Skip to main content
. 2015 Sep 14;2015:343782. doi: 10.1155/2015/343782

Table 2.

Results of TSS predictive models of mulberries.

Number Models No.c LVsd Calibration Cross-validation Prediction γ(103) σ 2(103)
R C RMSEC R CV RMSECV R P RMSEP
(1) Full-PLSR 460 21 0.984 0.279 0.958 0.445 0.959 0.411
(2) Full-LS-SVM-RBF 460 0.999 <0.1 0.999 <0.1 0.999 <0.1 4.43 × 105
(3) Full-LS-SVM-linear 460 0.999 <0.1 0.999 <0.1 0.999 <0.1 1.11 × 108 8.99 × 102
(4) RF-PLSR 23 13 0.942 0.522 0.928 0.579 0.899 0.675
(5) RF-LS-SVM-linear 23 0.944 0.515 0.931 0.571 0.886 0.714 4.93
(6) RF-LS-SVM-RBF 23 0.999 0.061 0.958 0.453 0.956 0.430 9.56 4.29
(7) RF-PLSR 11 7 0.811 0.912 0.792 0.951 0.834 0.800
(8) RF-LS-SVM-linear 11 0.818 0.899 0.796 0.945 0.843 0.781 0.36
(9) RF-LS-SVM-RBF 11 0.984 0.283 0.912 0.647 0.925 0.557 1.25 × 108 1.80

cNumbers of the wavelengths used for analysis.

dLatent variables of the PLSR model.