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Availability of fast, high throughput and low cost whole genome sequencing holds great promise within public healthmicrobiology,
with applications ranging from outbreak detection and tracking transmission events to understanding the role played by microbial
communities in health and disease. Within clinical metagenomics, identifying microorganisms from a complex and host enriched
background remains a central computational challenge. As proof of principle, we sequenced two metagenomic samples, a known
viral mixture of 25 human pathogens and an unknown complex biological model using benchtop technology. The datasets were
then analysed using a bioinformatic pipeline developed around recent fast classification methods. A targeted approach was able
to detect 20 of the viruses against a background of host contamination from multiple sources and bacterial contamination. An
alternative untargeted identification method was highly correlated with these classifications, and over 1,600 species were identified
when applied to the complex biological model, including several species captured at over 50% genome coverage. In summary, this
study demonstrates the great potential of applyingmetagenomics within the clinical laboratory setting and that this can be achieved
using infrastructure available to nondedicated sequencing centres.

1. Introduction

In 1995Haemophilus influenzawas the first free-living organ-
ism to have its genome completely sequenced, which took
about a year to finish the 1.8Mb genome using conventional
shotgun Sanger sequencing [1]. Contrastingly, the develop-
ment of high throughputNext Generation Sequencing (NGS)
platforms, with sequence outputs of now over 400,000Mb
per day, has led to a rapid increase in the number of genomes
available. This is highlighted by the NCBI short read archive
(SRA) passing the milestone of maintaining over 1 petabyte
(PB) of whole genome sequencing (WGS) data at the end of
2014 (Figure 1(a)), with metagenomic datasets currently con-
tributing to 49 terabytes (TB) of this. Moving from increasing
sequence output, the subsequent development of benchtop
sequencing platforms has enabled the transfer of NGS access
from large sequencing centres to medium- and small-scale

research settings. This combination of speed, capacity, and
access to NGS platforms now holds great promise for public
health microbiology [2, 3], as shown by recent studies on
bacterial outbreaks and transmission dynamics [4–6]. Devel-
opment of WGSmetagenomic methods is a logical extension
ofNGSwithin the clinical setting, ultimatelymoving from the
analysis of individual pathogens within pure cultures to all
organisms from a sample, providing pathogen identification
and microbial community dynamics.

The term metagenome was first coined in 1998 and was
used to describe the collective genetic composition of soil
microflora [7], although at this stage few genes were targeted
to probe diversity among the taxa forming the microflora.
Current methods used to diagnose microbial pathogens
within microbial rich sites (such as the gut and respiratory
tract) or normally sterile sites (such as blood or CSF) are
largely based on conventional culturing of clinical samples.
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Figure 1: The rise of NGS data and taxonomic classification tools. (a) Data in terabytes (TB) based on NCBI SRA deposited data (data taken
in January 2015). (b) A survey of metagenomic classification tools with peer reviewed publications until February 2015.

This consists of a battery of different growth media followed
by identification, for example, bymicroscopy orMALDI-ToF,
and then a complex series of susceptibility testing workflows
are undertaken, including potential species typing [2]. The
whole process can take several days to weeks and even then
can result in a culture-negative result. Culture-independent
methods can rapidly speed up this process to the timescale
of hours through direct sequencing of the nucleic acids.
While PCR assays have been designed to detect specific
pathogens from clinical sample specimens [8, 9], it is the
untargeted and open ended qualities of WGS metagenomics
that make its application within the clinical setting advanta-
geous, including areas such as obesity and diabetes [10, 11], as
well as pathogen diagnostics [12]. However, coupling shotgun
metagenomics to clinical diagnostics also presents another
set of challenges, and whilst these exist at both the wet- and
dry-lab side, the main bottlenecks are within data analysis
and the associated storage of raw and processed data.

The computational problem of identifying pathogens
within clinical metagenomics is typified by the idiom of
searching for a needle in a haystack. Sample sites can be
highly complex, with potential pathogens surrounded by a
complex background of commensal organisms at a range
of abundances in addition to host nucleic acids. Diagnostic
metagenomics is one of the fastest growing fields within
metagenomics, and numerous methods have been developed
to help address this problem [13–31] (Figure 1(b)). These
typically fall into sequence homology and to a lesser extent
composition based approaches, and these have been increas-
ing in number as the metagenomic data grows. Focusing
on sequence homology, which relies on comparison to a
reference genome database, methods such as MEGAN [30]
use blast to bin unassembled reads or more recently employ
fast short read mapping algorithms to decrease analysis
times [32]. Other programs include Metaphler [33] and Sort-
ITEMS [28], which are again based on blast. As an alternative
to blast based methods, which can require significant com-
putational time to search metagenomic sized datasets, recent
faster methods have been based on kmer classifications such

as Kraken [14] and LMAT [15]. Alternatively, the size of the
comparison database can be reduced through use of smaller
curated databases of genemarkers, such as those employed by
MetaPhIAn [16], although this provides a summary profile of
the sample and does not use every read, potentially excluding
useful information.

Future utility of metagenomics within the clinical setting
will be dependent on the ability to detect multiple clinically
relevant pathogens from a complex and host enriched back-
ground. Here we have constructed a metagenomic analysis
pipeline to answer the questions: are we able to use the
metagenomic approach to detect a mixture of known human
viral pathogens present at range of abundances and can we
capture genomes at complete coverage within an unknown
and complex biological model? As part of the process of
answering these questions, we describe here some of the
challenges of analysing samples of unknown composition,
such as the loss of sequence data through host and sample
contamination. To bring the approach to the clinical labora-
tory all sequencing in this study was performed using bench-
top technology to provide realistic sequencing depths, and
the analysis pipeline was built using commodity hardware,
reflecting typical infrastructure available to nondedicated
sequencing centres with high throughput systems.

2. Materials and Methods

2.1. Viral Sample Nucleic Acid Extraction and Library Prepara-
tion. A reagent containing a mixed population of 25 known
viruses [34] was stored at −80∘C in 100 𝜇L aliquots. All
aliquots were centrifuged at 3,000×g for 10 minutes and the
supernatant was retained for generation of separate DNA and
RNA libraries.

The DNA library used supernatant from one 100 𝜇L
aliquot extracted using the PureLink Viral RNA/DNA kit
(Life Technologies-Invitrogen) according to manufacturer’s
instructions, with the exception that 10 𝜇g of linear poly-
acrylamide (LPA) (Life Technologies-Invitrogen) was used
instead of the supplied carrier RNA provided to aid with
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nucleic acid precipitation. Nucleic acids were eluted in 15 𝜇L
of nuclease-free water. Samples were subsequently treated
with 0.2𝜇L RNase A (Epicentre) by incubating at 37∘C for
15 minutes and 70∘C for 20 minutes. The REPLI-g single cell
kit (Qiagen) was used for amplification of DNA following
the manufacturer’s instructions for amplification of genomic
DNA from single cells with the exception that double the
volume of DNA input material was used and a 2-hour 30∘C
incubation performed.

For the RNA library supernatant from one 100 𝜇L aliquot
was extracted using a combination of the PureLink viral
RNA/DNA kit and Zymo RNA clean and concentrator kit.
First the PureLink kit was used for extraction as per the
manufacturer’s instructions, with the addition of 5 𝜇g of LPA
instead of the supplied carrier RNA. After incubation at 56∘C,
the sample was further purified using the Zymo RNA clean
and concentrator kit as per the manufacturer’s instructions
using 400𝜇L of the PureLink extract and eluted in 15 𝜇L
of nuclease-free water. Samples were subsequently treated
with turbo DNase (Life Technologies-Ambion) according to
the recommended treatment protocol. Reverse transcription
and amplification were performed according to methods
described previously [35], using the Ovation RNA-Seq ver-
sion 2 system (Nugen).

Amplified products were quantified using the Qubit High
sensitivity kit (Life Technologies), samples were diluted to
0.2 ng/𝜇L, and DNA and cDNA libraries were prepared using
the Nextera XT library preparation kit (Illumina).

2.2. Porcine Sample Nucleic Acid Extraction and Library
Preparation. DNA extracts were prepared from 440mg of
porcine faeces. Faeces had been stored at −80∘C and thawed
at room temperature for 1 hour before use. To homogenise
the faeces, 2mL of 1x PBS and 1mL of 2% 2-mercaptoethanol
were added to aid in dissolution of cells and samples were
placed on a rotator for 2 hours.

The homogenised faeces were transferred to a 50mL
falcon tube and centrifuged at 3,000×g for 10 minutes, with
supernatant removed, and then 5mL of fresh 1x PBS was
added to resuspend the cells. Centrifugation and washing
were repeated and the pellet was resuspended in 5mL of 1x
PBS. The homogenate was filtered through a 100 𝜇m vacuum
filter (Millipore) and washed with an additional 1mL of 1x
PBS and filtered again to increase yield. The filtrate was fur-
ther filtered through a 40 𝜇m vacuum filter (Millipore). Cells
were centrifuged at 3,000×g for 10 minutes and supernatant
was removed and resuspended in 1mL 1x PBS.

Selective lysis was performed using the MolYsis selective
lysis kit (Molzym)withmodifications. Briefly, to 1mL of sam-
ple, 260 𝜇L of CM buffer was added and incubated at room
temperature for 15 minutes. Subsequently 250𝜇L of DB1
buffer and 10 𝜇L ofMolDNase B were added and incubated at
room temperature for 15minutes. An additional DNase treat-
ment was performed using DNase I (Epicentre) as follows.
The cells were spun at 12,000×g for 2 minutes and super-
natant was removed. The pellet was resuspended in 100 𝜇L of
a DNase I, prepared following manufacturers guidelines, and
incubated at 37∘C for 30minutes. Inactivationwas performed
by incubation at 75∘C for 15 minutes. Cells were subsequently

centrifuged at 12,000×g for 2 minutes, supernatant was
removed, and the pellet was resuspended in 1mL of RS
buffer. Cells were centrifuged at 12,000×g for 2 minutes and
supernatant was removed.The remaining pellet was extracted
using the MasterPure complete kit (Epicentre) according to
manufacturer’s instructions and eluted in 35 𝜇L of TE buffer.

The quality of extracted nucleic acids was determined
by analysis on the tape station using the genomic DNA
screen tape kit (Agilent). Average fragment size was in
excess of 60 kb. Samples were prepared in duplicate, and
similar to the viral sample, libraries were generated with the
Nextera XT library preparation kit (Illumina) according to
the manufacturer’s instructions.

2.3. Sequencing. Prepared libraries were sized using a bio-
analyser and the high sensitivity DNA kit (Agilent) and
quantified using ABI Viaa7 and KAPA Illumina library quan-
tification kit (KAPABiosystems). Paired end (PE) sequencing
was performed using an Illumina MiSeq instrument. The
DNA and cDNA libraries for the viral sample were sequenced
using the MiSeq Reagent Kit V2 (300 cycles) (Illumina) and
the duplicate porcine libraries using the MiSeq Reagent Kit
V3 (600 cycles) (Illumina), both according to manufacturer’s
guidelines. All sequencing data has been deposited within the
EBI ENA, under the study accession number PRJEB10064
(samples ERS804108-ERS804111).

2.4. Quality Filtering and Removal of Host Sequences. Filter-
ing of PE reads consisted of read inspection, trimming of
adapter and poor quality bases, and finally removal of reads
corresponding to host genomes. Key quality control metrics
were calculated using FastQC (v0.11.2) [36], and Trimmo-
matic (v0.32) [37] was used to remove potential adapter
contamination and poor quality reads. The adaptor database
used by Trimmomatic was an in-house database of Illumina
adapters, primers, and index sequences, and trimming con-
sisted of an initial head crop of the first 15 bp, followed by iter-
ative removal of leading and trailing bp with phred qualities
< 20 and throughout the read length with mean base phred
qualities < 20 in 4 bp sliding windows. Remaining sequences
with lengths < 40 bp after trimming were discarded as well
as orphan single end reads. Default Trimmomatic parameters
were used except for those detailed above.

Amapping based approach was next used to remove host
contaminant sequences. Fastq Screen (v0.4.4) (Babraham
Institute) was used tomap all reads to a panel of potential host
genomes and all unmapped paired end reads output to new
fastq files for downstream analysis. Default parameters were
used within Fastq Screen, with the exception of outputting
reads that did not map to any host genome using the no hits
parameter and using Bowtie2 (v2.0.2) as the aligner, with all
mapping parameters hard set within the Fastq Screen pro-
gram. The viral sample was mapped to three host genomes:
human (GRCh38), cow (Bos taurus UMD 3.1.1), and chicken
(Gallus gallus-4.0), whilst the porcine sample was mapped
to two host genomes: human (GRCh38) and pig (Sus scrofa
10.2). Any potential remaining vector contaminationwas also
quantified and removed using Fastq Screen and mapping
against the NCBI UniVec database (v8).
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2.5. Species Identification. Targeted detection of the 25
viruses within the viral sample was based on the metage-
nomic binning tool BBSplit (v33), which uses BBMap for
mapping and is part of the BBtools software suite [38]. An
index of 25 respective viral genomes sequences was used
as references, detailed in Table S1 in Supplementary Mate-
rial available online at http://dx.doi.org/10.1155/2015/292950.
Default mapping parameters were used except for the follow-
ing: minratio 0.56, minhits 1, and maxindel 16000, which are
equivalent to the default parameters within the BBMap. The
ambig2 = split parameter was also used so that in cases where
reads mapped to more than one bin, that is, more than one
reference genome, these were copied into separate ambiguous
bins and discarded. An in-house script was then used to parse
the mapping output to generate a single mapping report file.

RayMeta [39] (v2.3.1) was used to assemble all unmapped
paired end reads from the targeted viral mapping stage.
The mpi version of Ray Meta was compiled and a kmer
length of 61 used based on the N50 length and number of
contigs generated. Contigs <100 bp were removed. Recovery
of abundance levels was achieved by reference-based map-
ping of the unmapped reads onto the assembled contigs
using bwa mem (v.0.7.5a-r405) [40] and default parameters.
Contigs were classified by blastn using the NCBI nt database
(downloaded locally on 23-10-14) and subsequent blast hits
filtered by a small shell script using the following criteria:
percent identification ≥ 90%; 𝑒-value ≤ 1.0 × 10−8; bit
score of ≥50. Finally, classified contigs were assigned to taxa
using the Lowest Common Ancestor (LCA) algorithm as
implementedwithinKronaTools (v2.4) [41] and using default
parameters within the ktImportBLAST and ktClassifyBLAST
perl scripts, generating an html formatted Krona chart and
tab formatted output, respectively. The average blast log 𝑒-
value of the contigs was used to colour the taxa within Krona.

Detection of taxa by the kmer approach used Kraken
[14]. A custom database was built for Kraken using Ref-
Seq (version 66) complete bacteria (3,471 genomes), virus
(4,121 genomes), and Archaea (307) genome sequences. An
additional 141 viral GenBank genomes were included to
supplement viral targets used for other studies, making a
total of 8,040 genomes for classification by Kraken. Default
parameters were used to build the database and run the
classifications, and the complete Kraken database took 2
hours to build on a server with 12 CPUs (2.7GHz) and 132GB
of RAM, whilst classification of each sequencing dataset
required 76GBRAM.Genome coverage across select genome
sequences was calculated by reference-based mapping using
the above BBSplit (v33) metagenomic binning tool [38], and
the genomecov command within Bedtools [42] to calculate
per base genome coverage depths.

3. Results and Discussion

3.1. Datasets Generated. As proof of concept and to test the
bioinformatics pipeline assembled we have sequenced and
analysed twometagenomic samples selected to provide differ-
ent methodological challenges using the benchtop Illumina
MiSeq platform.The first dataset is a representative “knowns”
mixed viral sample, containing a panel of 25 clinically relevant

human viruses at a range of concentrations (abundances) as
determined by qPCR and described previously [34] (Table 1).
The viral sample consisted of a mixture of DNA and RNA
viruses, as well as multiple serotypes, including adeno-
virus types 2 and 41 and parainfluenza virus types 1–4. The
second dataset, a nonhuman model, was generated from
porcine faeces to represent an “unknowns” sample and was
expected to harbour a complex mixture of taxa at a range
of abundances. The viral sample was split over two indexed
libraries, as separate DNA and RNA libraries were generated
to enable capture of the two viral types, which were pooled
together after sequencing. The nonhuman model sample
was sequenced as two technical replicates within a single
MiSeq run. The technical replicates were found to be highly
correlated based on genus abundance profiles using the
subsequent taxonomic analysis (Pearson’s 𝑟 = 0.99) and
were therefore pooled and treated as a single dataset. In total
13.5M 150 bp and 12.7M 300 bp paired end (PE) reads were
generated for the viral panel and nonhuman model datasets,
corresponding to a sequence base yield of 4.1 gigabases (Gb)
and 7.6Gb, respectively.

3.2. Analysis Pipeline. A bioinformatic pipeline was con-
structed to address the questions set out by this study
and this was divided into two approaches (Figure 2). The
“knowns” approach used the composition of the viral dataset
to bin sequence reads simultaneously bymapping to reference
sequences of the expected 25 viruses in a targeted approach
(Table 1 and Table S1), with the aim of identifying each of the
viruses from the complex viral types present, as well as from
multiple host backgrounds. To further probe the rest of the
sample, highlighting potential contamination, all unmapped
reads were de novo assembled and then classified by blast.The
alternative “unknowns” approach was designed for the main
purpose of fast taxonomic classification of the nonhuman
model sample, to identify as many taxa as possible and reveal
the extent to which the genome sequences were captured.

The pipeline has three common stages, quality control,
read trimming, and a host screen. Together these make up
the preprocessing stages which increase the power of down-
stream analyses [43]. This starts by using FastQC [36] to
calculate general quality control (QC) metrics, such as per
base qualities, followed by Trimmomatic [37], which removes
poor quality base calls and potential adapter sequences,
and finally host removal by reference-based mapping using
the Bowtie2 [44] aligner against a panel of expected host
sequences, such as human or porcine. The targeted map-
ping approach has four stages. The metagenomic binning
algorithm BBSplit [38] was used to simultaneously map
reads to all 25 viruses, whilst ignoring ambiguous reads
that map to multiple references. To enable as comprehensive
as possible capture of the sample, remaining unclassified
reads were assembled with RayMeta [39]. This decreased the
computational burden of the later blast search against the
NCBI nonredundant nt database, reducing the number of
queries from millions of reads to low thousands of contigs.
As a targetedmapping approachwas not possible for the non-
human model dataset, a fast classification pipeline was built
around a recent kmer classificationmethod, Kraken [14], and
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Table 1: Identification of the 25 target viruses within the viral sample using the two taxonomic classification approaches. Genome lengths
based on reference genome used within the study and relative viral load shown by qPCR cycle threshold (Ct). If Ct > 37 this is shown as ND
(not detectable). Percentages are based on the total reads within each dataset after preprocessing stages.

Target virus Length (bp) Ct Mapping approach Kmer approach
Number of reads % Number of reads %

Adenovirus 2 35,937 29.71 262,395 2.3 263,857 2.3
Adenovirus 41 34,188 ND 0 0.0 0 0.0
Astrovirus 6,813 30.53 19,190 0.2 17,227 0.2
Coronavirus 229E 27,317 36.48 0 0.0 0 0.0
Coxsackievirus B4 7,397 30.72 20,706 0.2 14,422 0.1
Cytomegalovirus 230,290 28.95 580,431 5.2 584,018 5.2
Epstein-Barr virus 171,823 31.27 43,600 0.4 43,882 0.4
Herpes simplex virus 1 152,261 30.59 10,189 0.1 10,220 0.1
Herpes simplex virus 2 154,675 32.48 36,786 0.3 36,865 0.3
Influenza A H1N1 10,982 32.02 157 0.0 451 0.0
Influenza A H3N2 12,990 ND 0 0.0 4 0.0
Influenza B virus 14,452 ND 0 0.0 1 0.0
Metapneumovirus A 13,335 31.86 30,256 0.3 30,588 0.3
Norovirus GI 7,623 ND 0 0.0 0 0.0
Norovirus GII 7,535 ND 3 0.0 0 0.0
Parainfluenza virus 1 15,600 34.43 37,489 0.3 33,569 0.3
Parainfluenza virus 2 15,646 33.87 5,226 0.0 5,091 0.0
Parainfluenza virus 3 15,462 ND 309 0.0 270 0.0
Parainfluenza virus 4 17,304 31.83 9,272 0.1 8,728 0.1
Parechovirus 3 7,322 29.35 3,985,296 35.4 2,371,771 21.1
Respiratory syncytial virus A 15,158 34.33 1,530 0.0 1,551 0.0
Rhinovirus A39 7,137 31.16 13,335 0.1 13,797 0.1
Rotavirus A RVA 18,562 24.49 655 0.0 13 0.0
Sapovirus 7,429 33.37 1,455 0.0 507 0.0
Varicella-zoster virus 125,144 29.02 1,398,178 12.4 1,409,763 12.5
Total classified 6,456,450 57.3 4,846,595 43.0

using a database of just over 8,000 genomes (see Section 2.5).
Stages were implemented using the modular bioinformatics
pipeline language, bpipe [45], which handles the initiation
and overall tracking of each of the computational tasks, but
with little overhead compared to other higher level pipeline
tools such as Galaxy or Taverna [45, 46].

3.3. Species Identification within the Viral Dataset. The tar-
geted mapping approach was used to determine if it was
possible to computationally identify a complex sample of
mixed virus types within one sequencing assay. Although
this is unrealistic in terms of the range of viral pathogens
present within a sample and used prior knowledge of the
viral targets, it provides a proof of concept that can be later
developed. This approach took <30min following QC to
complete mapping and reporting. Table 1 shows the number
of target viral reads detected. In total 20 of the 25 viruses were
identified, and these showed great variance in their relative
abundances, with detection of 8 viruses based on <10,000
mapped reads, representing<0.1% of theQCpassed sequence
data. Interestingly, within the set of 5 undetectable viruses, 4
correlatedwith those thatwere also undetectable by qPCR (Ct

> 37), whilst the remaining virus, Coronavirus 229E, had the
highest recorded Ct value of the dataset (36.48).

As part of this study an alternative metagenomic classifi-
cation method was used based on kmer matches to a large
bacterial and viral database, and to serve as a comparison,
the virus dataset was next treated as an unknown sample and
entered into this pipeline. Overall the kmer-based method
was highly similar to the mapping approach based on the
number of reads classified to each virus (Pearson’s 𝑟 =
0.98), with 57.3% (6.5M reads) and 43.0% (4.8M reads) of
the QC passed reads classified to the target viruses for the
mapping and kmer approaches, respectively (Table 1). The
whole process took just over 1 hour to report the results,
with the classification of the 11.3M input reads only taking
23 minutes (122.30Mb/minute) and the majority of the addi-
tional time spent loading the large database intomemory plus
reporting the results using Krona Tools. Using this method
21 of the 25 viruses were detected (Table 1), but as before
several of these were based on a very low number of classified
reads, with 9 detected viruses based on <10,000 reads.
Whilst these low abundance levels likely represent the low
concentrations ofmany viruseswithin the sample, as reflected
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Figure 2: Metagenomic pipeline constructed to analyse the two
datasets. Following shared sequence preprocessing steps, QC passed
sequences from the known viral sample entered reference-based
mappingwith all unmapped reads de novo assembled then classified,
whilst the nonhuman model sample entered a kmer-based classifi-
cation pathway.

by the mean Ct value (31.39) (Table 1), this highlights the
challenge of distinguishing very low abundance levels from a
potentially complex background. Furthermore, it has recently
been shown that introduction of bacterial contamination
within metagenomic samples can have devastating effects on
interpretation of the microbial diversity present in a sample,
with contamination originating from sample preparation
processes, including DNA extraction kits, reagents, and even
molecular grade water [47–49].

In an attempt to classify the origin of the remaining
sequences, all 4.8M reads from the viral dataset that were
left unclassified by the targeted mapping method were
entered into a further assembly based classification pipeline
(Figure 2). This process took just over 7 hours to complete,
generating 1,398 contigs ≥100 bases in length, with an N50 of
801 bases. However, the blast step only classified 372 of these
contigs, corresponding to 31.3% (1.5M) of the unmapped
reads, with the remaining 3.3M reads unclassified despite
use of the comprehensive NCBI nt database. Over half of the
reads mapping to the contigs were identified as the target
viruses (0.9M reads), likely reflecting sequence divergence
from the references used in the initial targeted mapping
stage. Interestingly some of the classified nontarget taxa were
viral pathogens associated with the hosts used to culture the
viruses, such as the identification of bovine viral diarrhoea
virus, probably originating from the use of bovine serum in
viral cultivation [34]. However, most of the nontarget taxa
belonged to bacterial species (0.5M reads), including the
families Enterobacteriaceae and Pseudomonadaceae, such as
Escherichia coli (Figure 3). Whilst these nontarget classifica-
tions can be ignored for the purposes of this study, such
species are clearly important in the public health setting.
Inclusion of appropriate no-template or no-virus/bacteria
controls run in parallel with samples will likely be crucial to

help define the expected level of background due to reagent
contamination, sample cross-contamination, on-instrument
contamination, and read misclassification.

3.4. Genome Capture within the Nonhuman Model. We
next applied the kmer classification part of the pipeline to
the nonhuman model dataset. Classification of the 11.5M
QC passed reads by Kraken took 1 hour and 17 minutes
(66.60Mb/minute), and the total time to completion took
<2 hours. The increased time of this analysis was due to the
greater read lengths used for the nonhuman model dataset,
with 300 bp reads generated instead of 150 bp for the viral
panel sequencing. In total 2.8M reads (24.2%) were classified
(Figure 4(a)), and these were spread across 1,617 species,
although this dropped to 146 species if only those above 0.1%
abundance levels were included. The vast majority of the
classified reads were identified as bacterial (98.8%). Focusing
on the bacterial diversity, 5 genera accounted for 70.1% of the
classified reads, consisting of Lactobacillus, Bifidobacterium,
Streptococcus, Blautia, and Ruminococcus, all of which have
been found to be highly abundant within other metagenomic
studies based on porcine faecal material [50]. By far the
most abundant genus was Lactobacillus, consisting of 23
species and 51.7% of identified reads before application of any
abundance level cutoffs. A round of reference-basedmapping
was performed on this genus to determine the extent towhich
the species was captured in terms of genome coverage. As
expected the highly abundant species, Lactobacillus reuteri,
achieved the greatest complete coverage (98.6%) across the
∼2Mb genome and at 234.7-fold depth (Figure 4(b) and
Table 2), with three other species achieving greater than 50%
coverage. The remaining 19 species were of low abundances
(<0.5%) and consequently achieved minimal genome cover-
age (<5%), demonstrating the need for a greater sequence
output should genome capture at this abundance level be
required.

Following sequencing, the millions of short reads gen-
erated proceeded through several preprocessing steps and
finally taxonomic classification, all of which result in a
reduction in usable read numbers. To illustrate the pro-
gressive loss of sequencing reads and fluctuations in sizes
of the sequence and intermediate data, Table 3 shows the
number of sequences within specific stages of the pipeline
and the storage required for these. Predicted read numbers
for the two samples were based on the maximum output
from the sequencing chemistry kits used. These can help
guide the experimental design, including the desired number
of sequencing reads to capture the microbial community
expected within the sample [51]. But as seen for the non-
human model, where 50.9% of the predicted reads were
obtained, effects such as low flow cell cluster density can
result in lower than expected output. Preprocessing is another
source of sequence loss, resulting in 2.3M reads (16.8%
of raw reads) and 1.2M reads (9.6% of raw reads) being
discarded from the viral and nonhuman model datasets,
respectively (Table 3). Ultimately, 53.4% of the viral dataset
and 11.2% of the nonhuman model dataset reads were used
in classification of the microbial diversity. Either an increase
in the number of reads generated or alternative library
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Figure 3: Bacterial taxa identified within the viral sample. Bacteria identified following de novo assembly of all unmapped reads (42.7%) from
the targeted mapping approach. The Krona chart represents abundances of taxa within the 0.5M reads corresponding to classified bacterial
contigs, with abundances based on the number of reads mapping to contigs. Taxa are coloured by average contig blast log 𝑒-value.

Table 2: Genome capture of Lactobacillus, the most dominant genus identified within the nonhuman model dataset. Reads were mapped
against a reference genome of the most abundant strain within the respective species identified.

Species identified (strain name) Mapped reads Bases (Mb) Depth of coverage (bp) Genome coverage (%)
Lactobacillus reuteri (5007) 983,484 457.1 234.7 98.6
Lactobacillus johnsonii (DPC 6026) 51,947 24.2 12.3 87.8
Lactobacillus amylovorus (GRL 1112) 66,840 31.7 15.3 68.9
Lactobacillus acidophilus (30SC ) 58,678 27.3 13.2 55.4

Table 3: Sequence output and data storage for the two datasets. The number of sequences surviving the common preprocessing stages are
shown, whilst classified sequences are based on the targeted then assembly approach within the viral dataset, and the kmer based approach
within the nonhuman model dataset. Percentages based on the expected number of PE sequences generated for each sequencing chemistry
kit used. Storage (in GB) consists of all fastq and intermediate files including bam and bed format files, generated throughout the analysis.

Sample Dataset 1: viral panel Dataset 2: nonhuman model
Reads within set % Data (GB) Reads within set % Data (GB)

Predicted reads 15,000,000 — — 25,000000 — —
Sequenced reads 13,537,917 90.3 9.1 12,734,165 50.9 13.6
Preprocessing: trimming 12,223,513 81.5 15.8 11,520,499 46.1 24.5
Preprocessing: host screen 11,265,758 75.1 11,517,217 46.1
Classified sequences 8,006,562 53.4 7.3 2,788,450 11.2 5.5
Total storage 32.2 43.6
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normalisationmethods are required to provide better capture
of the genome sequences within the metagenomic samples.

4. Conclusions

For metagenomics to be transferred from the experimental
research setting and to be used for discovery of emerging
pathogens and variants through use in the clinical setting,
new methods are required to manage and interpret the
sequence data. A key aspect of any clinical assay is definition
of sensitivity to detect a given pathogen. Calculation of such
a parameter within metagenomics is complicated by the fact

that the pathogen of interest is not defined in advance, and
the concentration of pathogen nucleic acid at which clinically
relevant disease occurs may vary dramatically between dif-
ferent agents. It is not feasible to empirically define limits of
detection using dilutions of every possible pathogen; however
the use of reference materials of clinical interest is a logical
starting point. Here we employed two clinically relevant
sample types to demonstrate a proof of concept approach to
identifying multiple viral types from a complex background
of host and bacteria within a known sample and extended
this out into an unknown sample, capturing the genomes of
several bacterial species. Our study demonstrates that it is
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now possible to build a diagnostic pipeline that takes raw
sequence reads and provides a comprehensive bacterial and
viral identification of clinically relevant samples within a
few hours and on modest commodity hardware. As is com-
monwith the application of a newmethod, several challenges
will need to be overcome, including the waste of sequencing
reads corresponding to host nucleic acids, background con-
tamination, and improved handling of the range in species
abundances to facilitate better capture of microbial diversity.
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