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Abstract

Long noncoding RNAs (lncRNAs) are emerging as an integral part of the regulatory information 

encoded in the genome. LncRNAs possess the unique capability to interact with nucleic acids and 

proteins and exert discrete effects on numerous biological processes. Recent studies have 

delineated multiple lncRNA pathways that control metabolic tissue development and function. 

The expansion of the regulatory code that links nutrient and hormonal signals to tissue metabolism 

gives new insights into the genetic and pathogenic mechanisms underlying metabolic disease. This 

review discusses lncRNA biology with a focus on its role in the development, signaling, and 

function of key metabolic tissues.

Keywords

lncRNA; energy metabolism; signaling; metabolic disease; transcription; brown fat

The homeostatic control of nutrient and energy metabolism in mammals is governed by 

reciprocal signaling between the tissues that primarily serve regulatory functions, such as the 

pancreatic islets and the central nervous system, and major metabolic tissues including 

adipose tissues, skeletal muscle, and the liver. These tissues acquire their highly specialized 

regulatory functions and metabolic activities during development and exhibit an amazing 

degree of plasticity in adulthood. For example, the different types of skeletal muscle fibers 

are characterized by varying oxidative capacity and contractile function, whereas adipocytes 

from white and brown fat have nearly opposite roles in fuel storage and oxidation. 

Disruption of energy homeostasis underlies the pathogenesis of major metabolic disorders, 

including obesity, type 2 diabetes, dyslipidemia, and non-alcoholic fatty liver disease. The 

protein factors that control metabolic tissue development, signaling, and function have been 

extensively investigated. Recent work on long noncoding RNAs (lncRNAs) has added a new 

dimension to the regulatory networks that impinge on metabolic homeostasis and disease [1, 

2].
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LncRNAs: emerging regulators of diverse biological processes

Long noncoding RNAs refer to a class of RNA transcripts that lack identifiable open reading 

frames and thus protein-coding potential [3, 4]. LncRNAs are commonly defined as 

transcripts longer than 200 nucleotides, as compared to other shorter noncoding RNA 

species, such as microRNA (miRNA), small interfering RNA (siRNA), and piwi-interacting 

RNA (piRNA). Perhaps the best-known lncRNAs are ribosomal RNAs and X inactive 

specific transcript (Xist), which play critical roles in protein translation and X chromosome 

inactivation, respectively. Large-scale discovery of lncRNAs became feasible initially with 

tiling microarray [5, 6] and full-length cDNA sequencing [7]. More recently, epigenome 

analysis [8] and whole transcriptome RNA-sequencing (RNA-Seq) have identified even 

greater numbers of lncRNAs [9, 10]. Despite this, significant challenges remain to 

accurately annotate lncRNA genes, as illustrated in a recent study showing that a transcript 

originally classified as a muscle lncRNA indeed encodes a small protein in the cell [11]. The 

coding potential of RNA transcripts can be predicted using bioinformatic tools such as 

PhyloCSF, which is based on comparative genomic analysis of the coding probability of 

nucleotides across multiple species [12]. Other approaches, such as Coding Potential 

Calculator (CPC), PORTRIAT and Coding Potential Assessment Tool (CPAT), are also 

capable of assessing coding potential when lineage specificity limits cross-species 

alignments [13-15]. Recently, ribosomal profiling analysis of ribosome occupancy on RNA 

transcripts has provided experimental evidence that lncRNAs lack the capacity to encode 

proteins [16]. Based on their location relative to nearby protein-coding genes, lncRNAs can 

be categorized into sense, antisense, intronic, divergent, and intergenic groups (Figure 1). It 

was recently estimated that the human genome produces thousands of lncRNAs as a result 

of pervasive transcription from intergenic regions [17]. The widespread transcriptional 

activity beyond the 2% of the genome encoding proteins was also supported by global 

analysis of chromatin marks, which revealed that many of the intergenic lncRNAs were 

marked by characteristic histone signature that marks transcriptionally active chromatin 

domains [8].

The expression of lncRNAs exhibits remarkable tissue specificity and is highly regulated 

during development and in response to physiological signals [18-21]. Like mRNA 

transcripts, most lncRNAs are transcribed by RNA polymerase II and undergo further steps 

of processing, including splicing and polyadenylation. LncRNAs have been observed in the 

nucleus, the cytosol, or both [22], consistent with their roles in regulating diverse biological 

processes including transcription [23-25], cell differentiation [26, 27], tissue development 

[28, 29], and tumorigenesis/metastasis (Box 1) [18, 30, 31]. In the nucleus, lncRNAs may 

function as transcriptional coactivators through direct interaction with transcription factors 

[32, 33]. However, several lncRNAs have also been found to impair the assembly of 

transcriptional complexes, leading to inhibition of gene expression [34, 35]. The gene 

silencing activity of LncRNAs can be attributed to their recruitment of repressive chromatin-

remodeling complexes [23, 36], such as the Polycomb Repressive Complex 2 (PRC2) and 

the SWItch/Sucrose Non-Fermentable (SWI/SNF) complexes. Recent work demonstrated 

that lncRNAs facilitate the recruitment of PRC2 to chromatin, likely through association 

with multiple components of the PRC2 complex, including the Suppressor of zeste 12 
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homolog (SUZ12), Enhancer of zeste homolog 2 (EZH2), and Jumonji, AT rich interactive 

domain 2 (JARID2) [37, 38]. Some plant lncRNAs engage the SWI/SNF chromatin-

remodeling complexes to induce transcriptional silencing via a separate lncRNA-binding 

protein [39]. Interestingly, the lncRNAs H19 and lincRNA-RoR exert their post-

transcriptional effects on gene expression by serving as molecular sponges for microRNAs 

[40, 41].

Regulation of brown and beige adipocyte differentiation by lncRNAs

Adipose tissues play multifaceted roles in energy storage and expenditure, endocrine 

signaling, and immune-metabolic crosstalk. Compared to white adipocytes, brown 

adipocytes contain high mitochondrial content and express uncoupling protein 1 (UCP1), 

which dissipates chemical energy through heat production. Recent studies demonstrated that 

metabolically active brown adipose tissue (BAT) is present in adult humans [42-45], raising 

the prospect that augmenting brown fat abundance and/or function may provide an effective 

treatment of obesity and its associated metabolic disorders [46, 47]. While sharing key 

molecular and metabolic characteristics with the classical rodent BAT, brown fat in adult 

human appears to contain both classical and brown-like adipocytes [48-51], the latter has 

been termed beige or brite adipocytes [52-54]. In rodents, brown/beige fats appear to have 

distinct developmental origins [54-57]. The determination, differentiation, and metabolic 

functions of thermogenic adipocytes are under the control of a growing list of extracellular 

signaling cues, transcription factors and cofactors, and microRNAs [58-61].

The extent to which, lncRNAs are involved in the regulation of brown/beige fat 

development and function remained unexplored until recently. Using whole transcriptome 

RNA-Seq, a cluster of lncRNAs that exhibited differential expression during adipogenesis 

was identified, several of which appeared to be required for adipocyte differentiation [20]. 

Among these, linc-RAP-1 (Firre) physically interacts with heterogeneous nuclear 

ribonucleoprotein (hnRNP) U [62]. Using a microarray platform containing probesets that 

interrogate both protein-coding and lncRNA transcripts, lncRNA expression in brown and 

white adipose tissues upon inguinal white fat browning and during brown adipocyte 

differentiation was analyzed [33]. A cluster of 21 lncRNAs was identified as enriched in 

brown fat, highly induced during brown adipogenesis, and inducible during browning of 

white fat in response to the adrenergic agonist CL-316,243. Among this cluster of 

differentially regulated lncRNAs, brown fat lncRNA1 (Blnc1) was identified as a novel 

lncRNA that promotes brown and beige adipocyte differentiation and function. The Blnc1 

RNA transcript is primarily localized in the nuclear compartment, suggesting that it may 

play a role in transcriptional regulation.

Gain- and loss-of-function studies established Blnc1 as a potent activator of thermogenic 

adipocyte differentiation. Notably, transplantation of preadipocytes transduced with a 

recombinant Blnc1 retrovirus in nude mice resulted in the formation of fat pads reminiscent 

of brown fat, with Ucp1 expression reaching approximately one third of the levels observed 

in the endogenous brown fat. Whether Blnc1 is absolutely required for the development of 

brown adipose tissue and browning of white fat remains to be investigated using mice 

lacking Blnc1. Despite its stimulatory effects on brown and beige preadipocyte 
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differentiation, Blnc1 failed to promote differentiation of 3T3-L1 and C3H10T1/2 

progenitor cells into Ucp1-positive adipocytes, suggesting that Blnc1 may act during early 

adipogenesis and in mature adipocytes to exert its stimulatory effects on the thermogenic 

gene program. Mechanistically, Blnc1 physically interacts with early B-cell factor 2 (EBF2), 

a transcription factor recently found to regulate adipocyte differentiation and brown fat 

development [63, 64], and forms a ribonucleoprotein transcriptional complex to stimulate 

the expression of genes involved in fuel oxidation and uncoupled respiration. EBF2 also 

regulates the expression of Blnc1, forming a feedforward regulatory loop that likely serves 

as a potent switch for thermogenic adipocyte differentiation (Figure 2A).

More recently, RNA-Seq analysis of transcriptomes in different adipose tissues identified a 

cluster of brown fat-enriched lncRNAs [65]. Among these, Lnc-BATE1 was found to be 

induced during brown adipocyte differentiation and expressed at higher levels in BAT than 

WAT. Knockdown of Lnc-BATE1 by siRNA impaired differentiation of brown adipocytes, 

as revealed by decreased expression of brown fat markers and mitochondrial genes. 

Overexpression of Lnc-BATE1, however, failed to augment brown adipogenesis, suggesting 

that the levels of this lncRNA may not be limiting in thermogenic gene expression. 

Although lnc-BATE1 appeared to be equally distributed between the cytosol and nucleus, it 

physically interacts with the nuclear matrix factor hnRNP U, a factor required for brown 

adipocyte differentiation (Figure 2A). Interestingly, hnRNP U also interacts with Firre, 

another lncRNA involves in adipogenesis. Several profiling studies have been described to 

explore how lncRNA expression is regulated during thermogenic adipocyte development 

[66-68]. However, the significance of candidate lncRNAs in adipocyte biology remains 

unknown. It is likely that Blnc1 and Lnc-BATE1 are only a tip of iceberg that illustrates the 

important role of lncRNA regulators in brown and beige adipocyte development. In addition 

to lncRNA discovery, future work is needed to address the role of these lncRNAs in 

adipocyte metabolism and metabolic physiology.

LncRNAs and hepatic metabolism

Liver plays a central role in coordinating diverse metabolic processes, including glucose and 

lipid metabolism, bile acid synthesis, detoxification of xenobiotic compounds, and the 

secretion of numerous plasma proteins. Hepatic metabolism is highly regulated by 

nutritional, hormonal, and circadian signals to maintain whole body nutrient and energy 

homeostasis. Not surprisingly, dysregulation of hepatic metabolism has been implicated in 

the pathogenesis of several metabolic disorders in metabolic syndrome, such as 

hyperglycemia, dyslipidemia, and non-alcoholic fatty liver disease. Analysis of the 

transcriptome architecture of the liver by RNA-Seq revealed a large set of transcripts 

exhibiting circadian regulation, many of which were mapped to genomic loci corresponding 

to lncRNAs [21, 69]. The diurnal regulation of genome-wide transcriptional activities was 

further supported by rhythmic changes in chromatin marks and RNA polymerase II 

enrichment. Interestingly, the Period circadian clock 2 (Per2) locus was found to produce an 

antisense transcript (asPer2) that reached its peak levels in opposite phase to the Per2 

transcript peaks [21, 69]. Per2 encodes one of the core circadian clock proteins, and while 

the functional significance of asPer2 in circadian biology remains to be clarified, it is 
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reminiscent of another antisense transcript of the Neurospora clock component antisense 

frequency (Frq) [70].

Recent studies have demonstrated that lncRNAs are important regulators of hepatic 

metabolism and plasma lipid homeostasis (Figure 2B). Analysis of microarray data covering 

a panel of mouse tissues led to the identification of liver-specific triglyceride regulator 

(lncLSTR), a liver-enriched lncRNA [71]. In vivo knockdown of lncLSTR lowered plasma 

triglyceride levels through induction of Apolipoprotein C2 (ApoC2), which promotes 

lipoprotein lipase-mediated catabolism of triglyceride-rich lipoproteins. Further mechanistic 

studies indicated that lncLSTR physically interacts with TAR DNA-binding protein 43 

(TDP-43), a transcriptional repressor, to attenuate the expression of ApoC2 through a bile 

acid-mediated transcriptional regulatory pathway. In a separate study, an antisense transcript 

of ApoA1 (ApoA1-AS) was identified as an lncRNA that negatively regulates ApoA1 

expression [72]. Knockdown of ApoA1-AS increased ApoA1 gene expression, likely 

because of the recruitment of histone-modifying enzymes Lysine-specific demethylase 1 

(LSD1) and SUZ12 to the ApoA1 promoter. Oligonucleotides targeting ApoA1-AS 

significantly increased ApoA1 mRNA expression in hepatic cell lines and African green 

monkeys, illustrating the possibility that lncRNAs may serve as targets for RNA-based 

therapeutic intervention. Dysregulation of lncRNA expression has also been observed in 

hepatocellular carcinoma (HCC). For example, the expression of the lncRNA Highly Up-

regulated in Liver Cancer (HULC) was elevated in HCC [73]. HULC appeared to facilitate 

tumor cell growth in part through its induction of Acyl-CoA Synthetase Long-Chain Family 

Member 1 (ACSL1) and disruption of circadian clock function.

Despite the emerging role of lncRNAs in the regulation of liver clock and metabolism, their 

significance in liver biology awaits further studies using gain- and loss-of-function mouse 

models. In addition, how these lncRNAs interface with hormonal and nutritional signaling 

pathways in the liver remains an important unanswered question. It is possible that some 

lncRNAs may play a dominant role in nutrient signaling and that their expression levels 

dictate the downstream metabolic response. Alternatively, other lncRNAs may serve a more 

permissive function to facilitate metabolic adaptation in the liver.

Regulation of skeletal and cardiac muscle development and function by 

lncRNAs

Skeletal muscle is an important metabolic tissue, as it plays a major role in postprandial 

glucose disposal by increasing glucose uptake in response to circulating insulin. Skeletal 

myofibers generate ATP through a combination of glycolysis and mitochondrial oxidative 

phosphorylation to support the energetic demand of muscle contraction. Not surprisingly, 

muscle energy metabolism has significant implications in whole body energy homeostasis. 

Impaired muscle insulin action is an early hallmark of the metabolic derangements in 

metabolic syndrome. As such, skeletal muscle development and metabolism have been a 

major focus of numerous studies.

Several lncRNAs have been shown to regulate skeletal muscle development (Figure 3A). 

Linc-MD1 is a muscle-specific lncRNA that promotes skeletal myocyte differentiation by 

Zhao and Lin Page 5

Trends Biochem Sci. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



serving as a sponge for microRNAs, including miR-133 and miR-135 [27]. The inactivation 

of these microRNAs relieved their inhibitory effects on Mastermind-like protein 1 

(MAML1) and Myocyte-specific enhancer factor 2C (MEF2C), two pro-myogenic 

transcriptional regulators, leading to increased myogenesis. A subsequent study 

demonstrated that linc-MD1 interacts with the RNA-binding protein HuR, which regulates 

the accumulation of linc-MD1 during myocyte differentiation [74]. Similarly, MyoD 

upstream noncoding (MUNC) and H19 are two lncRNAs that also promote muscle 

differentiation. MUNC induces MyoD expression and myogenic genes expression through 

MyoD-dependent and independent mechanisms [75], whereas H19 induces skeletal myocyte 

differentiation through its induction of miR-675-3p and miR-675-5p, two microRNAs 

generated within the H19 locus [76]. For both MUNC and H19, in vivo knockdown studies 

showed that they play an important role in progenitor cell differentiation and muscle 

regeneration. In another study, a group of lncRNAs regulated by Yin Yang 1 (YY1), a 

transcription factor that represses multiple muscle genes were analyzed. Among these 

lncRNAs, YY-1 associated muscle lincRNA (Yam-1) expression was downregulated during 

differentiation and acted as an inhibitor of myogenesis through its cis regulation of miR-715/

Wnt7b signaling [77].

Cardiac muscle is extremely metabolically active and undergoes significant changes in its 

energy metabolism in disease states. Similar to skeletal myogenesis, lncRNAs also play an 

important regulatory role in cardiomyocyte differentiation and function (Figure 3B). 

Braveheart (Bvht) was identified as a heart-associated lncRNA that is essential for the 

progression from nascent mesoderm toward mature cardiomyocytes. Through interaction 

with PRC2 component SUZ12, Bvht epigenetically regulates mesoderm posterior 1 

(MesP1), a master regulator of multipotent cardiovascular progenitors, and activates a global 

cardiovascular gene network during cardiomyocyte differentiation [78]. LncRNAs also 

regulate the function and homeostasis of mature cardiomyocytes. Pathological stresses 

resulted in the inhibition of the lncRNA myosin heavy-chain-associated RNA transcript 

(Mhrt) expression in mice [79]. Moreover, transgenic expression of Mhrt protects the heart 

from hypertrophic response to stress stimuli, showing a functional role for Mhrt in 

cardiomyocyte biology. Mhrt was also downregulated in various types of myopathic hearts 

in humans, suggesting a potentially conserved role of this lncRNA in protection against 

cardiomyopathy. Another study demonstrated that the lncRNA autophagy-promoting factor 

(APF) regulates autophagy and myocardial cell death by targeting miR-188-3p and 

autophagy related 7 (ATG7) [80]. Knockdown of APF significantly reduced myocardial 

infarction sizes following ischemia/reperfusion-induced injury. Together, these studies 

underscore an important role of lncRNAs in skeletal and cardiac muscle development and 

function (Figure 3).

LncRNAs and islet function

Pancreatic islets serve a critical role in metabolic homeostasis through the secretion of key 

endocrine hormones such as insulin and glucagon. Recent RNA-Seq studies revealed an 

extensive collection of intergenic and antisense lncRNAs in mouse and human islets [81, 

82]. Many of them exhibited highly tissue-specific and regulated expression patterns during 

β cell differentiation and maturation. Interestingly, islet lncRNAs frequently map near 
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chromatin domains containing islet-specific coding genes, suggesting that protein-coding 

and lncRNA genes may share common regulatory elements to direct their expression in 

pancreatic islets. While lncRNA expression profiles in islets exhibit notable species 

specificity [83], HI-LNC25 was identified as a β cell-specific lncRNA conserved between 

mouse and human. HI-LNC25 regulates the expression of GLI-similar 3 (GLIS3) (Figure 

4A), a susceptibility gene for type 1 and type 2 diabetes, suggesting that HI-LNC25 may 

potentially play a role in the development of diabetes [82]. The expression of a subset of 

islet lncRNAs was altered in type 2 diabetes, whereas some lncRNAs were mapped to 

genetic loci that influence the susceptibility to diabetes. Given that many disease-associated 

genetic variations are mapped to intergenic regions, it is possible that the metabolic 

consequences of some of the variants may be due to their influences on lncRNA expression 

and/or function.

Regulation of immune response by lncRNAs

Chronic low-grade inflammation has emerged as an important pathogenic link between 

obesity and metabolic disease [84-88]. Obesity-associated adipose tissue inflammation is 

characterized by a robust shift of adipose tissue macrophages from alternatively activated to 

classically activated subtypes [89, 90]. This shift from anti-inflammatory to 

proinflammatory macrophage polarization is likely an early event during the development of 

insulin resistance. Accumulating evidences suggest that lncRNAs play an important role in 

modulating multiple aspects of immune responses [91] (Figure 4B). Using RNA-Seq, the 

expression profiles of bone marrow-derived macrophages isolated from control and leptin 

receptor-deficient (db/db) obese mice were analyzed [92]. The lncRNA transcript 

E330013P06 was found to be significantly elevated in macrophages from db/db and diet-

induced insulin resistant mouse models. Overexpression of E330013P06 in macrophage 

cells augmented cytokine signaling and proinflammatory gene expression, whereas RNAi 

knockdown elicited opposite effects. Whether E330013P06 plays a role in obesity-

associated adipose tissue inflammation and metabolic dysregulation remains currently 

unknown. Nevertheless, these findings illustrate the dysregulation of the non-coding genome 

in obesity and its potential contribution to the pathogenesis of metabolic disorders.

LincRNA-Cox2 was discovered as a member of a cluster of lncRNAs that was stimulated in 

response to inflammatory stimuli through the activation of Toll-like receptors in bone 

marrow derived macrophages (BMDM) [93]. Interestingly, lincRNA-Cox2 exerts both the 

activation and repression on different target genes, in part through its interaction with 

hnRNPs. Another lncRNA, p50-associated COX-2 extragenic RNA (PACER) originated 

from the upstream promoter region of the COX-2 gene locus was found to interact with p50, 

a repressive subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-

κB), upon induction of COX-2 expression [94]. This PACER/p50 association leads to the 

assembly of active NF-κB transcriptional complexes that stimulate Cox-2 gene expression 

and the inflammatory response. In two separate studies, cytokine-inducible NF-κB 

interacting lncRNA (NKILA) and a pseudogene lncRNA (Lethe) were identified to play a 

negative feedback regulatory role in proinflammatory cytokine signaling [95, 96]. NKILA 

inhibits IκB phosphorylation, leading to suppression of NF-κB activation, whereas Lethe 

attenuates DNA binding and transcriptional function of the NF-κB subunit RelA. Further, a 
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panel of lncRNAs were identified as differentially regulated in response to innate activation 

in the macrophage cell line THP-1 [97]. Among these, Tumor necrosis factor α (TNFα) and 

hnRNP L related immunoregulatory LincRNA (THRIL) interacts with hnRNP L and 

regulates the expression of TNFα and other genes involved in immune response. Together, 

these studies demonstrate that lncRNAs target multiple cytokine signaling and inflammatory 

response pathways. It would be of great interest to explore the potential pathogenic 

involvements of these lncRNAs in the pathogenesis of metabolic disease.

Potential role of LncRNAs in metabolic disease

Dysregulation of lncRNA gene expression has been implicated in several human diseases, 

such as Facioscapulohumeral muscular dystrophy [98], the HELLP Syndrome (Hemolysis, 

elevated liver enzymes, low platelets) [99], and the Angelman Syndrome [100]. The latter is 

a single-gene neurological disorder caused by maternal deficiency of the imprinted gene 

ubiquitin protein ligase E3A (UBE3A) in part through lncRNA-mediated gene silencing. 

Remarkably, antisense oligonucleotides targeting the UBE3A antisense transcript lowered 

its expression level, leading to reactivation of Ube3a gene expression and amelioration of 

cognitive deficits associated with the disease [100]. A compelling example of the 

involvements of lncRNAs in metabolic disease is Prader-Willi syndrome (PWS). PWS is a 

genetic disorder that causes childhood obesity and various neurological symptoms [101]. 

PWS results from loss of expression of paternally expressed genes located on the PWS 

region on chromosome 15 (15q11-q13), which contains multiple paternally expressed 

noncoding RNAs [102]. Interestingly, these lncRNAs are processed into a unique class of 

lncRNAs that are flanked by C/D box containing small nucleolar RNAs (snoRNAs) at the 5’ 

and 3’ ends (sno-lncRNAs) [103]. These PWS sno-lncRNAs appeared to accumulate near 

their sites of synthesis in the nucleus. Deletion of the host gene for these sno-lncRNAs 

increased energy expenditure in mice, likely due to altered expression of diurnally regulated 

genes in the brain, including the core clock and metabolic genes [104] (Figure 4A). The 

exact mechanisms through which the PWS lncRNAs regulate energy balance remain 

unknown at present.

Concluding remarks

LncRNAs are emerging as an important class of regulatory factors that control the 

development and function of metabolic tissues. Acting in concert with protein factors and 

other non-protein regulators, such as microRNAs, lncRNAs provide an unorthodox link 

through which genetic information is transmitted to influence biological processes in the 

cell. The discovery and functional study of individual lncRNAs are set to expand our 

horizon on the genetic mechanisms of metabolic homeostasis and disease. Several 

challenges and opportunities arise from the study of lncRNA biology in metabolic control 

(Outstanding Questions). First, the annotation of lncRNAs remains challenging and 

incomplete at present. Unlike protein-coding genes, lncRNAs exhibit a relatively low degree 

of nucleotide sequence conservation across species. In addition, lncRNAs may encode 

micropeptides that have important biological functions. As such, our ability to predict the 

structure of lncRNA molecules and their biological function remains limited. Second, 

lncRNAs likely exert their biological effects through diverse mechanisms, many of which 
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remain to be discovered. A critical question in the context of metabolic regulation is how 

lncRNAs interface with the classical nutrient and hormonal signaling pathways to control 

the development and function of various metabolic cell types. Given the highly regulated 

nature of lncRNA gene expression, it is likely that certain lncRNAs may emerge as “master” 

regulators of tissue development and energy metabolism. Finally, significant efforts are 

needed to deconvolute the role of lncRNA pathways in metabolic physiology and disease. 

Investigating highly conserved lncRNAs will arguably provide biological insights into the 

basic principles of lncRNA biology. In addition, the knowledge on conserved lncRNA 

pathways may prove relevant for human disease conditions.
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Box 1

Molecular and genetic tools for probing lncRNA biology

The expanding role of lncRNAs in biological regulation has spurred the development of 

experimental tools to dissect the molecular and functional aspects of lncRNA biology. To 

globally analyze chromatin occupancy by lncRNAs, Chromatin Isolation by RNA 

Purification (ChIRP) was developed to enrich endogenous lncRNA and its associated 

genomic targets [105]. Using chemical cross-linking and tiling biotinylated antisense 

DNA oligonucleotides for hybridization, this method is capable of generating high-

resolution maps of lncRNA binding sites on native chromatin. Using a similar approach, 

the ChIRP-mass spectrometry (ChIRP-MS) method was developed for identifying 

endogenous protein factors that associate with specific lncRNA by affinity purification 

followed by liquid chromatography (LC)-MS/MS [106]. RNA antisense purification 

(RAP) and capture hybridization analysis of RNA targets (CHART) are alternative 

methods for selective purification RNA complexes in order to map chromatin binding 

sites and interacting proteins [107, 108].

LncRNAs form extensive secondary structure through intramolecular base pairing. The 

presence of distinct structural motifs is critical for lncRNAs to assume their biological 

functions. Selective 2′-hydroxyl acylation and primer extension (SHAPE) provides a 

method for selective acylation of 2′-hydroxyls at single-stranded RNA regions but not at 

double-stranded regions [109]. This approach enables the interrogation of RNA structure 

at single-nucleotide resolution. To globally study RNA structure, parallel analysis of 

RNA structure (PARS) was developed using V1 and S1 RNA nucleases, which are 

specific for double- and single-strand RNA domains, respectively. Selective digestion of 

distinct RNA domains followed by deep sequencing provides a powerful tool for 

genome-wide interrogation of RNA structure [110]. More recently, domain-specific 

ChIRP (dChIRP) was successfully used for identifying the functional domain architecture 

of lncRNAs [111].

For functional analyses of lncRNAs, both gain- and loss-of-function expression 

constructs have been routinely used in mammalian cells and in mice [112-114]. 

Traditional RNAi and antisense oligonucleotides (ASO) can be used to efficiently 

suppress lncRNA expression [115]. With the development of CRISPR-Cas9 gene editing 

tools, the activation of endogenous lncRNA genes becomes feasible using a specific 

guide RNA and a Cas9 fused to a transcriptional activation domain [116]. More recently, 

a method combining CRISPR-Cas9 directed RNA targeting, called CRISPR-display, was 

developed to direct RNA domains, including natural lncRNAs, to specific genomic loci 

[117]. This method allows multiplexed targeting of various RNA modules to different 

locations in the genome.
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OUTSTANDING QUESTIONS BOX

• How can we comprehensively annotate lncRNA genes and accurately predict 

their molecular functions? To what extent are lncRNA sequence and function 

conserved among different species?

• How are lncRNAs integrated with hormonal and nutrient signals to control 

metabolic tissue development, plasticity, and function? How do lncRNAs and 

protein factors work in concert to exert effects on epigenetic modification and 

metabolic gene expression?

• What are the physiological roles of lncRNAs in the regulation of glucose and 

lipid metabolism and whole body energy balance? What is the extent to which 

altered lncRNA expression contributes to metabolic disorders in animal models 

and humans? A major challenge is to develop tools to target lncRNAs to alter 

the course of metabolic disease progression.
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TRENDS BOX

• LncRNAs exhibit tissue-specific and highly regulated expression patterns and 

are frequently dysregulated in disease states;

• LncRNAs regulate diverse biological processes through the formation of 

lncRNA-protein and lncRNA-miRNA complexes to control gene expression and 

function;

• LncRNAs regulate metabolic tissue development and function, including 

adipogenesis, hepatic lipid metabolism, islet function, and energy balance;

• LncRNAs are important regulators of skeletal and cardiac muscle development 

and immune response;
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Figure 1. Different classes of lncRNAs
LncRNA genes can be classified into divergent, intronic, sense, antisense, and intergenic 

groups according to their location relative to the nearby protein-coding genes.
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Figure 2. Regulation of thermogenic adipocyte differentiation and hepatic metabolism by 
lncRNAs
(A) Regulation of brown and beige adipogenesis by lncRNAs Blnc1 and lnc-BATE1. Blnc1 

is highly induced during brown and beige adipocyte differentiation and physically interacts 

with EBF2 to promote thermogenic adipocyte differentiation through a feedforward 

regulatory loop. Lnc-BATE1 is enriched in brown fat, associates with hnRNP U, and is 

required for brown adipogenesis. (B) Regulation of hepatic metabolism by lncRNAs. 

LncLSTR regulates hydrolysis of plasma triglycerides by LPL through modulating ApoC2 

expression in the liver. APOA1-AS is an antisense transcript that originates from and 

regulates the expression of genes within the APOA1/C3/A4/A5 cluster. HULC modulates 

lipid synthesis and tumor growth through its regulation of PPARα-ACSL1 expression. 

LncRNAs were shown in blue, microRNAs were shown in white, proteins were shown in 

grey. The abbreviations are as the following: Brown fat lncRNA 1 (Blnc1), Early B-cell 

factor 2 (EBF2), β-adrenergic receptor (βAR), Heterogeneous nuclear ribonucleoprotein 

(hnRNP) U, Liver-specific triglyceride regulator (lncLSTR), TAR DNA-binding protein 43 

(TDP-43), Farnesoid X receptor (FXR), Lipoprotein lipase (LPL), Antisense transcript of 

ApoA1 (ApoA1-AS), Lysine-specific demethylase 1 (LSD1), Suppressor of zeste 12 

homolog (SUZ12), Highly Up-regulated in Liver Cancer (HULC), Peroxisome proliferator-

activated receptor α (PPARα), Acyl-CoA Synthetase Long-Chain Family Member 1 

(ACSL1) and Retinoid X Receptor α (RXRα).
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Figure 3. Regulation of skeletal and cardiac muscle development and function by lncRNAs
(A) Regulation of skeletal myogenesis by lncRNAs. Lnc-MD1 serves as a sponge for 

microRNAs that target myogenic regulators MEF2C and MAML1. MUNC regulates 

myogenesis through MyoD-dependent and independent mechanisms. The H19 lncRNA 

transcript induces two microRNAs that antagonize the inhibitory effects of Smad on 

myocyte differentiation. Yam-1 is a target gene of the transcription factor YY1 that 

negatively regulates skeletal myogenesis. (B) Regulation of cardiac myocyte development 

and function by lncRNAs. Bvht promotes cardiovascular lineage commitment and is 

required for activation of a core cardiovascular gene network through the regulation of 

MesP1. Mhrt is cardiac-specific lncRNA transcripts that responds to pathologic stress in the 

heart and plays a protective role in cardiomyopathy. APF promotes autophagic cell death 

and myocardial infarction through its regulation of ATG7. LncRNAs were shown in blue, 

microRNAs were shown in white, proteins were shown in grey. The abbreviations are as the 

following: Myocyte-specific enhancer factor 2C (MEF2C), Mastermind-like protein 1 

(MAML1), MyoD upstream noncoding (MUNC), Yin Yang 1 (YY1), Brave heart (Bvht), 

Suppressor of zeste 12 homolog (SUZ12), Mesoderm posterior 1 (MesP1), Myosin heavy-

chain-associated RNA transcript (Mhrt), Brahma-related gene 1 (Brg1), Autophagy-

promoting factor (APF) and Autophagy Related 7 (ATG7).
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Figure 4. Regulation of other metabolically relevant cell types by lncRNAs
(A) HI-LNC25 is a β cell-specific lncRNA that is required for maintaining the expression of 

GLIS3. The sno-lncRNAs originated from the PWS locus modulate energy balance through 

their actions in the central nervous system. (B) Regulation of immune response by lncRNAs. 

LincRNA-Cox2 and PACER are two lncRNAs originated from the Cox2 gene locus that 

regulate cytokine signaling. E330013P06 is regulated by nutrients in macrophages and 

promotes inflammatory signaling. NKILA and Lethe are both cytokine-inducible lncRNAs 

that serve as negative feedback regulator of NF-κB. THRIL mediates the induction of TNFα 

gene expression in macrophages in response to proinflammatory stimuli. LncRNAs and 

protein were shown in blue and grey, respectively. The abbreviations are as the following: 

GLI-similar 3 (GLIS3), Prader-Willi syndrome (PWS), Toll-like receptor (TLR), 

Heterogeneous nuclear ribonucleoprotein (hnRNP), p50-associated COX-2 extragenic RNA 

(PACER), Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), NF-κB 

interacting lncRNA (NKILA), LncRNA pseudogene (Lethe), Tumor necrosis factor α 

(TNFα) and TNFα and hnRNP L related immunoregulatory LincRNA (THRIL).
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