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Abstract

Growth is a complex trait determined by the interplay between many genes, some of which play a role at a specific 
moment during development whereas others play a more general role. To identify the genetic basis of growth, natural 
variation in Arabidopsis rosette growth was followed in 324 accessions by a combination of top-view imaging, high-
throughput image analysis, modelling of growth dynamics, and end-point fresh weight determination. Genome-wide 
association (GWA) mapping of the temporal growth data resulted in the detection of time-specific quantitative trait 
loci (QTLs), whereas mapping of model parameters resulted in another set of QTLs related to the whole growth curve. 
The positive correlation between projected leaf area (PLA) at different time points during the course of the experiment 
suggested the existence of general growth factors with a function in multiple developmental stages or with prolonged 
downstream effects. Many QTLs could not be identified when growth was evaluated only at a single time point. Eleven 
candidate genes were identified, which were annotated to be involved in the determination of cell number and size, 
seed germination, embryo development, developmental phase transition, or senescence. For eight of these, a mutant 
or overexpression phenotype related to growth has been reported, supporting the identification of true positives. In 
addition, the detection of QTLs without obvious candidate genes implies the annotation of novel functions for under-
lying genes.

Key words:   Arabidopsis thaliana, genome-wide association mapping, growth dynamics, GWAS, natural variation, PLA, plant 
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Introduction

Plant growth is a dynamic process that is influenced by the 
many external and internal signals which the plant receives. 
For growth, a plant needs light and carbon dioxide to per-
form photosynthesis to produce sugars, which are the build-
ing blocks and energy source for many processes in the plant. 
In addition, the plant needs water and nutrients to be able to 
produce nucleotides, proteins, and metabolites. Transport of 
sugars and other essential molecules from source to sink is 
important during all stages of growth. Perturbation of these 
source–sink relationships by changes in the environment 
or due to the genetic composition of the plant may lead to 

changes in biomass accumulation. A better knowledge of the 
genetic factors that are involved in growth regulation would 
help in the understanding of the mechanisms underlying dif-
ferent growth patterns as observed in nature. Such dynamic 
patterns are better understood when growth and its regula-
tion are studied over time, instead of at a single time point 
(Leister et al., 1999; Granier et al., 2006; Tessmer et al., 2013).

Growth is orchestrated precisely and is controlled by many 
genes. The functional importance of most growth-related 
genes is not equal during all developmental stages and in 
all tissues, and many display specific temporal and spatial 
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expression profiles (Schmid et al., 2005). In addition, some 
genes play an essential role in the overall development of the 
plant, whereas others are mainly important if  the plant has 
to cope with specific environmental conditions (Geng et al., 
2013). These tightly regulated genes form a robust network 
that enables the plant to complete its life cycle under many 
different circumstances.

Growth patterns of plants may differ widely between spe-
cies (Westoby et al., 2002), but also within the same species 
(Koornneef et al., 2004; Alonso-Blanco et al., 2009; Zhang 
et  al., 2012). Within species, the observed variation can be 
caused by differences in the local environment or can be 
due to natural genetic variation. This genetic variation is a 
result of random mutation and meiotic recombination, and 
can result in plants that, as a result of centuries of selection, 
are adapted to the local environment. The growth differences 
observed between and within species indicate that the regula-
tion of growth is not only robust, but also genetically vari-
able. Natural variation of growth within the same species can 
be used to search for genes regulating growth (Alonso-Blanco 
et  al., 2009). When growth phenotypes are determined in 
mapping populations, which are genotyped with many mark-
ers, linkage between genotypes and phenotypes can be identi-
fied by statistically testing the association between molecular 
markers and the observed phenotypes. Many mapping stud-
ies have been performed for plant growth and size resulting 
in the identification of many quantitative trait loci (QTLs) 
(Alonso-Blanco et al., 1999; El-Lithy et al., 2004; Lisec et al., 
2008; Chardon et al., 2014). However, in those mapping stud-
ies, biomass was determined at the end of the experiment to 
evaluate the differences in growth (end-point measurements). 
As a result, only major players in the regulation of growth, 
such as genes that orchestrate the transition from a vegeta-
tive to a generative state (e.g. FLC) (Kowalski et al., 1994) or 
genes related to dwarf growth (erecta locus or ga20ox1) have 
been cloned and confirmed (Komeda et  al., 1998; Barboza 
et al., 2013). However, most of these major players were iden-
tified in experimental mapping populations in which only a 
few QTLs segregate or are artificially introduced (e.g. erecta). 
Additional players explaining a large part of the plant size 
variation observed in nature seem to be scarce. The mapping 
studies suggest that growth is a complex trait and that many 
genes are involved in the regulation of the accumulation of 
biomass. Genome-wide association (GWA) mapping studies 
might help to identify these genes because a much larger frac-
tion of a species’ diversity is analysed.

Because growth is a dynamic process, the timing of the end-
point measurement will greatly influence the outcome of the 
mapping (El-Lithy et al., 2004). High-throughput automated 
phenotyping creates the possibility to follow the growth, or at 
least the two-dimensional (2D) expansion, of plants over time 
in a non-invasive way (Furbank and Tester, 2011). For plants 
with a 2D structure, such as rosettes of Arabidopsis, the chal-
lenge for high-throughput imaging is not only the capturing 
of pictures, but also the automatic image analysis. Different 
approaches dealing with this issue have been described: a 
pipeline to determine automatically rosette size (Hartmann 
et al., 2011), rosette size and compactness (Arvidsson et al., 

2011), rosette shape (Camargo et  al., 2014), or rosette size 
accounting for leaf overlap (Tessmer et al., 2013). The next 
challenge is how to use the additional information present in 
these time-series data for mapping purposes. Several ways in 
which data collected over time can be combined with map-
ping have been described, but no standard approach is agreed 
upon. The simplest approach is to treat data of different time 
points as unrelated traits and perform mapping for each time 
point separately, here referred to as univariate mapping of 
trait per time point (Moore et  al., 2013; Wurschum et  al., 
2014). This approach resulted in the identification of time-
specific QTLs for root bending upon a change in the direction 
of gravity in Arabidopsis (Moore et al., 2013) and for plant 
height in wheat (Wurschum et al., 2014). Another approach is 
to perform a two-step procedure. First a growth model is fit-
ted to the growth data, after which the model parameters that 
describe the characteristics of growth are used in a standard 
mapping approach, here referred to as univariate mapping of 
model parameters (Heuven and Janss, 2010). This approach 
resulted in the detection of QTLs for the leaf elongation 
rate in maize (Reymond et  al., 2004). A  similar approach 
was used to perform mapping on germination data, result-
ing in, for example, the detection of QTLs that are related 
to uniformity of germination (Joosen et  al., 2010). Finally, 
growth data collected over time can be analysed with multi-
variate mapping approaches (Ma et al., 2002; Malosetti et al., 
2006; Yang et  al., 2011). The mapping power of multivari-
ate approaches is higher, because they take into account that 
growth data collected over time and the derived parameters 
may be correlated, while univariate methods ignore this fact 
(Wu and Lin, 2006). Multivariate mapping can be done in a 
two-step approach in which a growth model is fitted to the 
growth data, after which the model parameters are used in 
a multivariate mapping approach (Korte et  al., 2012). This 
can also be applied in a one-step approach that uses one sta-
tistical model in which the molecular marker information 
and the parameters of a growth model are both included 
(Ma et al., 2002). A multivariate approach was, for example, 
used to detect QTLs for progression of senescence over time 
in potato (Malosetti et al., 2006), for leaf age based on the 
length and number of leaves emerging over time in rice (Yang 
et  al., 2011), and for stem diameter in poplar (Ma et  al., 
2002). Univariate methods can be performed with standard 
mapping software packages, while multivariate mapping 
requires dedicated software (http://statgen.psu.edu/software/
funmap.html; Korte et  al., 2012), which has hampered the 
adaptation of multivariate mapping by a broad community. 
Although each of the described methods has its own draw-
backs, they clearly show that mapping of data collected over 
time results in the identification of QTLs that would not have 
been detected if  only single-point measurements were used as 
input for the QTL analyses.

Here, a series of analyses that enable the observation of 
growth dynamics by automatic imaging are described. It 
will be shown that top-view imaging of Arabidopsis plants 
in combination with high-throughput image analysis can be 
used to follow rosette growth over time in a large and diverse 
population of natural accessions. It will further be shown 
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that comparison of accessions demonstrating a large varia-
tion in developmental rate and in plant size can be done by 
modelling of growth. In addition, GWA mapping on tempo-
ral plant size data was performed using univariate and mul-
tivariate mapping approaches. Time-specific growth QTLs 
were detected by performing univariate GWA mapping for 
each time point separately, whereas general QTLs related to 
growth rate during the course of the whole experiment were 
identified by performing univariate and multivariate GWA 
mapping on the growth model parameters. Finally, candidate 
genes involved in the regulation of growth could be indicated.

Materials and methods

Plant material
A collection consisting of 324 natural accessions of Arabidopsis 
thaliana was used to investigate the growth of rosettes over time 
(Supplementary Table S1 available at JXB online). These accessions 
were selected to capture most of the genetic variation present within 
the species (Baxter et al., 2010; Li et al., 2010; Platt et al., 2010). 
Each accession was genotyped with ~215 000 single nucleotide poly-
morphism (SNP) markers (Col versus non-Col) (Kim et al., 2007).

Experimental set-up
The PHENOPSIS phenotyping platform was used to perform the 
experiments (Granier et al., 2006). The climate conditions within the 
growth chambers of PHENOPSIS are precisely regulated, prevent-
ing differences in growth because of position in the chamber. The 
plants were grown in four adjacent independent experiments each 
containing 84 accessions (four rounds) (Supplementary Table S1 at 
JXB online). Each experiment contained three replicates of a com-
pletely randomized block (three blocks), including four reference 
accessions grown in each experiment: Col-0 (CS76113), KBS-Mac-8 
(CS76151), Lillo-1 (CS76167), and Wc-2 (CS28814). Note that the 
reference accessions (checks) were used to correct for round effects, 
as all other accessions were only analysed in one of the four experi-
ments. Cylindrical pots (9 cm high, 4.5 cm in diameter) filled with a 
mixture (1:1, v/v) of a loamy soil and organic compost were used, 
and the seeds (at least two per pot) were sown directly on the soil. 
The seeds and pots were subjected to cold treatment (4 °C) directly 
after sowing. To enable harvesting of the rosettes within a time 
frame of 1.5 h, the three blocks were transferred from the cold to the 
growth chamber (PHENOPSIS, 16 h light, 125 μmol s–1 m–2, 70% 
humidity, 20/18 °C) on sequential days, 4, 5, or 6 d after sowing. The 
day the plants were transferred to PHENOPSIS was denoted as day 
1. The water content of the soil was kept at 0.35–0.40 g H2O g–1 dry 
soil by robotic weighing and watering the pots twice a day. After 2 
weeks, the plants were thinned to one plant per pot.

A separate experiment was performed to determine whether the 
accessions were summer or winter annuals. All accessions (three rep-
licates) were grown on rockwool blocks in the greenhouse and were 
watered regularly. The flowering time of the first replicate of each 
accessions was recorded. Accessions that flowered within 75 d were 
called summer annuals; accessions that did not flower within this 
period were called winter annuals.

Determination of rosette growth traits
All plants were inspected daily for visible signs of bolting, and bolt-
ing dates were recorded (Supplementary Table S1 at JXB online). 
At day 24, the largest leaf of each plant was harvested. The fresh 
weight (FW) and dry weight (DW) of the leaves were determined 
to calculate the water contents (WCs) by WC=(FW–DW)/FW. At 
day 28, the rosettes were harvested and the FWs were determined. 

Rosette growth was monitored by taking pictures from above twice 
a day. These pictures were processed in ImageJ using the macros 
developed for PHENOPSIS. All pictures and the ImageJ macros are 
publically available on PHENOPSISDB (Fabre et al., 2011; http://
bioweb.supagro.inra.fr/phenopsis). The projected leaf area (PLA) 
of each plant was determined semi-automatically on days 8, 11, 14, 
16, 18, 20, 22, 24, 25, 26, 27, and 28. When more than one plant 
was present in a pot before thinning, the largest one close to the 
middle of the pot was taken for analysis. For each individual plant, 
the growth, based on PLA, was modelled using three functions: 
two functions describing indeterminate growth by an exponential 
curve, Expo1 and Expo2; and one function describing determinate 
growth by a S-curve, Gom (Table 2). The optimal parameter values 
were estimated using the Growth Fitting ToolboxTM of MATLAB 
with the following settings. Expo1: optimization algorithm, ‘Trust-
Region’; fitting method, non-linear least square; bounds, r [0, Inf]. 
Expo2: optimization algorithm, ‘Trust-region’; fitting method, non-
linear least square; bounds, A0[0,Inf], r[0,Inf]. Gompertz: optimi-
zation algorithm: ‘Levenberg–Marquardt’; fitting method, robust 
linear least square, using bisquare weights; bounds, Amax[0,20000], 
b[0,60], r[0,Inf]. Goodness of fit indicators (SSE, r2, and RMSE) and 
95% confidence intervals of the parameters of all three models were 
calculated in MATLAB (Supplementary Table S2). Based on these 
data and the principle of parsimony, Expo2 was chosen as the best 
model and was therefore used for further analysis; fits with r2<0.9 
(11 out of 965) were excluded from further analysis. The removal 
of the largest leaf from day 24 onwards was not corrected for when 
the fresh weight of the rosette and the model parameters were deter-
mined because plants rapidly compensated for this loss.

Statistical analysis
GWA mapping was performed on the FW at day 28, PLA at days 
8, 11, 14, 16, 18, 20, 22, 24, 25, 26, 27, and 28, and the estimated 
model parameters of Expo2. For all traits, adjusted means for 
each accession were obtained with GenStat by fitting the following 
mixed model:
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where Check refers to a factor in which reference accessions Col-0 
(CS76113), KBS-Mac-8 (CS76151), Lillo-1 (CS76167), and Wc-2 
(CS28814) were distinguished from the other accessions, Accession 
refers to the 324 different accessions analysed, Round is a factor 
with four variables corresponding to the four experiments of 84 
accessions, and Block is a factor with three variables correspond-
ing to the three replicates within each round. The terms Checks 
and Accessions within Round were assumed fixed to obtain Best 
Linear Unbiased Estimates (BLUEs), and all the remaining terms 
were considered random effects as they are all essentially different 
sources of experimental error due to Round, Blocks within Rounds 
(and the interaction with check genotypes), and residual varia-
tion. GWA mapping was performed on the predicted means using 
the EmmaX software package for R, which is based on Kang et al. 
(2010). A mixed model was used that corrects for population struc-
ture, based on the kinship matrix of all SNPs. SNPs with a minor 
allele frequency <0.05 were excluded from the analysis. The param-
eters ‘A0’ and ‘r’ of  model Expo2 were also mapped together using 
a Multi Trait Mixed Model (MTMM) approach (Korte et al., 2012; 
El-Soda et al., 2015). Pearson correlations were used to determine 
correlations between data series. To calculate the correlation between 
traits, the corrected means were used. Broad-sense heritabilities were 
obtained with GenStat by fitting the same model as above. This time 
the term Check was assumed fixed and all the remaining terms were 
considered random effects. Broad-sense heritability at the mean level 
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was calculated as: H2=Vg/(Vg+Ve/r), where Vg is the genetic variance 
(Accessions), Ve is the error variance, and r is the number of repli-
cates for each accession in each experiment (r=3).

Differences in FW between the rosettes of plants that were bolting 
at day 28 and plants that were still vegetative, and between summer 
and winter annuals were determined using a t-test assuming non 
equal variances and α=0.05.

Additional analyses
For each of the candidate genes, the annotations and gene ontology 
(GO) terms were retrieved from TAIR10 (arabidopsis.org).

Results and Discussion

Capturing the dynamics of growth by top-view imaging

A large-scale experiment was performed in the plant pheno-
typing platform PHENOPSIS (Granier et al., 2006). A total 
of 324 natural accessions of A. thaliana were grown and their 
rosette sizes were monitored over time by capturing top-view 
pictures daily (Supplementary Table S1 at JXB online). The 
plant architecture of the vegetative stage of Arabidopsis makes 
this species very suitable for top-view imaging. Because the 
rosette grows in a horizontal plane, it can be approached as a 
2D structure the size of which can be determined accurately 
from top-view images. Top-view imaging of Arabidopsis 
rosettes was first reported in the 1990s (Leister et al., 1999), 
but became suitable for large populations only recently due 
to advances in the automation of image analysis (Berger 
et  al., 2010; Arvidsson et  al., 2011; Tessmer et  al., 2013). 

Although at the moment low-cost, high-throughput meth-
ods are available to determine the genome of an organism 
and genetic information is available for many species and for 
many mutants and natural accessions, the plant science com-
munity lags behind in the high-throughput measurements of 
phenotypes (Houle et al., 2010). In this experiment, top-view 
imaging in combination with high-throughput image analy-
sis allowed the determination of the rosette size of plants of 
324 accessions in triplicate at 11 time points during growth. 
PLA was determined from day 8 onwards and the experiment 
was ended before too many leaves were overlapping (Fig. 1). 
On day 8, all seeds had germinated, the cotyledons were 
unfolded, but the first true leaves were not yet visible. As the 
growth rate increased during the course of the experiment, 
the interval between the time points of PLA determination 
was decreased, from a 3 d interval in the second week to a 
1 d interval in the fourth week, to ensure that dynamics in 
growth were accurately captured. Because diurnal leaf move-
ment was observed, PLA was always determined within 2 h 
after the start of the light period. This analysis is one of the 
first steps in the detailed characterization of the phenomes of 
these natural accessions (Furbank and Tester, 2011). Similar 
approaches can also be used in the future to characterize fur-
ther the phenomes of these natural accessions by perform-
ing similar experiments when plants are grown in different 
and possibly less favourable conditions, such as short days or 
under abiotic or biotic stress. For much smaller sets of acces-
sions, similar experiments have previously been performed, 
but to be able to use the phenotypes in mapping studies much 

Fig. 1.  (A) Images of one of the replicates of CS28014 (Amel-1), a representative accession, at all time points included in the analyses. (B) Pictures 
processed by ImageJ to determine the projected leaf area (PLA). Pictures were segmented based on colour, saturation, and brightness, and thereafter 
made binary. Particles which were too small (<120 pixels) were excluded from the analysis. In the images of days 8, 11, and 14, more than one plant is 
present, but only the remaining one (days 16 and onwards) is taken into account for PLA determinations.

http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv176/-/DC1
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larger populations need to be screened (El-Lithy et al., 2004; 
Granier et al., 2006). Growth was determined not only by dif-
ferences in PLA over time, but also at the end of the experi-
ment by measuring the FW of the rosettes.

For PLA and FW, large natural variation was observed, 
28–70% of which could be explained by genetic differences 
(Table  1). Broad-sense heritability (H2) of PLA increased 
over time (Table  1), most probably because determination 
of the PLA of small plants was less accurate than that of 
larger plants. These data demonstrate that top-view imaging 
of Arabidopsis is a powerful method to compare plant size 
and growth rate in large panels of plants which differ not only 
in size but also in developmental traits such as flowering time 
(Li et al., 2010), number of leaves, and leaf emergence rate 
(Granier et al., 2006; Tisné et al., 2010). FW at the end of the 
experiment correlated positively with PLA at the end of the 
experiment (r2=0.95), as shown earlier (Leister et al., 1999). 
This high correlation is also reflected in almost equal H2 of 
FW and PLA at day 28 (H2=0.69 and H2=0.70, respectively). 
FW also correlated with PLA in weeks 2 and 3 (Fig. 2). In the 
last week of the experiment leaves started to overlap, and var-
iation for this trait was observed between accessions. Despite 
this increase in overlap over time, the correlation between 
FW on day 28 and PLA on the sequential measuring dates 
increased over time, reaching the highest correlation on day 
27 (r2=0.96). This correlation suggests the existence of gen-
eral growth factors whose effects are visible at the phenotype 
level during a large part of the plant’s life cycle. Seedling size 
at day 8, when the cotyledons are unfolded but the first true 
leaves are not yet visible, is for a large part determined by 

seed size, germination rate, and the capacity of the seedling to 
establish. The correlation of PLA during the experiment also 
suggests that the effects of genes involved in the regulation of 
these processes are visible at the phenotype level when seed-
lings develop into plants with many leaves. The water status 
of the plant was evaluated by the determination of the WC 
of the largest leaf on the 24th day. A proper water status is 
important for the plant to maintain growth. WC was high for 
all plants (between 0.85 and 0.95), indicating that in the con-
ditions used here the water status was not limiting for growth. 
This corresponds to small variation in WC observed in a col-
lection of 20 accessions (El-Lithy et al., 2004). Significant but 
very weak correlations were observed between WC and A0, 
r, FW, and PLA on days 8, 27, and 28, whereas the correla-
tion between WC and plant size on other days was not sig-
nificant. Because of the low variation observed, WC did not 
play a prominent role in determining growth differences in 
this experiment. Because PLA of the rosette was on average 
doubled during the last 4 d of the experiment, it was decided 
not to correct for the absence of the largest leaf. In the growth 
curve of some accessions between day 24 and 25, a dip is 
observed; however, for many accessions, this dip was hardly 
visible, suggesting a huge compensation investment in the 
growth of the remaining leaves. Without correction for the 
absence of the leaf, the growth modelling resulted in very reli-
able curve fits for Expo2 and Gom, indicating that the growth 
rate was hardly influenced by the removal of the largest leaf.

Natural variation in bolting time was also observed among 
the accessions analysed (Supplementary Table S1 at JXB 
online). Plants that started bolting before the end of the 
experiment were significantly larger than vegetative plants. 
A  similar pattern was observed when plants were classified 
as winter or summer annuals, the first of which require ver-
nalization to flower. Summer annuals, many of which flow-
ered at day 28, were significantly larger than winter annuals, 
none of which was flowering in this experiment. Winter annu-
als germinate in autumn and survive winter as small plants, 
for which fast growth is not a priority (Gazzani et al., 2003; 
Grennan, 2006). Summer annuals, on the other hand, germi-
nate in spring and have to finish their life cycle before the dry 
and hot summer period, and fast growth might, therefore, be 
an advantage. When grown in optimal growing conditions, 
these properties may result in the observed differences in size.

Comparison of models to describe early 
vegetative growth

To be able to quantify the dynamics in rosette growth over 
time, growth was modelled using different mathematical 
functions (Table 2; Supplementary Table S2 at JXB online). 
Determinate growth (i.e. growth that terminates before the 
end of the life cycle of an organism) can in many cases be 
described by a sigmoid function (S-curve). Rosette growth of 
Arabidopsis is known to be determinate, following such an 
S-curve (Boyes et  al., 2001). S-curves are characterized by 
an accelerating phase, a linear phase, and a saturation phase 
(Fig. 3A). Within the linear phase, which is not really linear, 
but can be approached by a linear function, the inflection 

Table 1.  Natural variation and broad-sense heritabilities for 
growth traits and growth model parameters

 Days Average Minimum Maximum SD H2

FW (g) 28 0.26 0.01 0.74 0.12 0.69
PLA (mm2) 8 6 1 42 3 0.28

11 15 3 48 7 0.52
14 36 4 153 16 0.51
16 61 6 185 29 0.52
18 110 8 362 54 0.55
20 188 21 590 91 0.55
22 314 14 986 153 0.59
24 495 32 1438 235 0.62
25 520 27 1627 257 0.61
26 640 40 2041 312 0.62
27 769 43 2450 362 0.65
28 911 52 2832 417 0.70

Expo2: A0 5.33 0.21 47.22 4.49 0.63
r 0.19 0.10 0.31 0.02 0.28

FW, fresh weight of rosettes (g); PLA, projected leaf area of rosette 
(mm2); Expo2, growth model using an exponential function with two 
parameters, r (growth rate) and A0 (initial size and magnification factor); 
days, days after transfer from cold to the climate room; Average, 
Minimum, Maximum, SD, average value, minimum value, maximum 
value, and standard deviation observed for the indicated trait on the 
indicated date; individual plants are used instead of averages per 
accession; H2, broad-sense heritability, H2=Vg/(Vg+Ve/r), where Vg is 
the genetic variance, Ve is the error variance, and r is the number of 
replicates for each accession in each experiment (r=3).

http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv176/-/DC1
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point ‘K’ is located. At ‘K’, the curve changes from increasing 
growth to decreasing growth. Near the end of the acceleration 
phase, which can be approached by an exponential function, 
the point of maximal acceleration ‘s1’ is located. Near the 
beginning of the saturation phase, the point of maximal decel-
eration ‘s2’ is reached and, thereafter, the growth gradually 
stops and the final rosette size ‘Amax’ is reached. Determinate 
growth was modelled using the Gompertz function (Gom), 
which results in an S-curve (Gompertz, 1825; Winsor, 1932) 
(Table 2). This function is a slightly modified form of the basic 
logistic function, which was first described by Pierre Verhulst 
in 1838 (Verhulst, 1838). The modifications of the basic logis-
tic function change this basic symmetric growth curve into 
an asymmetric one. The Gompertz function used here con-
tains three parameters: ‘Amax’, the final rosette size; ‘b’ that 
determines the position of the curve along the time axis; and 
‘r’ that determines the growth rate at the inflection point ‘K’ 
(Table 2). The combination of these three parameters deter-
mines on which day ‘s1’, ‘s2’, and ‘K’ are reached. As the 
growth curves fitted with Gom were investigated, none of the 

plants in this experiment reached ‘Amax’ and only 4% reached 
‘s2’within the window of the experiment. Even ‘K’ and ‘s1’ 
were not reached by the majority of the plants: for 89% of the 
plants ‘K’ was not reached before day 28 and for 57% of the 
plants ‘s1’ was not reached before day 28. This means that for 
most plants the collected data points are located in the accel-
erating phase and the beginning of the linear phase of the 
growth curve, implying that the plants had not yet entered the 
saturation phase. This was expected for the plants that had 
not yet bolted, but for the 30% of the plants that were bolting 
on the last day it was expected that they would have reached 
at least the saturation phase, because earlier studies reported 
that Arabidopsis rosettes reach the final size when they start 
to flower (Boyes et al., 2001). Because most plants were in the 
acceleration phase even on the last day of the experiment, 
the growth was modelled not only with the Gompertz curve 
that describes determinate growth, but also with models that 
describe indeterminate growth (e.g. exponential growth). 
The simplest indeterminate growth model used was based 
on an exponential function (Expo1) with one parameter 
‘r’, which represents the growth rate (Table  2). This model 
assumes that the growth rate is equal during the whole growth 
period and that the initial size (A0) is 1 (Table 2). Exponential 
growth was also modelled with a function (Expo2) with two 
parameters, growth rate ‘r’ and the initial size (A0) (Table 2; 
Supplementary Table S2). A0 not only represents the start-
ing value, but it is also a magnification factor. This means 
that for two plants with equal ‘r’ and a factor two difference 
in A0, plant size is also a factor of two different during the 
whole experiment. To illustrate the use of the three models, 
data from two plants that showed determinate and indeter-
minate growth were used for curve fitting (Fig. 3B–D). The 
plant with determinate growth is representative for 11% of 
the plants in which growth reached ‘K’ within the course 
of the experiment (Fig.  3B). The plant with indeterminate 

Fig. 2.  Pearson correlations between fresh weight of rosettes (FW) at the end of the experiment (day 28), projected leaf area (PLA) over time (day 8 till 
28), and parameters ‘r’ and ‘A0’ of the growth model Expo2. r2-values are given in the left lower part of the figure, whereas corresponding P-values are 
given in the right upper part of the figure. Blue and red indicate positive and negative correlations, respectively. The stronger the intensity of the colour, 
the stronger the correlation.

Table 2.  Mathematical functions used to model growth and their 
properties

Model Formula Description 
parameters

Remarks

Expo1 PLA=er×t r: growth rate A0=1
Expo2 PLA=A0×er×t A0: initial size A0 is also a 

magnification 
factor

r: growth rate

Gompertz PLA = × − × − ×
A e b e r t

max Amax: final rosette size Limits used for 
fitting of data: 
Amax=20 000, 
b=60

b: position along the 
time axis
r: growth rate at 
inflection point ‘K’
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growth is representative for the 56% of the plants for which 
growth did not reach ‘s1’ within the course of the experiment 
(Fig. 3C, D).

For each model, the goodness-of-fit was evaluated (Fig. 4; 
Supplementary Table S2 at JXB online). As expected, r2 was 
on average higher when more parameters were introduced 
into the model (Supplementary Table S2). Expo1 predic-
tions were in general too low at small PLA and too high at 
large PLA (Fig.  4), which indicates that this model is too 
simplistic. Interestingly, the differences in goodness-of-fit 
between Expo2 and Gom were not large, emphasizing that 
most plants in this experiment do not reach ‘K’ and that the 
growth rate thus does not decrease significantly during the 
duration of the experiment. So, for most plants in this experi-
ment, determinate growth cannot be concluded from the 
PLA data collected. This was supported by the smaller con-
fidence intervals for the parameters of Expo2 compared with 
the parameters of Gom (Supplementary Table S2). For Amax 
in particular, very large confidence intervals were observed. 
Based on Fig.  4, the confidence intervals and the principle 
of parsimony, stating that the simplest of two competing 
models is to be preferred, Expo2 was chosen to be used in 
the GWA analyses. This model is counter-intuitive because 
it describes indeterminate growth, while it is known that the 

Arabidopsis rosette follows determinate growth (Leister et al., 
1999). In this case, a model describing determinate growth, 
such as the Gompertz function, results in parameters that 
are more informative (or speculative) for growth outside 
than inside the experimental window. Growth models that 
describe an S-curve always contain a parameter representing 
the final rosette size, and the other parameters that are esti-
mated are dependent on that parameter. In the present case, 
Gom, which describes an S-curve, would have functioned as 
a (not very reliable) predictive model instead of a descrip-
tive model as was aimed for. If  curve fitting using the growth 
model results in reliable fits, as it did for most plants in this 
experiment, it allows for comparison of plants which differ in 
developmental timing, growth rate, and plant size. However, 
this comparison only leads to valuable insight if  the right 
model is chosen. Conclusions based on a non-optimal model 
should be interpreted carefully as they can easily become very 
speculative (Tessmer et al., 2013).

Quantification of growth dynamics by exponential 
growth model parameters

Moderate to high heritabilities was observed for the growth 
parameters estimated by Expo2 (Table  1), indicating that 

Fig. 3.  Modelling of growth using three mathematical functions, Expo1, Expo2, and Gom (see Table 2 for details). (A) S-curve as a model for determinate 
growth consisting of three phases: the acceleration phase, the linear phase, and the saturation phase. The S-curve has three characteristic points: the 
inflection point ‘K’ where the growth changes from increasing to decreasing, the point of maximal acceleration ‘s1’, and the point of maximal deceleration 
‘s2’. (B) Data and curve fits for line CS76226 (Se-0), representative for the 11% of the plants for which the growth curve reached ‘K’. The data were 
fitted to the three models. It is shown that even if the inflection point ‘K’ is reached, model Expo1 and Expo2, which both assume indeterminate growth, 
resulted in good fits. (C) Data and curve fits for line CS76308 (ZdrI2-25), representative for 56% of the plants for which the growth curve did not reach 
‘s1’. The data were fitted to the three models. (D) Magnification of (C) allowing better comparison of the various models for the time window of the 
experiment.
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these growth characteristics are determined partly by the 
genotype. The parameter ‘r’ of  Expo2 is weakly correlated 
with plant size in week 2 and week 3, but no correlation was 
observed with plant size at the end of the experiment (Fig. 2). 
This indicates that the growth characteristic represented by 
this parameter goes beyond simple information about plant 
size. The model assumes a certain growth pattern and, given 
the parameters, describes exactly how this growth takes place. 
So the mathematical function used in the model expresses the 
overall shape of the growth curve shared by all the data. The 
details of the growth curve, determined for each individual 
plant, are described by a specific set of model parameters. 
Parameter ‘A0’, which represents the initial size of the plant, is 
positively correlated with plant size in weeks 2, 3, and 4. This 
is in accordance with the observation that the size of the plant 
at different time points is highly correlated throughout the 
whole experiment. Natural variation is observed for seed size 
and seed germination (Schmuths et al., 2006; Vallejo et al., 
2010; Herridge et al., 2011), and these traits have also been 
determined for the accessions used in this experiment (Joosen 
et  al., 2013). Correlation between A0 and PLA determined 
in this experiment and the seed traits reported by Joosen 
et  al. (2013) is limited: only weak (r2 between 0.1 and 0.3) 
but significant correlations were found for seed size (dry and 
imbibed), but not for germination traits. The environment in 
which the parental plant matures has a large impact on seed 
weight and germination rate (Elwell et al., 2011), and there-
fore differences between seed batches are expected. Thus, the 
germination rate could have influenced plant size in the pre-
sent experiment, although no correlation was found between 
seed germination traits measured in Joosen et al. (2013) and 
PLA and A0 determined in this experiment. A strong negative 
correlation was found between the two model parameters ‘A0’ 
and ‘r’ (r2= –0.71), which can partly be explained by the fact 
that a relatively high value for A0 (A0>10) was never found in 
combination with a relatively high r (r>0.20) (Supplementary 
Fig. S1 at JXB online). This has to do with the bounda-
ries of the natural variation. Probably, for Arabidopsis, too 

rapid growth is not favourable in nature and therefore gene 
combinations that would lead to both a large A0 and a large 
value for r, and hence would result in enormous plants, are 
not selected for. In addition, enormous plants are probably 
also physically not possible. Taking all these correlations into 
account, it can be concluded that determination of growth 
over time and subsequent modelling of growth results in the 
quantification of growth dynamics that provide insight into 
the growth patterns that could not have been obtained from 
single time point measurements.

Added value of dynamic growth modelling in GWA 
mapping

To identify the genetic basis of growth, GWA mapping was 
performed on PLA data (12 different dates), FW data (end 
point), and on the parameters derived from the selected 
growth model Expo2 (Fig.  5). Parameters of models with 
fits of r2<0.9 (11 out of 965)  were excluded to avoid bias 
in detected associations due to outliers created by poor fits. 
PLA, FW, and model parameters were mapped as independ-
ent traits, even though they display covariance. The two 
parameters of Expo2, ‘r’ and ‘A0’, were also mapped simulta-
neously using an MTMM approach, which takes covariance 
of parameters into account (Korte et al., 2012). In total, 26 
SNPs were highly associated [–log(P)>5] with one or more 
of the traits. One of these SNPs was associated with FW, 13 
SNPs were associated with PLA, and 12 SNPs were associ-
ated with the model parameters. For each of these 26 strongly 
associated SNPs, an association profile was made to identify 
whether associations were specific for a trait or time point, 
or whether they were more general (Fig.  6). SNPs display-
ing a profile with strong associations for FW and PLA over 
time were not or only moderately associated with the Expo2 
parameters (Fig.  6B). For example, the association profile 
of two SNPs at chromosome 5 at 8.8 Mb was moderate to 
high for PLA at weeks 3 and 4 [–log(P) between 3.88 and 
5.11], moderate for FW [–log(P)=3.85], and low for model 

Fig. 4.  Comparison of the goodness-of-fit for the three growth models used: exponential function with one (Expo1) or two (Expo2) parameters, and 
Gompertz function (Gom). Plot of the measured PLA on days 8, 11, 14, 16, 18, 20, 22, 24, 25, 26, 27, and 28 against the predicted PLA on the same 
days. The black line represents y=x (PLA measured=PLA predicted).
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parameters [–log(P)<2]. This trend was also observed con-
versely, although some SNPs that were highly associated 
with model parameters were also found to be moderately to 
highly associated with PLA at some time points (Fig. 6). For 

example, the association profile of the SNP at chromosome 
3 at 1.2 Mb that was high for parameter ‘A0’ [–log(P)=6.15] 
and for the multitrait analysis of ‘r’ and ‘A0’ [–log(P)=5.33] 
was also high for PLA in the third week [–log(P) between 

Fig. 5.  Genome-wide association (GWA) mapping of FW, PLA, and parameters of growth model Expo2. Univariate GWA analyses were performed for all 
traits; in addition, the model parameters ‘r’ and ‘A0’ were also analysed together in an MTMM-GWA approach. A Manhattan plot of the –log(P) marker–
trait association for FW, PLA, and model parameters of Expo2 is shown. PLAs on the different days are represented by one value; for each SNP, only 
the –log(P) value of the day with the highest association is plotted. Univariate analyses of ‘r’ and ‘A0’, and the MTMM analyses of ‘A0’ and ‘r’ jointly are 
also represented by one value; for each SNP, only the –log(P) value of the analysis with the highest association is plotted. The total number of tested SNP 
markers was 214 000, but only the ~10 000 SNPs with –log10(P)>2 are plotted. The dotted line indicates the arbitrary threshold of –log(P)=5.

Fig. 6.  Association profiles of SNPs that were identified by GWA mapping to be highly associated with the traits FW, PLA over time, and Expo2 model 
parameters. Each number in the columns with heading ‘FW’ or ‘PLA (mm2)’ represents the association found by univariate GWA mapping of growth trait 
by time point as indicated at the top of the column (FW at day 28 or PLA on one of the indicated days) and the SNP at the position indicated in the first 
two columns. In the last three columns, with the heading ‘Expo2’, the numbers indicate the association found between SNPs and parameters of model 
Expo2. Columns with the heading ‘Expo2: A0’ and ‘Expo2: r’ refer to univariate GWA mapping of model parameters ‘A0’ and ‘r’ respectively, and the 
column with heading ‘Expo2: full’ refers to multivariate GWA mapping of both growth model parameters. All SNPs with –log(P)>5 for at least one trait are 
shown. The intensity of the grey colour corresponds to the strength of the association. Curly brackets indicate that associated SNPs are located within 
10 kb and are considered as one QTL.
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4.01 and 4.97]. Remarkably, SNPs that were highly associ-
ated with model parameters were never associated with FW 
at day 28. This emphasizes that the model parameters reveal 
characteristics of growth that would not have been detected 
if  only final plant size data were considered. Growth model-
ling, therefore, resulted in the detection of QTLs that would 
not have been found otherwise. Nonetheless, GWA mapping 
of model parameters cannot replace GWA mapping of plant 
size data, because both methods resulted in the detection of 
unique, highly associated, SNPs. SNPs that were selected 
because of strong association with PLA at a specific time 
point had an association profile for PLA that was relatively 
high [–log(P)>2] during the whole course of the experiment. 
This observation is in accordance with the significant positive 
correlation between PLA at different time points throughout 
the experiment (Fig. 2). These data indicate that the growth 
phenotype of a plant is the result of the interplay of many 
different genes and that the composition or contribution of 
this set of growth factors will change during the develop-
ment of the plant. Some genes only play a role at a specific 
time point, whereas other more general regulators may have 
a function in growth for a longer period. Many transcrip-
tion factor are, for example, known to be expressed in both 
a developmental time-specific and a tissue-specific manner 
(Turnbull, 2011), whereas their influence on plant develop-
ment is visible during several developmental stages and, in 
other tissues, due to the expression of downstream targets. 
Similarly, levels of phytohormones are tightly regulated 
over time, whereas prolonged downstream effects are often 
observed (Schachtman and Goodger, 2008). The relative 
effect size of these regulators might change over time as a 
result of the dynamic balance between different regulatory 
components during development. The effect of these general 
growth factors will, therefore, only be large enough at specific 
time periods to be detectable with GWA mapping. SNPs that 
were selected because of strong association with PLA at a 
specific time point may, therefore, point to genes that play a 
role at a very specific period of development, but they may 
also point to more general regulators. If  plant size had only 
been measured at one time point, many of these time-specific 
associations would not have passed the threshold, and thus 
would have been missed. Most striking is the observation that 
only one SNP was strongly associated [–log(P)>5] with FW 
at day 28, so if  growth was only evaluated by end-point FW 
determination, all except one of the associations would have 
been missed. Thus, the analyses therefore show that evalu-
ation of growth over time is more powerful to identify the 
underlying genetic factors than the evaluation of growth by 
end-point measurements. This is especially true when many 
small effect genes, whose relative contribution may change 
over time, are underlying the trait of interest.

Novel candidate genes for growth dynamics

Because GWA mapping was done in a natural population of 
accessions with strong linkage disequilibrium (LD) decay, 
causal genes are expected to be located in close proximity to 
the associated SNPs. Because the LD decay in Arabidopsis 

is on average 10 kb (Kim et al., 2007), significant SNPs that 
were located within this distance from each other were con-
sidered to be associated with the same causal gene. This 
approach resulted in 11 QTLs for the model parameters and 
another 11 QTLs for FW and PLA over time (Fig. 6). Genes 
that were located within a support interval of 10 kb upstream 
and downstream from these QTLs were selected for further 
analyses (Table 3; Supplementary Table S3 at JXB online). It 
is known that LD decay is not equal along the whole genome 
and that the causal gene can, therefore, be located outside the 
10 kb window. However, even in studies of linkage mapping 
in recombinant inbred line (RIL) populations, the confirmed 
causal genes were in most cases located very close to the asso-
ciated marker even when the support interval was large (Price, 
2006). For QTLs represented by multiple SNPs in close prox-
imity, the support window was taken 10 kb upstream of the 
first SNP to 10 kb downstream of the last SNP, therefore 
candidate genes in such QTLs could be located >20 kb apart. 
For example, the two associated SNPs on chromosome 4 
at 13.5 Mb are located 6.3 kb from each other, so candidate 
genes for this QTL can be located 26.3 kb from each other. 
Large differences were observed in gene density in the sup-
port windows, ranging from two up to 12 genes (Table 3). As 
expected, the number of genes was in general higher in the 
support window of QTLs that represent multiple associated 
SNPs. In total, 97 genes were selected, 41 for QTLs associ-
ated with model parameters and 56 for QTLs associated with 
plant size.

The annotation of the 97 genes within the support windows 
was analysed and the 17 genes with GO terms ‘developmen-
tal processes’ and the 13 genes with GO term ‘transcription’ 
(TAIR10) were studied in more detail. Both GO terms were 
not significantly over-represented within the candidate genes 
(Plant GSEA; Yi et  al., 2013). Over-representation is not 
expected for common GO terms, because only one or a few 
causal genes at most are expected per QTL and therefore only 
a limited number of the 97 candidates genes will be causal. 
All other genes are presumed to be randomly distributed 
over GO categories. The QTL on chromosome 4 at 13.5 Mb 
illustrates the significance of the present findings. This QTL 
contains two SNPs that are highly associated with plant size 
in weeks 2 and 3, and moderately associated with plant size 
in week 4 (Fig.e 6). A weak association with these SNPs was 
also found in the univariate GWA mapping of parameter 
‘A0’ and the multivariate analyses of ‘A0’ and ‘r’. Within the 
support interval of this QTL, 12 genes are located, only two 
of which are annotated to be involved in plant development 
and none is a transcription factor. The first gene, AT4G26760 
(MAP65-2), is involved in post-embryonic root development 
(Lucas and Shaw, 2012) and axial cell growth in hypocotyls 
(Lucas et al., 2011). This gene is most closely located to one 
of the associated SNPs, at only 2.1 kb. Double mutants of 
this gene and the closest homologue AT5G55230 (MAP65-1) 
show retarded growth, and therefore AT4G26760 is a strong 
candidate for the causal gene underlying this QTL. The sec-
ond gene, AT4G26740, is only expressed in the embryo and 
plays a role in the breakdown of oil bodies. Directly after ger-
mination, mutants show a delay in growth, but this does not 
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affect biomass accumulation at a later stage and, therefore, 
this gene is less likely to be the causal gene. However, a role 
in natural variation of plant size cannot be excluded for this 
gene, because no accessions other than Columbia have been 
analysed, and redundancy in function may be present (Briggs 
et al., 2006). Two other genes in the region encode unknown 
proteins, and the remaining genes play roles in processes that 
are not directly linked to biomass accumulation. To confirm 

that AT4G26760 is responsible for the observed natural vari-
ation in growth, it is necessary to perform experiments in 
which more accessions other than Columbia are investigated. 
Exchange of alleles between natural accessions can be a pow-
erful tool to identify allele-specific growth phenotypes. The 
QTL on chromosome 1 at 24.6 Mb demonstrates that follow-
up research of GWA mapping is not straightforward. This 
QTL contains the strongest associated SNP identified in this 

Table 3.  Information about the support window around the 26 SNPs that are highly associated with the growth traits [–log(P)>5]

The order of SNPs corresponds to those in Fig. 6 to enable easy comparison of the data presented. Bold indicates that associated SNPs are 
located within 10 kb and can be considered as one QTL.

chro-
mo- 

some 

posi-
tion 
(Mb) 

max -log(p) # genes   Candidate genes 

FW   
+     

PLA Expo2 

within   
10 kb 

window 

with 
unknown 
biological 
function Code Name + process involved 

1 24.6 3.70 6.22 5 3

3 0.6 3.40 5.55 5 4

3 1.2 4.97 6.15 4 2
AT3G04460, 
PEX12 

role in peroxisome formation, mutant embryo-
lethal, RNAi knock down results in slower 
development (Fan et al., 2005). 

3 4.4 0.94 5.61 
5 0

AT3G13540, 
MYB5 

role in seed coat formation and trichome 
morphology, mutation of gene has no effect on 
plant growth (Li et al., 2009) 

3 4.4 0.78 5.52 AT3G13550, 
CIN4 

mutant embryo-lethal, weak alleles result in 
stunted growth (Vogel et al., 1998) 

3 7.2 2.96 5.37 4 2
AT3G20550, 
DAWDLE 

role in seed germination, mutation of gene results 
in slower growth and later flowering (Morris et al.,
2006). 

4 9.6 2.51 5.40 4 1

5 14.9 3.56 5.87 3 1
AT5G37600, 
GSR1 

role in leaf senescence, knock-down of isoform 
(AT1G66200) results in reduced biomass 
accumulation (Lothier et al., 2011).

5 18.3 4.26 6.11 2 0
5 18.3 4.10 5.82 2 1
5 18.5 3.13 5.06 5 3
5 19.4 4.06 5.32 2 0

1 17.5 6.10 3.82 2 0
1 23.7 5.18 3.15 4 0
1 24.4 5.56 2.37 

8 7
1 24.4 5.50 2.19 

2 14.6 5.17 2.16 3 1
AT2G34650, 
PINOID 

mutant shows abnormal flower development, 
longer and wider leaves, delayed senescence 
(Bennet et al., 1995) 

3 6.8 5.11 1.49 6 1

4 6.5 5.72 2.41 4 2

4 13.5 5.43 3.54 

12 2

AT4G26740, 
ATS1 

role in oil-body breakdown, mutant shows delay in 
development directly after germination, but no 
effect on biomass was observed later (Poxleitner et 
al., 2006). 

4 13.5 6.10 2.93 

AT4G26760, 
MAP65-2 

post-embryonic root development and axial cell 
growth, double mutant with map65-1 (AT5G55230) 
results in retarded growth (Lucas et al., 2011 and 
2012). 

5 4.0 5.11 2.58 6 3

AT5G12840, 
NF-YA1 

overexpression leads to abnormal embryogenesis 
and seed development, as a consequences plants 
have retarded growth and delayed flowering time 
(Mu et al., 2013) 

5 8.8 5.11 1.80 
3 0

AT5G25380, 
CYCA2-1  

core cell cycle gene, coordinate cell proliferation 
and endoduplication, mutant has no 
morphologicalo visual phenotype (Yoshizumi et al.,
2006). 

5 8.8 5.11 1.80 AT5G25390, 
SHN3 

over-expression leads to smaller plants with higher 
drought tolerance (Aharoni et al., 2004) 

5 16.4 5.15 2.34 3 1
5 16.6 5.16 2.60 5 2
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experiment [–log(P)=6.22]. Strong association was found for 
univariate GWA mapping of parameter ‘A0’ and the multivar-
iate analyses of ‘A0’ and ‘r’, and weak associations were found 
with PLA in weeks 2 and 3. Three genes with unknown func-
tion and two genes related to defence are located in the sup-
port interval. Additional information about gene expression 
or the phenotypes of mutant or overexpression lines is needed 
to be able to prioritize these genes and finally confirm the 
causal gene. This is a laborious and time-consuming process, 
which is probably the reason why not very many non-obvious 
candidates have been confirmed in GWA mapping as yet.

Because a weak relationship was noticed between growth 
rate and flowering time, the candidate gene list was also 
screened for genes involved in the regulation of  flowering. 
Only one of  the 97 candidate genes was related to flower-
ing time (Table 3; Table S3 at JXB online). Mutants of  this 
gene [i.e. DAWDLE (AT3G20550)] show delayed flowering 
and slower growth (Morris et  al., 2006). This corresponds 
to the observation that plants that bolted within the experi-
mental time were larger than those that had not yet bolted. 
DAWDLE stabilizes the hairpin formation of  microRNAs 
(miRNAs; Yu et  al., 2008). Three miRNAs influence the 
expression of  FT and SOC1 (Yamaguchi and Abe, 2012), 
two key players in the flowering time regulatory network 
downstream of FLC. The SNP associated with DAWDLE 
(chromosome 3, 7.2 Mb) was only identified in the MTMM 
analyses of  A0 and r simultaneously, which is probably the 
reason why this gene was not identified previously in any 
RIL or GWA mapping study regarding flowering time or 
biomass. Atwell et  al. (2010) found a strong association 
between flowering and FLC using a natural population of 
95 accessions, of  which four are overlapping with the present 
set, confirming allelic differences for FLC between natural 
accessions (Gazzani et  al., 2003; Guo et  al., 2012). In the 
present study, a weak association [–log(P)=3.19] was found 
between plant size on day 27 and an SNP (chromosome 5 
pos 95343751) in LD with SNPs in FLC. However, the popu-
lation is very diverse and, consequently, sequence variation 
for many other flowering time genes is expected. This might 
be the reason why the association between FLC and plant 
size is not stronger.

For one-third of the genes within the support windows, no 
biological function has been annotated (34 genes, TAIR10). 
GWA mapping is an approach that is not hypothesis driven 
but rather data driven. It aims to find genes that contribute to 
the explanation of variation observed for a trait, without the 
need to know the pathway or mechanism by which the phe-
notype and the genotype are correlated. GWA mapping is a 
powerful method to find novel functions for genes, or to iden-
tify functions of unknown genes. Unfortunately, such new 
functions have hardly been reported yet, because most studies 
that report associations identified by GWA mapping are not 
coupled with studies to confirm candidate genes. Therefore, 
the attention in GWA mapping studies is biased towards 
genes whose functions are already known, and the genes 
with unknown biological functions are given less attention. 
However, in the field of plant sciences, a report of the confir-
mation of an unknown gene identified by GWA mapping was 

recently published (Meijon et al., 2014) and hopefully many 
publications will follow soon.

In summary, considering all 97 candidate genes, 11 are 
annotated to play a role in the determination of  cell num-
ber, cell size, seed germination, embryo development, tran-
sition from the vegetative to generative stage, or senescence. 
For eight of  these genes, a mutant or overexpression phe-
notype related to growth has been reported. These eight 
genes are located in the support window of  eight QTLs, 
four of  which were associated with model parameters and 
four with plant size (see details in Table 3). This emphasizes 
that mapping of  growth model parameters is complemen-
tary to the mapping of  plant size data at several time points 
separately. For none of  the eight candidates are growth 
dynamics reported, and it is therefore not known whether 
allelic variants affect growth from the start, only in a spe-
cific developmental stage, or from a specific developmen-
tal stage onwards. Therefore, additional temporal growth 
and gene expression data need to be collected to determine 
whether the candidate genes play a time-specific or a gen-
eral role in plant growth regulation. For none of  the genes 
in the support window of  the other 13 QTLs has a mutant 
or overexpression phenotype related to biomass accumu-
lation been reported yet. These findings indicate that the 
observed associations are likely to be true positives and that 
many more genes are involved in growth regulation than are 
currently known.

Conclusions

Here, a series of  analyses are described that started with 
the observation of  growth dynamics by automatic imaging 
and that, by subsequent image analysis, growth modelling, 
and GWA mapping, resulted in the indication of  candidate 
genes involved in growth regulation. Top-view imaging of 
Arabidopsis plants in combination with high-throughput 
image analysis allowed rosette growth to be followed over 
time in a large and diverse population of  natural accessions. 
During the experiment, most rosettes were in the accelera-
tion and linear phase of  growth, which could be modelled 
best by an exponential function (Expo2) describing indeter-
minate growth. Modelling ensured proper comparison of  the 
diverse panel of  accessions demonstrating large variations in 
the rate of  development and in plant size. To identify the 
genetic basis of  growth, GWA mapping was performed on 
PLA data (12 different dates) and FW data (end-point), and 
on the parameters derived from the growth model Expo2. 
This resulted in the detection of  22 growth QTLs which were 
highly associated [–log(P)>5] with the growth traits. Many 
of  these QTLs would not have been identified if  growth had 
only been evaluated at a single time point. Eight candidate 
genes were identified for which a mutant or overexpression 
phenotype related to growth has previously been reported, 
suggesting that the identified QTLs are true positives. For 
some QTLs, no obvious candidates were found, opening up 
the way to identify new functions for underlying genes or to 
annotate unknown underlying genes by performing follow-
up experiments.

http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv176/-/DC1
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Supplementary data

Supplementary data are available at JXB online.
Figure S1. Scatter plot of the Expo2 model parameters ‘A0’ 

and ‘r’.
Table S1. Projected leaf area, fresh weight, model param-

eters of Expo2, water content, and bolting at day 28 of 324 
natural accession of Arabidopsis grown in the PHENOPSIS 
Phenotyping platform in three replicates.

Table S2. Model parameters, 95% confidence intervals, and 
goodness-of-fit data of three replicates of 324 natural acces-
sion of Arabidopsis.

Table S3. TAIR10 gene description of the 97 candidate genes.
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