparse marker data (10,188 markers over 200 cM). As noted by [9] these 

estimates are quite noisy, so we smoothed over broader windows of about 2 Mb width.

True locus-specific kinship can take only one of the four values in H = {0, 1/4, 1/2, 1} 

(Table 1 and [9]). We therefore additionally computed estimates constraining the values to 

one of these four values. This was done both for the estimates from the IBD graphs and for 

the smoothed IBS-based estimators. Although we did not implement the full joint smoothing 

and constraining algorithm proposed by [9], it seems our constrained estimates should be 

comparable to the outcome from that procedure.

We computed a random-effects trait-model LOD scores using the quantitative trait data on 

the 31 individuals of this Iceland data set [10]. Since we assumed , we reparametrized 

in terms of  and local heritability . For the trait model (5) and at each 

locus j, this LOD score then compares the base-10 log-likelihood maximized over  and , 

with that for the null model log-likelihood maximized over  with . We computed five 

such LOD score curves over locations j across the 200cM chromosome: one for the local 

kinships from the true IBD, and one for each of these four estimates (ibd_stitch —raw 

average and then also constrained; IBS-based —smoothed, and then also constrained).

Results

Results of ibd_stitch on the Iceland example

The ibd_stitch program was used to analyze the simulated datasets with the goal of 

estimating a mapping score that would inform inference of the location of the trait. In the 

HMM model, the average prior kinship was set as β = 0.05 and the stationary distribution 

fraction used to accommodate discretization of the latent process was set equal to ε = 0.1. 

The genotyping error rate was set 0.01 (although no errors were simulated in the Iceland 

data). Under this model and the data on 10,188 markers, 200 IBD graphs were realized 

across the 200 cM chromosome. Since the Iceland marker data were simulated, the 

haplotypes of each observed individual were known. The above generation of IBD graphs 

and subsequent computations was therefore done twice: once with the phased haplotypes, 

and then also assuming only genotypic data.
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Using the trait data and trait model, likelihoods were computed at a subset of 334 marker 

positions across the 200 cM chromosome, at a spacing slightly over 2 per cM. Since the 

descent pattern was simulated, the true IBD among the individuals was known. The 

likelihood curve produced by this true IBD was used as a standard against which to measure 

the sampled IBD graphs. Figure 5 shows estimates of log10 L̂(t) based on the true IBD and 

the graphs sampled using ibd_stitch. The data for ibd_stitch are the phased haplotypes of the 

31 observed individuals. Although no assumptions are made in the analysis about any 

relationships among the 31 individuals, the estimated curve follows the truth almost exactly, 

showing that the sampling method accurately reconstructs the simulated IBD on the 

pedigree. The trait locus is correctly identified by the maximum of the linkage mapping 

curve.

As discussed in the Methods Section (equation (3)) without the pedigrees of the families 

composing the dataset we cannot calculate the trait data probability necessary to normalize a 

LOD score. To produce a linkage score without pedigrees, we calculate L̃(t) (equation (3)). 

This approach normalizes the likelihood at a locus by an average over likelihoods calculated 

by permuting the trait among individuals. Figure 6 shows log10 L̃(t) for the IBD graphs 

sampled on the Iceland pedigree; 200 permutations were used for the normalization. As with 

the unnormalized likelihoods, the curve achieves a maximum at the simulated trait locus, 

although the trait is not as cleanly resolved as in the unnormalized case. Away from the trait, 

where there is no genetic association with the trait, the curve decays towards zero as 

expected.

Figure 6 also shows the result for an analysis using only the unphased genotypes of the 31 

observed individuals. Some information is lost, with a generally lower log10 L̃(t) curve, but 

the trait location is again well-identified.

Results of ibd_stitch on the pig data

In the case of the pig data, the true IBD is unknown and the genotype data at the 1034 

selected SNP markers are unphased. Using these unphased marker data and the same prior 

model in ibd_stitch as for the Iceland data, 1000 IBD graphs across the 300cM chromosome 

were realized.

Likelihoods for the simulated trait were computed at all 1034 marker positions (about 3 per 

cM). The same procedures as for the Iceland data were applied with 200 permutations of the 

trait value used to normalize the likelihood curve. Figure 7 shows the normalized likelihood 

curve. Without the normalization, there was no signal at the trait locus, and values of L̂(t) 

were quite noisy. With the locus-dependent normalization provided by the 200 permutations, 

the log10 L̃(t) curve correctly spikes at the trait locus, showing that the sampled IBD graphs 

capture the shared genome which drives the trait.

Results of comparison with a pairwise approach

With this small data set of 31 observed individuals, the random-effects likelihoods (model of 

equation (5) typically maximized at a heritability of either 0 or 100%. This is particularly so 

in the case of local heritabilities, , where every local kinship coefficient in Φj is such that 
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the individuals share 0, 1 or 2 genes IBD and are thus as if unrelated (ϕ = 0), parent 

offspring (ϕ = 1/4), or MZ twins (ϕ = 1/2), or even, in a few cases, inbred MZ twins (ϕ = 1) 

(See Table 1). Additionally, the matrix of local kinships is typically only positive semi-

definite. We therefore restricted both global and local heritability to be ≤ 99%.

Fitting a global polygenic model (5) with , using for Ψ the full true pedigree-based 

kinship matrix, the heritability estimate was at this upper limit. However, the base-10 log-

likelihood relative to 0% heritability ( ) was 0.38. Using only the pedigree clusters of 

more closely related individuals as in [9], it reduced to 0.27. Given this small impact of 

global relatedness, we assumed  in subsequent analyses. Additionally, as found by 

others [9, 6], with dense genetic marker data assumptions regarding genome-wide kinship 

have almost no impact on local kinship estimates.

The local kinship estimates from the true IBD and from each of the four estimates described 

in the Methods section (ibd_stitch —raw and constrained; IBS-based —smoothed, and then 

also constrained) were computed at each of the same 334 marker locations as used for the 

likelihood computations on these data described above. At any locus, there are 496 values of 

pairwise kinship among 31 individuals (including self-kinships). Figure S1 of the 

Supplementary material shows the correlation of these 496 values with the simulation truth 

at each of the 334 test locations across the chromosome. As described more fully in the 

Supplementary Material, the pairwise kinship estimates from joint IBD graphs estimated by 

ibd_stitch show higher correlation with the true values than do those from the IBS-based 

methods. Constraining the pairwise kinship values to the set H = (0, 1/4, 1/2, 1) generally 

had little impact.

In total over the 334 test positions there are 496×334 = 165, 664 local kinship values 

estimated by each of the estimators. Of these, under the simulation truth, there are 123,801, 

27,949, 13,513 and 401 values of ϕ = 0, 0.25, 0.5 and 1, respectively. Figure S2 of the 

Supplementary Material shows boxplots of the (unconstrained) ibd_stitch and IBS-based 

estimators at each of these four true values. Generally, the spread of the distribution is much 

less for the estimator based on the IBD graphs from ibd_stitch, although there are some 

extreme outliers especially at ϕ = 0.5. Whereas the estimators from ibd_stitch find the high 

kinship values quite well, the IBS-based estimator is downward biased at ϕ = 0.5 and fails to 

find the values ϕ = 1.

The comparative performance of these local kinship estimates then has impact on a 

randome-effects-model LOD score. In this fitted model, equation (5) with , at each test 

position j there are two parameters  and . Likelihoods typically 

maximized either at  providing a LOD score of 0, or at the upper limit . For 

several of our local kinship estimators, Figure 8 shows these LOD score curves evakuated at 

the same 334 marker locations.

This figure may be compared with Figures 5 and 6. Note that the true pairwise IBD gives a 

lower LOD score signal at the trait locus than did the true joint IBD graph (Figure 5). In 

Figure 6 the LOD score from IBD estimate from unphased data was significantly lower than 
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that given by the phased data which effectively represented the signal provided by the true 

joint IBD. However, in Figure 8 the estimate from ibd_stitch using unphased data is very 

similar both to that shown in Figure 6 and to that achievable if the true pairwise IBD is 

known. For the results from ibd_stitch, both the raw average values over IBD-graph 

realizations and the values constrained to the allowed values in H = (0, 1/4, 1/2, 1) gave 

almost identical curves, so only the former is shown.

As seen in Figure 8, the IBS-based estimates show a similar LOD score curve but with a 

much weaker signal. In this example, constraining the IBS-based estimates to H did not 

improve the estimates. In fact, at the trait locus this constraint destroyed the signal, because 

the small region with some ϕij values equal to 1 was not found and this high 4-gamete IBD 

(State-1 of Table 1) contributes to the linkage signal.

Discussion

In this paper, we have shown how an analogue, L̃(t), of a classical linkage LOD score can be 

computed in the absence of any pedigree information. Although we use only population-

based data and models, our approach relies on the inference of IBD and is thus inheritance-

based. It stands in contrast to genome-wide association studies (GWAS) [37], which analyze 

only the allelic variation at genetic marker loci, considering neither the dependence among 

individuals due to relationships, nor across the genome due to linkage.

The key to our approach is a new method for sampling joint IBD trajectories across a 

chromosome sequentially among individuals, based on their phased or unphased genetic 

marker data. These sampled trajectories (IBD graphs) provide a Monte Carlo estimate of the 

numerator of the classical LOD score: the probability of trait data given the marker-based 

inheritance at hypothesized trait locations. Although the examples of this paper focus on a 

quantitative trait, this approach is applicable to any trait model for which probabilities of 

trait phenotypes can be computed on a specified IBD graph, and so the approach is equally 

applicable to dichotomous traits. However, since there is no pedigree, there is no basis on 

which to compute the classical denominator: the probability of trait data unconditioned on 

genetic markers. To address this, we develop a permutation approach, in which trait values 

are permuted on the edges of the IBD graph. The resulting joint trait probability is based on 

the same level and structure of whole-sample IBD as that realized at that locus from the 

marker data, but with the individual-specific trait values disassociated from the individual-

specific IBD.

In both the example data sets, the L̃(t) curve is erratic compared to a traditional pedigree-

based LOD score: the constraints on population-inferred IBD are much weaker than those 

imposed by an assumed pedigree. Like a LOD score, L̃(t) maximizes at true trait locations, 

but it does not have the negative classical LOD scores that result from marker-based 

evidence against linkage. Moreover, where the set of individuals contains multiple close 

relatives, as in the examples of this paper, the score will usually be positive even at locations 

unlinked to the trait. Given the joint IBD structure at any locus, close relatives are likely 

those who share genome IBD and these same individuals show phenotypic similarity, but 
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the permutation approach of equation (3) disassociates IBD and phenotypic similarity. The 

quantitative interpretation of L̃(t) scores requires additional study.

Although our approach focuses on estimation of IBD that is jointly consistent among 

multiple individuals, these joint realizations can readily be reduced to summary IBD 

measures such as locus-specific pairwise kinship matrices which may then be used in a 

random-effects model for a quantitative trait. Our comparisons with smoothed moment-

based estimators of pairwise IBD show that our realized IBD graphs provide more accurate 

estimates. Without further study, we cannot conclude whether this is due to the use of joint 

IBD per se, or whether another pairwise estimator could perform better. In either case, our 

results from just 200 realized IBD graphs across the chromosome are very encouraging. 

Also important is that, in this example, the LOD score estimate from joint IBD using 

unphased marker data is almost the same for the major gene trait model as for the random-

effects model. For a quantitative trait, the latter may be a preferred approach, since there 

then is no requirement to specify the trait model in order to compute the trait likelihood.

Our IBD estimation approach shares with earlier methods the approximations inherent in 

discretization on the HMM, with its marker-to-marker transition process. While the 

approximations are accurate for tightly linked markers, and the latent IBD model is in any 

case an approximation to the true ancestral processes in the population sample, analyses 

based on the original continuous genome model might be preferred. Unfortunately such 

analyses seem computationally intensive, at best. An MCMC approach which samples IBD 

transition points under the continuous genome model has been implemented for sets of up to 

40 gametes over regions of up to 10 Mbp [38], but scalability beyond this is an issue. An 

alternative MCMC particle filter approach [39] has also been implemented (Glazner PhD 

thesis: unpublished), but has similar scalability issues.

The method of sequential sampling of IBD developed in this paper can also incorporate 

pedigree-based IBD information. An IBD graph realized conditional on marker data within 

small subpedigree units using pedigree-based methods [14], can be taken as initial input into 

the ibd_stitch process. This approach was applied to the Iceland example, pre-sampling IBD 

within each of the three small subpedigrees of observed individuals (but not between them). 

It is interesting that analysis with this additional subpedigree IBD information using 

unphased genetic marker data recovers almost the IBD of the phased analysis (Figure 5) that 

assumes no pedigree information at all (data not shown). Essentially, it seems that the 

specification of the local family structure serves to phase these individuals but provides no 

broader IBD information.

In conclusion, we believe our population-based linkage scores extend classical analysis to 

situations where there may be samples of related individuals, but where no pedigree 

relationships are specified. We emphasize there is no attempt to estimate a pedigree, nor 

even levels of relatedness among individuals. The process of meiosis has high variance [22], 

and such estimates would serve no useful gene mapping process. Rather we infer the 

realized IBD at specific genome locations that is the actual basis of mapping information.

Glazner and Thompson Page 19

Hum Hered. Author manuscript; available in PMC 2016 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A: Phased and unphased data

At any locus, the latent IBD states on a set of 2n gametes of n diploid individuals may be 

divided into classes, such that all states in a class give the same probability to a given set of 

n unphased genotypes on the individuals. For example, the fifteen partitions of a set of 4 

gametes, give rise to the nine states relevant to the joint genotype probabilities of two 

diploid individuals. In general, the subdivision of states can be defined by considering the 

orbits under a group of 2n transformations g generated by interchange of the two gametes of 

each diploid individual [30].

To accommodate both phased and unphased data into an HMM using the same latent IBD 

states on 2n gametes, we define the same interchange transformations to the two alleles of 

an individual’s genotype. At a locus, let R denote the (unknown) ordering of the two alleles 

of each individual relative to some fixed (e.g. paternal then maternal) ordering, r0. If X is an 

observed ordered set of 2n alleles at a locus

for any X, any latent IBD state i, any allele ordering R, and any g in the group of 

transformations. Note also that values of R are equivalent to values g; each individual’s two 

alleles are either interchanged or not, relative to the fixed order.

Consider now augmenting the state space of the HMM at each locus with the random 

variable, R. In the case of completely phased data R is known, say R = g*:

That is, the model with augmented haplotype phase is identical to the original model when 

the data are completely phased.

When data are unphased, there is no prior information about R, so each value g has prior 

probability 1/2n:

where r0 is the fixed order. That is, averaging the emission probabilities over orbits of states 

which map to one another over g provides the correct probabilities to model unphased data 

using the full 2n gamete latent IBD states in the HMM.

The idea of modifying the emission function can be extended to represent more complicated 

states of partial phase information, but in this paper we restrict attention to genotypes that 

are either completely phased or completely unphased.
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Appendix B: The joint sampling algorithm

The algorithm of Table 2 samples pairwise IBD trajectories from the distribution Q, which is 

the HMM of [6] with certain states removed from the state space to ensure that a valid joint 

IBD state will result once all pairs have been sampled. The algorithm assumes that the 

reduced state space is never empty, so we must demonstrate that this is always the case.

Our proof proceeds by induction. For the first pair of individuals sampled, there are no 

constraints on the state space. When attaching the kth individual to the joint state, suppose 

we have already obtained a valid joint IBD trajectory for the first k−1 individuals. In the 

notation of Table 2, we refer to these individuals as the set β = {B1, …, Bk−1}; let p2(k−1)(β) 

be the joint IBD state at a locus for these individuals. We sample a pairwise trajectory 

between individuals Ak and Bi, supposing that we have sampled states between individual Ak 

and individuals B1 through Bi−1. The joint IBD state composed of these pairwise states at a 

particular locus is denoted p2i(α), with α = {Ak, B1, …, Bi−1}.

We determine the set of valid choices for the state p4(BiAk). To do so, we examine each 

possible trio {Ak, Bi, Bj} with j < i. We have sampled pairwise states for two of the three 

pairs in the trio, and we rule out any states which would create an invalid trio as illustrated 

in Figure 3. To show that there is at least one allowed pairwise state for p4(BiAk), it suffices 

to show that there is a valid state p2k(γ) covering the individuals γ = {Ak, B1, …, Bk−1} 

which is in agreement with p2(k−1)(β) and p2i(α). The pairwise state p4(BiAk) imposed by 

p2k(γ) cannot have been ruled out in our conditioning step.

To discuss the partitions in question more precisely, we consider the lattice of partitions on 

n. individuals, [40]. A lattice is a set closed under two operations, ∧ and ∨, called meet 

and join and satisfying certain algebraic properties. Partitions of a set form a lattice with a 

partial ordering defined by refinement: a ≤ b if and only if a can be derived from b by 

splitting some blocks. Two elements are in the same block in a∧b if and only if they are in 

the same block in both a and b. The partition consisting only of singletons is the least 

element in the lattice, and the partition of all elements into a single block is the greatest. A 

singular partition 1X is the partition placing all elements of the set X in a single block and all 

other elements in singleton blocks. We implicitly embed a partition on a subset of the 

individuals in the lattice by assuming that individuals outside the subset have all gametes in 

singleton blocks. Conversely, we say a partition aX of the set X induces a partition aS of S ⊂ 

X if 1S ∧ aX = aS.

Using this terminology, we must show the existence of some partition p2k(γ) which induces 

p2(k−1)(β) on β and induces p2i(α) on α. By assumption

That is, the two existing joint states agree where they overlap, on the set δ = {B1, …, Bi−1}. 

We use a lemma from Ore [41, Theorem 11]:

If a is singular and a ≥ b, then for any c,
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(6)

Applying equation (6), we have 1β ≥ p2(k−1)(β) by definition and

So the partition p2(k−1)(β) ∨ p2i(α) induces p2(k−1)(β); by the same reasoning, p2(k−1)(β) ∨ 

p2i(α) induces p2i(α). We conclude that p2(k−1)(β) ∨ p2i(α) meets our requirements for 

p2k(γ), and therefore at every locus there is some pairwise state which has not been ruled out 

by the conditioning step.
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Figure 1. 
The left figure shows possible coancestry between two individuals A and B. On the right is 

shown the four possible IBD states at a locus, and possible transitions that could result from 

recombination events in the ancestral lineages.
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Figure 2. 

An example of an invalid configuration in , the space of pairwise IBD states covering a 

trio of individuals. The grey shading represents IBD gametes. For details see text.
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Figure 3. 
The previously sampled pairwise IBD states p4(AB) and p4(BC) restrict the possible values 

of p4(AC). For details see text.
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Figure 4. 
The HMM state space is restricted to the IBD states which are compatible with existing IBD 

states between other pairs. The solid line indicates a possible trajectory through permitted 

states along the chromosome.
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Figure 5. 
Unnormalized base-10 log-likelihoods for a simulated quantitative trait, calculated using the 

true IBD graph used to simulate the data and IBD graphs estimated using ibd_stitch.
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Figure 6. 
Permutation-normalized log-likelihoods (log10 L̃(t)) calculated at points along the simulated 

Iceland chromosomes. The vertical line indicates the trait locus.
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Figure 7. 
Permutation-normalized log-likelihoods (log10 L̃ (t)) calculated at points along the Genus 

PIC chromosomes. The vertical line indicates the trait locus.
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Figure 8. 
Lod scores under a random-effects model using several alternative estimators of local 

pairwise kinship across the chromosome. The vertical line indicates the trait locus.
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Table 1

The 15 IBD partitions among the four gametes of two individuals

State Element of (AB) Conditional kinship, ϕ

1 {Ap, Am, Bp, Bm} 1

2 {Ap, Am}, {Bp, Bm} 0

3 {Ap, Am, Bp}, {Bm} 1/2

4 {Ap, Am, Bm}, {Bp} 1/2

5 {Ap, Am}, {Bp}, {Bm} 0

6 {Ap, Bp, Bm}, {Am} 1/2

7 {Ap}, {Am, Bp, Bm} 1/2

8 {Ap}, {Am}, {Bp, Bm} 0

9 {Ap, Bp}, {Am, Bm} 1/2
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State Element of (AB) Conditional kinship, ϕ

10 {Ap, Bm}, {Am, Bp} 1/2

11 {Ap, Bp}, {Am}, {Bm} 1/4

12 {Ap, Bm}, {Am}, {Bp} 1/4

13 {Ap}, {Am, Bp}, {Bm} 1/4

14 {Ap}, {Am, Bm}, {Bp} 1/4

15 {Ap}, {Am}, {Bp}, {Bm} 0
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Table 2

Algorithm to sample an IBD graph on n individuals from SNP data

1
Initialize  to the empty IBD graph.

2 Randomly permute the individuals and label them {A1 … An}

3
Sample from Q[p4(A1A2)|x(A1A2)] and add the trajectory to .

4 For 2 < k ≤ n

5  Randomly permute individuals {A1 … Ak−1} and label them {B1 … Bk−1}.

6  For 1 ≤ i < k

7
  Sample from , x(BiAk)] and add the trajectory to .

8  End for I

9 End for k

10
Return an IBD graph on n individuals, .
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