Table 2.
Results of TSS predictive models of mulberries.
| Number | Models | No.c | LVsd | Calibration | Cross-validation | Prediction | γ(103) | σ 2(103) | |||
|---|---|---|---|---|---|---|---|---|---|---|---|
| R C | RMSEC | R CV | RMSECV | R P | RMSEP | ||||||
| (1) | Full-PLSR | 460 | 21 | 0.984 | 0.279 | 0.958 | 0.445 | 0.959 | 0.411 | ||
| (2) | Full-LS-SVM-RBF | 460 | 0.999 | <0.1 | 0.999 | <0.1 | 0.999 | <0.1 | 4.43 × 105 | ||
| (3) | Full-LS-SVM-linear | 460 | 0.999 | <0.1 | 0.999 | <0.1 | 0.999 | <0.1 | 1.11 × 108 | 8.99 × 102 | |
| (4) | RF-PLSR | 23 | 13 | 0.942 | 0.522 | 0.928 | 0.579 | 0.899 | 0.675 | ||
| (5) | RF-LS-SVM-linear | 23 | 0.944 | 0.515 | 0.931 | 0.571 | 0.886 | 0.714 | 4.93 | ||
| (6) | RF-LS-SVM-RBF | 23 | 0.999 | 0.061 | 0.958 | 0.453 | 0.956 | 0.430 | 9.56 | 4.29 | |
| (7) | RF-PLSR | 11 | 7 | 0.811 | 0.912 | 0.792 | 0.951 | 0.834 | 0.800 | ||
| (8) | RF-LS-SVM-linear | 11 | 0.818 | 0.899 | 0.796 | 0.945 | 0.843 | 0.781 | 0.36 | ||
| (9) | RF-LS-SVM-RBF | 11 | 0.984 | 0.283 | 0.912 | 0.647 | 0.925 | 0.557 | 1.25 × 108 | 1.80 | |
cNumbers of the wavelengths used for analysis.
dLatent variables of the PLSR model.