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Abstract

Genetic studies of response to water deficit in adult trees are limited by low throughput of the usual phenotyping 
methods in the field. Here, we aimed at overcoming this bottleneck, applying a new methodology using airborne mul-
tispectral imagery and in planta measurements to compare a high number of individuals.
An apple tree population, grafted on the same rootstock, was submitted to contrasting summer water regimes over 
two years. Aerial images acquired in visible, near- and thermal-infrared at three dates each year allowed calculation of 
vegetation and water stress indices. Tree vigour and fruit production were also assessed. Linear mixed models were 
built accounting for date and year effects on several variables and including the differential response of genotypes 
between control and drought conditions.
Broad-sense heritability of most variables was high and 18 quantitative trait loci (QTLs) independent of the dates were 
detected on nine linkage groups of the consensus apple genetic map. For vegetation and stress indices, QTLs were 
related to the means, the intra-crown heterogeneity, and differences induced by water regimes. Most QTLs explained 
15−20% of variance.
Airborne multispectral imaging proved relevant to acquire simultaneous information on a whole tree population and 
to decipher genetic determinisms involved in response to water deficit.

Keywords:   Malus×domestica, multispectral imagery, quantitative trait locus (QTL), surface temperature, thermal infrared, 
vegetation index.

Introduction

According to current climate change models for the 21st cen­
tury, an increase in global mean temperatures is expected, with 
longer or more frequent episodes of extreme temperatures 

and drought, notably in the Mediterranean basin (IPCC, 
2014). Climate change will lead to reconsideration of bree­
ding programmes for many crops, and optimization of water 
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use by improving the plant water use efficiency and/or the  
tolerance to drought will become an increasingly important 
issue (Hamdy et  al., 2003; Condon et  al., 2004). Although 
plant behaviour in response to drought can be analysed in 
terms of survival (McDowell et  al., 2008), it more usually 
refers to the ability of one genotype to yield better than 
another under more or less severe water deficit. However, 
while breeding programmes in fruit species have not yet 
included drought tolerance among the targeted traits, some 
authors consider that tree response to water scarcity will 
become a crucial character to consider (Bassett, 2013).

Plants have developed various mechanisms to cope with 
drought that depend on the duration and intensity of the 
water deficit, and their responses occur at different temporal 
and spatial scales, from cell to whole tree level (Jones et al., 
2002). One first response to soil drought is stomatal closure, 
an avoidance mechanism mediated by the hormone abscisic 
acid (Pantin et al., 2013). A main consequence of stomatal 
closure is the decrease in CO2 influx and assimilation, which 
can lead to carbon depletion. When transpiration is reduced 
by stomatal closure, the outgoing water vapour flux and the 
latent heat dissipation are also reduced. Stomatal closure 
thus induces an increase in leaf temperature with a risk of 
heat stress (Tardieu, 2005). However, efficiency of stomatal 
regulation is variable according to species and Tardieu and 
Simonneau (1998) have shown that plants display contrasting  
transpiration behaviours (isohydric vs anisohydric) in 
response to drought. At the intra-specific level, genetic vari­
ability of stomatal regulation has also been highlighted in 
apple (Massonnet et al., 2007; Liu et al., 2012) and grapevine 
(Marguerit et al., 2012; Coupel-Ledru et al., 2014).

As leaf or canopy temperature can be used as a proxy 
for stomatal conductance, thermal infrared (TIR) imagery 
appears as a powerful tool to reveal genetic variability of sto­
matal behaviour (Jones et al., 2009). Numerous indices have 
been developed to assess crop water stress from canopy sur­
face temperature (Ts) with data acquired in signal or imagery 
mode, from aerial platforms (satellites, aircrafts, unmanned 
aerial vehicles) or sensors installed directly in the field to 
observe crop canopies (White et al., 2012). Ts minus air tem­
perature (Ta) is a raw variable that is easy to extract from 
images, but it is sensitive to rapid changes in environmental 
conditions such as radiative conditions, wind speed and air 
vapour pressure deficit (Maes and Steppe, 2012).

The presence of mixed soil/plant pixels is a recurring  
problem when TIR imagery is applied to phenotyping of 
heterogeneous covers (Hackl et al., 2012; Jones and Sirault, 
2014). It is generally considered that using the vegetation sur­
face temperature directly is risky, because the weight of mixed 
or soil image pixels yielded in porous plant covers can create 
a shift towards the soil surface temperature (Jackson et al., 
1981). To overcome the limitations of environmental and soil 
influence on Ts, Moran et al. (1994) developed a Water Deficit 
Index (WDI) based on the Vegetation Index−Temperature 
(VIT) trapezoid concept, which is applicable to field crops 
with varying contributions of bare soil in the aggregated ther­
mal pixels. This index is particularly suitable for estimation 
of transpiration rates on heterogeneous vegetation cover. It 

has been successfully related to the soil moisture and to the 
plant midday stem water potential (Köksal, 2008; Virlet et al., 
2014). Different authors indicated that the use of aerial vec­
tors (ultralight aircraft or unmanned aerial vehicle) coupled 
with high resolution sensors enables to distinguish the indi­
vidual trees within a plant grove, even in the TIR waveband 
where image resolution is low (Berni et  al., 2009; Stagakis 
et  al., 2012). Moreover, the intra-crown Ts variability has 
also been used in tree crops as complementary indicator of 
moderate water stress effect (González-Dugo et  al., 2012), 
confirming previous work that considered leaf temperature 
distribution as better indicator of stress than its average 
(Fuchs, 1990).

Apart from TIR imagery, plant cover can be characterized 
by different vegetation indices based on the combination of 
spectral reflectances measured in visible and near-infrared 
(NIR) wavebands (Zarco-Tejada et al., 2005). These indices 
can possibly be acquired by broadband commercial sensors 
(Lebourgeois et  al., 2008). In the remotely-sensed image, 
reflectance in the Red band is affected by light absorption of 
leaf pigments (mainly chlorophyll a), while the NIR waveband 
is affected by the scattering in the medium (Zarco-Tejada 
et  al., 2005). Therefore, vegetation indices computed from 
Red and NIR, such as the normalized difference vegetation 
index (NDVI), can be related to canopy structure and biomass 
production (Zarco-Tejada et  al., 2005) and also considered  
as indicators of tree vigour. However, NDVI is sensitive to 
low chlorophyll concentration (Peng and Gitelson, 2011) 
and it also tends to saturation when leaf area index (LAI) 
is higher than 3 or 4. Two other indices only retrieved from 
visible bands were used: the visible atmospherically resistant 
index, VARI, which shows a better sensitivity to higher values 
of vegetation cover fraction (Gitelson et  al., 2002) and the 
simple ratio pigment index, SRPI, which enables characteri­
zation of the crop nitrogen status, being sensitive to change 
in the pigment relative content (chlorophyll vs carotenoids) 
(Peñuelas et al., 1994, 1995).

Recent studies on field crops, e.g. wheat (Babar et al., 2006; 
Comar et al., 2012), maize (Cairns et al., 2012) and cotton  
(Andrade-Sanchez et  al., 2014) assessed potentiality of  
vegetation indices to be used for large-scale phenotyping. 
More generally, plant phenotyping based on multispectral 
or hyperspectral imagery shows promise as a non-invasive 
method adapted for screening a wide range of individuals in 
a short period of time. Connecting genotype to phenotype on 
large datasets currently sustains the development of pheno­
mics (Furbank and Tester, 2011; Fiorani and Schurr, 2013).

To date, quantitative genetic analyses of tree features in 
fruit crops have mostly concerned disease resistance, yield 
and production regularity (Guitton et al., 2012; Celton et al., 
2014), and plant architecture (Segura et al., 2008). Owing to 
low-throughput techniques, few studies on genetic determi­
nisms of traits related to water use have been undertaken in 
these crops except recently in grapevine (Marguerit et  al., 
2012). Other perennials like forest trees have been compared 
in natural environments (Brendel et al., 2008) and controlled 
environments (e.g. Salix: Rönnberg-Wästljung et  al., 2005; 
Populus: Street et al., 2006) to distinguish well-irrigated and 
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water deficit conditions and to study the genetic/genomic 
bases of responses to drought and/or water use efficiency.

In this study, we assumed that a genetic analysis could be 
performed on an apple segregating population submitted to 
contrasting water regimes, considering different traits mainly 
issued from airborne multispectral imagery. An experiment 
was conducted in two successive growing seasons, during 
which image-based phenotypic variables and agronomic traits 
such as fruit production or trunk diameter (a proxy for tree 
vigour) were analysed for both well-watered and water-stress 
conditions, as well as the difference between the two for a 
given genotype. For each image-based variable, we considered 
the mean value of a representative tree crown zone and the 
variation within this zone, on which mean broad-sense heri­
tability was computed from genetic linear models. Using a 
genetic map, quantitative trait loci were detected. Altogether 
these results demonstrate the relevance of airborne imagery 
for high-throughput phenotyping of individual trees in the 
field for their response to water stress and provide the first 
demonstration that QTL detection could result from such 
methodology and plant descriptors.

Materials and methods

Field experiments and meteorological measurements
The apple tree population studied consisted of progeny derived from 
a ‘Starkrimson’×’Granny Smith’ cross, characterized by variability 
in tree vigour, architectural traits (Segura et al., 2008), biennial bear­
ing (Guitton et al., 2012), hydraulic traits (Lauri et al., 2011) and 
stomatal regulation in response to vapour pressure deficit (Regnard 
et  al., 2009). In February 2007, four replicates of 122 F1-hybrids 
and their two parents were grafted onto M9 rootstock and randomly 
planted in an experimental field at the INRA Melgueil experimental 
station (Diaphen platform, southeast of France, 43°36ʹ N, 03°58ʹ 
E). Plantation consisted of 10 rows oriented northwest–southeast, 
with 5 × 2 m planting distances. The orchard management was per­
formed consistently with professional practices, throughout the 
study. Automated soil resistivity profiling conducted in March 2009 
showed that the soil of the trial plot (at depths of 0−50 cm and 
50−100 cm) could be considered spatially homogeneous for water-
holding capacity, and this was confirmed by soil profile descriptions. 
The field plot was irrigated using a system of microsprayers located 
in the rows, with one emitter per tree. During summer, contrasting 
hydric regimes were established. Full irrigation was ensured in half  
of trees [two replicates per genotype, well-watered trees (WW)], 
while irrigation was withheld in the other half, resulting in pro­
gressive summer soil drought [two replicates per genotype, water-
stressed trees (WS)] since the summer rainfall was negligible. Trees 
submitted to water deficit during summer were the same during the 
2010 and 2011 seasons, and three dates per year were studied, repre­
senting various water regimes in order to disentangle genotypic and 
environmental effects in the tree response. Water regimes developed 
in WW and WS treatments are illustrated by the soil hydric potential 
mean values (Ψsoil, Table 1A). Micrometeorological data acquired at 
field included global radiation (Rg), air temperature (Ta), air relative 
humidity (HR), air vapour pressure deficit (VPD), wind speed (u) 
and rainfall (Table 1A).

Image acquisitions
The image acquisition system from the ultra-light aircraft consisted 
of two commercial digital cameras (either Canon EOS 400D or 
500D, with 10.1 and 15.1 Megapixel CMOS sensors, respectively, 
Table  1B) equipped with 35-mm lenses, and one FLIR B20HSV 

(FLIR Systems Inc., Wilsonville, USA) thermal infrared camera 
(320*240 matrix) (for details, see: Lebourgeois et  al., 2008, 2012; 
Virlet et  al., 2014). One camera acquired visible images in red, 
green and blue bands (RGB). The second was modified according 
to Lebourgeois et al. (2008, 2012) to obtain images in near-infrared 
(NIR). Three flights per year were performed during the summers of 
2010 and 2011 (Table 1A, 1B). In 2010, flights were realized for low, 
intermediate and severe water constraints, respectively 8, 27 and 41d  
after the beginning of drought (Dates 1, 2 and 3). In 2011, the first 
flight (Date 4) occurred 17 d before the beginning of the drought 
period, before WW and WS differentiation, while the second and 
third flights (Dates 5 and 6) were performed respectively 14 and 34d  
after the beginning of the drought treatment. During the period of 
water deprivation (i.e. at Dates 1, 2, 3, 5 and 6) WS trees were not 
irrigated.

Spectral image preprocessing and indices computation
Image preprocessing was performed with Erdas Imagine 9.3 software 
(Intergraph Corporation, Huntsville, USA). Procedure of ortho-
rectification for RGB and NIR images and radiometric normaliza­
tion on invariant field targets between dates are fully described in 
Lebourgeois et al. (2008, 2012) and Virlet et al. (2014), as well as 
image geolocation. Thermal infrared images issued from the six 
acquisition dates were ortho-rectified on the base of both RGB and 
NIR images and geo-located as well. For each of the six dates, the dif­
ference between the surface and air temperature (hereafter referred 
to as TsTa) was obtained by subtracting from each pixel value of 
the TIR images the air temperature acquired at ground level. Spatial 
resolution of RGB and NIR images was lowered from initial reso­
lution (c. 3−5 cm) to that of TIR image (30 cm). From RGB and 
NIR bands, three vegetation indices were computed: NDVI, VARI 
and SRPI (Table 2). NDVI and TsTa were combined to compute the 
water deficit index (WDI) as described in Virlet et al. (2014).

For each tree, multispectral-based index values were extracted 
from a 60 cm radius buffer zone containing the central upper part of 
the tree crown. From each buffer (12−16 pixels), mean and standard 
deviation, SD, were retrieved and considered as two complementary 
variables characterizing the vegetation response of individuals. As 
SD characterized the variation occurring inside the buffer zone, it 
indicated the degree of heterogeneity of the crown structure for the 
vegetation index and the variability of transpiration rates for the 
stress indices.

In planta measurements
Trunk circumference (TC) of each tree was tape-measured 15 cm 
above the grafting point each year in February. On that basis, the 
trunk cross-sectional area (TCSA) considered as representative of 
tree vigour was calculated (Table 2). Fruits were harvested each year 
between 22 August and 2 September before the resumption of irriga­
tion, irrespective of the real maturity picking date (September). The 
number of fruits per tree and the harvest fresh mass (kg per tree) 
were determined.

Data analyses
Statistical analyses were performed using R software v.2.13.2. (R 
Development Core Team, 2011). For each variable, phenotypic 
means were computed from each tree for (i) WW and WS conditions 
confounded, (ii) WW and WS considered separately and (iii) the dif­
ference between them, hereafter referred to as the differential index 
(DI). For example, the phenotypic mean value of NDVI indepen­
dent of water treatment is referred to as NDVI, while sdNDVI_WS 
refers to the phenotypic mean value of the SD in the WS condition.

For each variable, two mixed linear models were built. The first 
one was used to analyse the response of variables in both WW and 
WS trees. The second one was used to analyse the drought response 
of each genotype, through the DI obtained. The first mixed linear 
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models included the irrigation modality (M), date (D) or year (Y), 
which were considered as fixed effects, while the genotype (G), the 
interactions between genotype and irrigation modality (G×M), 

and genotype and date or year (G×D or G×Y) were considered 
as random effects. For each variable, a selection of the best model 
was performed through minimization of the Bayesian Information 

Table 2.  List of phenotypic variables and equations used

Variables Descriptions Equations Related to References

NDVI Normalized Difference Vegetation Index (NIR−R)/(NIR+R) Cover fraction, vegetation density Rouse et al., 1973
Zarco-Tejada et al., 2005

VARI Visible Atmospherical Resistant Index (G–R)/(G+R) Cover fraction, biomass production Peng and Gitelson, 2011
SRPI Simple Ratio Pigment Index B/R Nitrogen content, ratio carotenoid/chlorophyll total Peñuelas et al., 1994, 1995

Lebourgeois et al., 2012
TsTa Air-surface temperature difference

( ) ( )
( ) ( )

min

min max

T T T T
T T T T

a s a

a a

− − −
− − −

Transpiration rate
WDI Water Deficit Index  Evapotranspiration Moran et al., 1994

Virlet et al., 2014
TCSA Trunk Cross Sectional Area (mm2) TC2/4π Vigour, growth  

NbFr Fruit number per tree  Fruit biomass production  
BmFr Fruit biomass per tree (kg) Fruit biomass production  

NIR, near infrared; R, red; B, blue; G, green; Tmax and Tmin, maximum and minimum surface temperatures; Ts, surface temperature; Ta, air 
temperature; TC, trunk circumference, mm.

Table 1.  (A) Environmental conditions in the field in apple experimental field during image acquisitions in 2010 and 2011: mean values 
(and SDs) for six dates (see text for detail)

Rg, global radiation; Ta, air temperature; HR, air relative humidity; VPD, air vapour pressure deficit; u, wind speed. Soil hydric potential (Ψsoil): 
average for six representative well-watered (WW) trees and water-stressed (WS) trees at 30 and 60 cm depths. (B) Ultralight aircraft image 
acquisition system, cameras used and image settings, and original image resolution for each date of experiment.

A Variables Units Date 1 Date 2 Date 3 Date 4 Date 5 Date 6

Solar time hh:mm 11:40 10:40 09:50 09:50 10:00 09:20
Rg W m-2 - 782.20 (114.23) 472.83 (33.89) 770.67 (3.27) 599.27 (102.85) 705.00 (0.00)
T°air °C 29.72 (0.12) 28.08 (0.42) 23.78 (0.30) 26.91 (0.19) 26.58 (0.33) 26.85 (0.49)
HR % 44.06 (1.44) 32.97 (1.03) 37.88 (2.57) 58.72 (0.75) 27.96 (0.33) 31.80 (−1.86)
VPD kPa 2.34 (0.04) 2.55 (0.10) 1.83 (0.11) 1.47 (0.04) 2.51 (0.06) 2.41 (0.14)
U m s-1 2.01 (0.07) 2.72 (0.26) 1.86 (0.10) 1.99 (0.36) 1.73 (0.28) 0.78 (0.32)

Ψsoil WW MPa −0.065 (0.054) −0.053 (0.028) −0.066 (0.036) −0.022 (0.012) −0.046 (0.039) −0.024 (0.036)

Ψsoil WS −0.099 (0.035) −0.133 (0.017) −0.172 (0.022) −0.031 (0.021) −0.078 (0.037) −0.130 (0.048)

B Date 1 Date 2 Date 3 Date 4 Date 5 Date 6

Flight altitude 350 m 330 m 480 m 300 m 300 m 300 m
Sensor
RGB Canon 400D Canon 500 D Canon 500 D Canon 500 D Canon 500 D Canon 500 D
NIR Canon 400D 

(+745 nm filter)
Canon 500 D 
(+745 nm filter)

Canon 500 D  
(+745 nm filter)

Canon 500 D  
(+745 nm filter)

Canon 500 D 
(+745 nm filter)

Canon 500 D  
(+745 nm filter)

TIR FLIR B20HSV FLIR B20HSV FLIR B20HSV FLIR B20HSV FLIR B20HSV FLIR B20HSV
Setting
RGB Sensibility ISO 100 ISO 100 ISO 100 ISO 100  ISO 100 ISO 100

Shutter speed 1/1250 1/2000 1/2000 1/2000 1/2000 1/2000
Aperture F5 F2.8 F2.8 F3.5 F3.5 F3.5

NIR Sensibility 100 ASA 100 ASA 100 ASA ISO 100 ISO 100 ISO 100
Shutter speed 1/1250 1/2000 1/2000 1/2500 1/2000 1/2000
Aperture F5 F2.8 F2.8 F3.5 F3.5 F3.5

Initial pixel size (cm)
RGB 5*5 3*3 5*5 3*3 3*3 3*3
NIR 5*5 3*3 5*5 3*3 3*3 3*3
TIR 30*30 35*35 53*53 30*30 30*30 30*30
Atmospherical correction for 
TIR image

No No No Yes Yes Yes
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Criterion (BIC). For the DI, effects considered in the mixed linear 
model were the same as mentioned above, but without M and G×M. 
For each trait, best linear unbiased predictors (Blups) were extracted 
for estimation of the G effect, which was considered as independent 
from the irrigation modality and the date (or year) of experimenta­
tion and is hereafter referred to as G-Blup. The Blups corresponding 
to G×M and G×D effects were computed for each irrigation regime 
(WW- or WS-Blup), and date (or year) considered separately.

For each variable, when G and interaction effects were included, 
broad-sense heritability of the mean (h2

b) was estimated as follows:

	

h

n n n

b
G

G
GxM

M M

2
2

2
2 2=

+ +

σ

σ σ σε

* 	

where n is the number of trees per genotype (two in the present 
case), and nM the number of irrigation modalities (two in the pre­
sent case). When a G×D (or G×Y) effect was included in the model, 
the denominator also integrated G×D (or G×Y) variances and was 
divided by the number of dates (six) or years (two). The residual 
variance σ ε

2  was divided by the product of the number of trees per 
genotype and per irrigation modality and the number of dates (or 
years). This led us to estimate the broad-sense heritability value of 
the mean of phenotypic values which accounts for the repetitions of 
each genotype that were present in the experimental plot, according 
to Gallais (1989). Phenotypic variables were considered heritable if  
h2

b values were greater than 0.2.

QTL mapping
The QTL analysis was performed using means and Blups extracted 
per genotype (G-means, G-Blups) for each variable. A  consensus 
genetic map of STK and GS, which integrated 177 SSR and SNP 
genetic markers, was used for QTL mapping (Guitton et al., 2012). 
QTL analyses were carried out using MapQTL®6.0 (Van Ooijen, 
2009). First, a permutation test was performed to determine the 
logarithm of the odds (LOD) threshold at which a QTL was declared 
significant, using a genome-wide error rate of 0.05 with 1000 permu­
tations of the data (Van Ooijen, 2009). In a second step, an interval 
mapping analysis was carried out with a step size of 1 cM, with a 
LOD score higher than the threshold. Finally, the nearest marker 
to each QTL peak was selected as a cofactor to perform a multiple 
QTL mapping (MQM) (Van Ooijen, 2009). Each significant QTL 
was characterized by its LOD score, its percentage of explained phe­
notypic variation, and its confidence interval (in cM) corresponding 
to a LOD score drop of 1 or 2 on either side of the likelihood peak. 
QTLs that showed clearly overlapping confidence intervals, close 
LOD peaks and similar allelic effects, were considered to co-localize.

When a QTL was detected with at least two cofactors, models 
considering markers and their interactions as cofactors were cons­
tructed using a backward procedure under R software v2.13.2. 
Models were selected based on the minimum Akaike Information 
Criterion values (AIC). In the selected model, the global percentage 
of phenotypic variation (global R2) was then estimated. When one 
marker was derived from only one of the parents, the nearest maker 
included in the QTL and deriving from both parents was chosen. 
The location of QTLs on the genetic was finally illustrated using 
MapChart® (Voorrips, 2001).

Results

Variance analysis and heritability

Models selected for vegetation indices were similar whether 
means or SDs were considered (Table  3A). All vegetation 
indices were significantly impacted by G, D and M effects. 

For NDVI, the model included only the G×M interaction, 
whereas for VARI, SRPI, TsTa and WDI variables G×M and 
G×D interactions were also taken into account. Concerning 
tree vigour and fruit production, the models selected included 
G and Y effects. For TCSA only the G×M interaction was 
retained in the mixed linear model, while the G×Y interac­
tion was retained for fruit number (NbFr) and both G×M 
and G×Y interactions were retained for fruit yield biomass 
(BmFr). For all DI variables (Table 3B) the models selected 
included G and D (or Y) effects. G×D was also included 
for sdVARI_DI, sdSRPI_DI, sdTsTa_DI while G×Y was 
included for NbFr_DI only. It is noticeable that the random 
interaction effects (G×M and/or G×D) were generally lower 
than the G effects.

Broad-sense heritability h2
b for both WW and WS 

(Table 3A) showed medium to high values (0.49 to 0.77) except 
for sdWDI and BmFr, whose heritability was low (0.31). For 
DI variables (Table 3B), fairly high h2

b values (0.50 to 0.70) 
were found for NDVI, sdVARI, SRPI, sdSRPI, TsTa, sdTsTa 
and TCSA. In contrary, h2

b for the other variables, including 
WDI_DI, was much lower (0.17 to 0.38) than that found for 
WW and WS. Moreover, higher h2

b were found in VARI_DI, 
SRPI_DI, and TsTa_DI for SD values than for mean values.

Correlations between variables

High pairwise positive correlations were observed between 
NDVI, VARI and SRPI for the G-mean, WW, WS and for DI 
(Pearson’s r from 0.45 to 0.88, Table 4) even though lower r 
values were found between VARI and SRPI for G-mean and 
WW (Tables 4A, 4B). These three variables were significantly 
and negatively correlated with sdNDVI and sdSRPI for the 
G-mean, WW, WS and for DI (from −0.46 to −0.66, Table 4), 
despite much lower correlation being found between sdNDVI 
and these variables for DI (from −0.06 to −0.32, Table 4D). 
Moreover, sdNDVI, sdVARI and sdSRPI presented pairwise 
positive correlations for the G-mean and WW (0.33 to 0.88, 
Table 4A, 4B). For WS and DI, only sdSRPI was significantly 
correlated with sdNDVI and sdVARI (0.74 and 0.42 respec­
tively, Table 4C, 4D). WDI was highly and positively corre­
lated with sdWDI (0.49 to 0.52). The trunk diameter variable, 
TCSA, presented generally moderate to high positive correla­
tions with NDVI, VARI and SRPI. The highest correlation 
was observed with NDVI, either for the G-mean, WW, WS 
or for DI (0.55 to 0.67). Variables relative to fruit production, 
NbFr and BmFr, were highly intercorrelated (0.75 to 0.85), 
and a high positive correlation of these variables with TCSA 
was also observed, particularly for BmFr (from 0.50 to 0.55). 
Moreover, BmFr was positively and more highly correlated 
to NDVI, VARI and SRPI (0.23 to 0.52) than NbFr (0.13 to 
0.32) for the G-mean, WW and WS.

QTL detection

Seventy-four QTLs were detected, mapping over 16 of the 
17 linkage groups (LGs) of the consensus STK×GS genetic 
map. As 56 of these QTLs were found only at specific dates, 
they are not detailed in the following text. The complete list 
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of QTLs detected is presented in Supplementary Table S1 
and Supplementary Fig. S1. The results exposed hereafter 
(Fig. 1; Table 5) are focusing on the 18 most reliable QTLs 
that were mapped over nine LGs. These QTLs were detected 
for G-Blup or for the G-mean, and in some cases for both, 
whatever the date.

QTLs for traits related to vegetation indices NDVI, VARI 
and SRPI.

For G-Blup of NDVI and SRPI variables, three QTLs were 
detected independently of the environment (water regime or 
date): two QTLs concerned sdNDVI and sdSRPI and pre­
sented a common zone located on LG08. They explained 
14.2% and 15.8% of the variability respectively, and were both 
characterized by female allelic effects. One QTL for SRPI was 
detected on LG09 and explained 14.3% of the variability. It 
showed female, male and dominance effects.

Four QTLs were detected for specific G-means of WW on 
four different LGs. Two of these QTLs, related to NDVI_
WW and SRPI_WW, were detected on LG14 and LG09, 

respectively. They explained 14.9% and 15.7% of the varia­
bility, and both of them resulted both from female, male and 
dominance effects. Two other QTLs, related to sdVARI_WW 
and sdSRPI_WW, were mapped on LG01 and LG08, and 
resulted from dominance and female effects, respectively. The 
QTL for sdVARI_WW was also identified for G-Blup.

For WS, one QTL was identified for sdNDVI_WS at the 
top of LG06. It explained 14.1% of the variability and mainly 
resulted from female effects. For DI, one QTL was detected 
for VARI_DI and mapped at the bottom of LG03 for both 
G-Blup and G-mean. It explained 14.5% of the variability 
and resulted from female, male and dominance effects.

QTLs for traits related to tree foliage transpiration

One QTL was detected for WDI in WW condition, at the top 
of LG03 for both G-Blup and G-mean. It explained 14.7% of 
the variability and was characterized mainly by female and 
male effects. Finally, two QTLs were detected for TsTa_2_DI  
(at Date 2)  on LG05 and LG06, respectively. The global  
linear model indicated an interaction between these two 
QTLs, which together explained 20.8% of the variability. They 

Table 3.  Description of fixed (M, modality; D, date; Y, year) and random (G, genotype) effects used in selected mixed linear models

For each variable, models related to phenotypic values in (A) WW and WS, and (B) models related to DI (differential index: difference of the 
variable between WS and WW trees) were built. Percentage variances of each random effect and of the residuals (Res), and broad-sense 
heritability values (h2

b) are indicated.

A  Fixed effect Random effect % variances

  M D Y G G×M G×D G×Y G G×M G×D G×Y Res h2
b

 NDVI x x - x x - - 35 19 - - 46 0.62
 sdNDVI x x - x x - - 21 8 - - 71 0.50
 VARI x x - x x x - 23 6 9 - 61 0.77
 sdVARI x x - x x x - 9 5 10 - 76 0.56
 SRPI x x - x x x - 19 18 4 - 59 0.60
 sdSRPI x x - x x x - 17 8 5 - 70 0.69
 TsTa x x - x x x - 15 18 5 - 62 0.55
 sdTsTa x x - x x x - 7 9 4 - 79 0.49
 WDI x x - x x x - 11 7 5 - 76 0.59
 sdWDI x x - x x x - 3 6 6 - 85 0.31
 TCSA x - x x x - - 51 15 - - 34 0.76
 NbFr x - x x - - x 25 - - 37 37 0.52
 BmFr x - x x x - x 12 8 - 32 49 0.31

B  Fixed effect Random effect % variances`

 M D Y G G×M G×D G×Y G G×M G×D G×Y Res h2
b

 NDVI_DI - x - x - - - 44 - - - 56 0.61
 sdNDVI_DI - x - x - - - 19 - - - 81 0.32
 VARI_DI - x - x - - - 19 - - - 81 0.33
 sdVARI_DI - x - x - x - 13 - 8 - 79 0.62
 SRPI_DI - x - x - - - 35 - - - 65 0.52
 sdSRPI_DI - x - x - x - 17 - 7 - 75 0.70
 TsTa_DI - x - x - - - 34 - - - 66 0.50
 sdTsTa_DI - x - x - x - 19 - 14 - 67 0.70
 WDI_DI - x - x - - - 17 - - - 83 0.29
 sdWDI_DI - x - x - - - 9 - - - 91 0.17
 TCSA_DI - - x x - - - 35 - - - 65 0.52

 NbFr_DI - - x x - - x 13 - - 1 86 0.38
 BmFr_DI - - x x - - - 17 - - - 83 0.29

http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv355/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv355/-/DC1


Field multispectral imagery and QTL analysis of apple tree response to water deficit  |  5459

Ta
b

le
 4

. 
G

en
et

ic
 P

ea
rs

on
’s

 r
 c

or
re

la
tio

ns
 b

et
w

ee
n 

N
D

V
I, 

VA
R

I, 
S

R
P

I, 
W

D
I v

ar
ia

bl
es

, a
nd

 T
C

S
A

, N
bF

r 
an

d 
B

m
Fr

, (
A

) f
or

 g
en

et
ic

 m
ea

ns
 o

f t
w

o 
w

at
er

 r
eg

im
es

 c
on

fo
un

de
d,

 (B
) f

or
 

w
el

l-w
at

er
ed

 tr
ee

s,
 (C

) f
or

 w
at

er
-s

tr
es

se
d 

tr
ee

s 
an

d 
(D

) f
or

 d
iff

er
en

tia
l i

nd
ex

 D
I. 

r 
va

lu
es

 in
 b

ol
d 

ty
pe

 w
er

e 
si

gn
ifi

ca
nt

 fo
r 

P
<

0.
00

1

 
N

D
V

I
VA

R
I

S
R

P
I

sd
N

D
V

I
sd

VA
R

I
sd

S
R

P
I

W
D

I
sd

W
D

I
T

C
S

A
N

b
Fr

B
m

Fr
 

N
D

V
I

VA
R

I
S

R
P

I
sd

N
D

V
I

sd
VA

R
I

sd
S

R
P

I
W

D
I

sd
W

D
I

T
C

S
A

N
b

Fr
B

m
Fr

A
 

 
 

 
 

 
 

 
 

 
 

B
 

 
 

 
 

 
 

 
 

 
 

N
D

V
I

 1
 

 
 

 
 

 
 

 
 

 
 

 1
 

 
 

 
 

 
 

 
 

 
VA

R
I

0.
61

 1
 

 
 

 
 

 
 

 
 

 
0.

74
 1

 
 

 
 

 
 

 
 

 
S

R
P

I
0.

80
0.

28
 1

 
 

 
 

 
 

 
 

 
0.

64
0.

26
1

 
 

 
 

 
 

 
 

sd
N

D
V

I
−

0.
58

−
0.

55
−

0.
49

 1
 

 
 

 
 

 
 

 
−

0.
66

−
0.

60
−

0.
43

1
 

 
 

 
 

 
 

sd
VA

R
I

0.
03

0.
15

0.
00

0.
36

 1
 

 
 

 
 

 
 

−
0.

16
−

0.
31

−
0.

13
0.

42
1

 
 

 
 

 
 

sd
S

R
P

I
−

0.
64

−
0.

62
−

0.
54

0.
88

0.
33

1
 

 
 

 
 

 
−

0.
46

−
0.

46
−

0.
52

0.
66

0.
57

1
 

 
 

 
 

W
D

I
0.

15
0.

06
0.

02
0.

16
−

0.
16

0.
12

 1
 

 
 

 
 

−
0.

03
0.

21
−

0.
25

0.
10

−
0.

30
0.

02
1

 
 

 
 

sd
W

D
I

0.
03

0.
06

−
0.

14
0.

39
0.

21
0.

27
0.

52
 1

 
 

 
 

−
0.

07
0.

01
−

0.
22

0.
08

−
0.

11
−

0.
01

0.
52

1
 

 
 

TC
S

A
0.

67
0.

33
0.

57
−

0.
36

0.
03

-0
.3

5
0.

13
0.

09
1

 
 

 
0.

63
0.

29
0.

45
−

0.
33

0.
01

−
0.

28
0.

14
0.

07
1

 
 

N
bF

r
0.

32
0.

32
0.

25
−

0.
28

0.
20

−
0.

24
−

0.
21

−
0.

12
0.

39
1

 
 

0.
29

0.
28

0.
13

−
0.

27
0.

13
−

0.
14

−
0.

06
−

0.
06

0.
39

1
 

B
m

Fr
0.

40
0.

35
0.

32
−

0.
27

0.
22

−
0.

23
−

0.
20

−
0.

04
0.

50
0.

85
1

 
0.

48
0.

38
0.

23
−

0.
37

−
0.

01
−

0.
13

−
0.

03
−

0.
04

0.
50

0.
85

1
C

 
 

 
 

 
 

 
 

 
 

 
D

 
 

 
 

 
 

 
 

 
 

 
N

D
V

I
 1

 
 

 
 

 
 

 
 

 
 

 
1

 
 

 
 

 
 

 
 

 
 

VA
R

I
0.

71
1

 
 

 
 

 
 

 
 

 
 

0.
74

1
 

 
 

 
 

 
 

 
 

S
R

P
I

0.
88

0.
51

1
 

 
 

 
 

 
 

 
 

0.
82

0.
45

1
 

 
 

 
 

 
 

 
sd

N
D

V
I

−
0.

64
−

0.
53

−
0.

58
1

 
 

 
 

 
 

 
 

−
0.

19
−

0.
06

−
0.

32
1

 
 

 
 

 
 

 
sd

VA
R

I
0.

06
-0

.1
0

0.
10

0.
25

1
 

 
 

 
 

 
 

−
0.

05
−

0.
29

0.
02

−
0.

12
1

 
 

 
 

 
 

sd
S

R
P

I
−

0.
58

−
0.

60
−

0.
60

0.
74

0.
25

1
 

 
 

 
 

 
−

0.
51

−
0.

52
−

0.
57

0.
25

0.
42

1
 

 
 

 
 

W
D

I
−

0.
15

0.
10

−
0.

12
0.

23
−

0.
30

0.
10

1
 

 
 

 
 

−
0.

16
0.

18
−

0.
20

0.
07

−
0.

34
0.

03
1

 
 

 
 

sd
W

D
I

−
0.

05
0.

04
−

0.
06

0.
35

0.
07

0.
17

0.
49

1
 

 
 

 
−

0.
09

0.
01

−
0.

10
0.

06
−

0.
12

0.
01

0.
51

1
 

 
 

TC
S

A
0.

60
0.

31
0.

54
−

0.
31

0.
05

−
0.

34
0.

08
0.

07
1

 
 

 
0.

55
0.

48
0.

30
0.

13
−

0.
06

−
0.

26
−

0.
13

−
0.

10
1

 
 

N
bF

r
0.

29
0.

29
0.

27
−

0.
23

0.
22

−
0.

26
−

0.
28

−
0.

13
0.

39
1

 
 

0.
55

0.
49

0.
33

0.
22

−
0.

08
−

0.
19

−
0.

03
−

0.
04

0.
52

1
 

B
m

Fr
0.

52
0.

38
0.

39
−

0.
23

0.
03

−
0.

10
−

0.
21

0.
01

0.
50

0.
85

1
 

0.
48

0.
35

0.
27

0.
29

−
0.

04
−

0.
07

−
0.

08
−

0.
01

0.
55

0.
75

1



5460  |  Virlet et al.

CH03g12z_S0.0

Hi02c07_SG12.7

AG11_S19.0

NZSNP187650_G25.3
GD_SNP01321_G26.8

B2-T7_S35.0
AG04_S37.6
CH-Vf1_S41.1
MdSOC1-like_G41.7
MdGA20ox1a_S44.3
MdBFTa_SG46.1

MdGA3ox_like_b_S54.2
CH05g08_SG56.5

sd
V

A
R

I_W
W

* L
O

D
=4.08 (%

var=14.3)

LG01

CH03e03_SG0.0
NZmsMdMYB12_S1.6

CH03g07_SG15.1

Hi03d06_SG24.9

MdCENa_SMdCENa_G32.6

Hi04c10y_SG36.9

CH05a12_G50.4

Hi07e08y_SG56.9

CH03g12y_SG62.4

W
D

I_W
W

* L
O

D
=4.20 (%

var=14.7)
V

A
R

I_D
I* L

O
D

=4.15 (%
var=14.5)

LG03

Hi09b04_G0.0

CH03a09_SG10.6

CH05e06_SG19.2

CH05f06_SG44.4
MdVRN1a_S48.4
CH02a08z_S51.6
MdCKX7b_S53.1
CH03a04_S54.4

CH04e03_SG64.6

N
b

F
r_W

S
 L

O
D

=4.51 (%
var=15.6)

B
m

F
r_W

S
 LO

D
=

4.59 (%
var=

15.9)

T
sT

a_2_D
I LO

D
=

4.19 (%
var=

11.9)

LG05

HB09TC_S0.0

MdVRN2.1_SG9.9
CH03d07_SG11.6

NZ23g04_SG22.4

MdAFL1_G32.4
CH03d12_SG34.6

CH03c01_G50.9
Hi07b06_SG52.5

MdMFTa_S57.0

sd
N

D
V

I_W
S

 L
O

D
=4.02 (%

var=14.1)

T
sT

a_2_D
I LO

D
=

6.74 (%
var=

20.2)

LG06

MdCLV1b_SG0.0

CH01e12_G12.8
CH01c06_G13.6
MdEFL3a_G14.2
Hi04b12_S19.3

CH02g09_SG27.8
CH05a02y_G31.0

MdPI_SG35.6

CH01h10_S45.3

MdIAA127Ac_S51.7

Hi23g12x_SG58.5

sd
N

D
V

I L
O

D
=4.71 (%

var=14.2)

sd
S

R
P

I L
O

D
=4.55 (%

var=15.8)

sdS
R

P
I_W

W
 LO

D
=

4.37 (%
var=

15.3)

LG08

NH029a_G0.0

CH01f03b_SG7.7

Hi05e07_SG17.8

CH01h02_SG33.1
MdRGL2a_S36.2
NZ04h11x_SG36.6
MdGA3ox1b_S37.9

S
R

P
I* L

O
D

=4.08 (%
var=14.3)

S
R

P
I_W

W
 LO

D
=

4.51 (%
var=

15.7)

LG09

CH04c06z_G0.0
Hi02d04_SG2.8

CH02a08y_SG12.8

MdVRN1b_S16.7

CH02c11_SG25.6

CH03d11_S31.6
MdIAA106_G32.5
MdGA2ox3a_G36.5

MdARF3_SG52.2
MdGA2ox2b_G54.4
COL_SG56.5
MdPHYEb_G56.7
MS06g03_G60.8
MdGA2ox8a_G61.5
MdAFB6_S65.7

T
C

S
A

_W
S

 L
O

D
=4.14 (%

var=14.5)

T
C

S
A

_D
I* L

O
D

=4.42 (%
var=15.4)

LG10

MdRGL1b_S0.0

Hi04g05_SG14.0
MdAP1b_S16.3
CH02g01_SG19.6

Hi04f09_SG29.5
MdGA2ox4b_SG31.9

NH009b_SG48.3

CH03h03z_SG70.1
CH05f04_G72.0
MdIAA33_G73.6
NZSNPQ06942_G76.1
MdARF104_S78.3

N
b

F
r_W

W
 L

O
D

=5.79 (%
var=19.6)

N
b

F
r_D

I* L
O

D
=5.19 (%

var=17.8)

LG13

GD_SNP01401_G0.0
MdTFL1a_S2.9
MdCKX1a_G4.8
MdCKX1a_S8.1
CH05g07z_SG11.4

CH01g05_SG16.3

CH05g11_SG28.8
MdAFL2_G29.4

U78948-SSR_SG45.7
CH03a03_S48.0

N
D

V
I_W

W
 LO

D
=

4.27 (%
var=

14.9)

LG14

Fig. 1.  Genomic positions of the QTLs detected on the consensus ‘Starkrimson’×’Granny Smith’ (STK×GS) map. QTLs are represented by boxes, in 
which length represents the LOD-1 confidence interval and extended lines represent the LOD-2 confidence interval. Boxes relative to QTLs for mean 
values of variables are in white, and those relative to QTLs for standard deviations SD are in black. QTL detected for G-Blups are in bold type and * stand 
for QTLs detected for G-Blups and G-means.
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mainly resulted from female and male effects. The QTL which 
mapped on LG06 co-localized with the QTL for sdNDVI_WS.

QTLs for traits related to tree vigour and fruit production

Two QTLs were detected in relation to the tree vigour 
(TCSA), the first one for TCSA_WS, and the second one 
for TCSA_DI. Both mapped on LG10 and co-localized near 
the MdVRN1b_S marker. These QTLs explained 14.5% and 
15.4% of the variability, respectively, and mostly resulted 
from female allelic effects. For fruit number, one QTL was 
detected for WW (NbFr_WW) at the bottom of LG13. It 
explained 19.6% of the variability. Another QTL was detected 
for NbFr_DI at the same position, explaining 17.8% of varia­
bility. These two QTLs mainly resulted from male and female 
allelic effects. Finally, two QTLs were found at the top of 
LG05 for NbFr_WS and BmFr_WS. They explained 15.6% 
and 15.9% of the variability, respectively, and both resulted 
from female and dominance effects. Interestingly, these two 
QTLs co-localized with the QTL identified for TsTa_2_DI.

Discussion

Variability of the phenotypic traits

Due to, on the one hand, the changes in environmental condi­
tions and imagery flight parameters and, on the other, the dif­
ficulty to apply comparable water constraints from one year to 
the next, the analysis of the population behaviour undertaken 

through linear mixed models did take into account the large 
variability of phenotypic traits (Supplementary Table S2). 
Among vegetation indices, NDVI appeared the most stable 
vegetation index, independent of the environment and acqui­
sition conditions (no G×D interaction) whereas other spec­
tral indices chosen proved to be sensitive to drought, with a 
G×D interaction revealed for VARI, SRPI, TsTa and WDI. 
By contrast, the absence of G×D interaction for G-means 
for the DI variables suggested that the use of the difference 
between water-stressed and well-irrigated trees somewhat 
smoothed out the inter-date variations.

To our knowledge, this study is the first one to make use 
of spectral indices to assess genetic variability in perennial 
plants in response to drought, and to analyse the related 
determinisms. As a consequence, comparisons in the ensuing 
discussion are often referring to results obtained in annual 
crops. In the present study, the vegetation indices used were 
extracted from a buffer zone of the same size located in the 
central zone of each tree crown. As such, the value of these 
vegetation indices must be considered as more related to the 
vegetation cover fraction and biomass production rather 
than to the foliage physiological properties. Whatever the 
traits considered, either relative to vegetation or to transpi­
ration, moderate to high values of broad-sense heritability 
were found, indicating an interesting contribution of multi­
spectral imagery for genetic analysis of these traits in a tree 
population. Concerning the vegetation indices, our results 
were consistent with those found in annual crops, where high 

Table 5.  Main QTLs detected on the consensus STK×GS map by multiple QTL mapping (MQM) for variables NDVI, VARI, SRPI, TsTa, 
WDI, TCSA, NbFr and BmFr in well-watered (WW) and/or water-stress (WS) conditions and for the differential index DI (WS−WW)

QTLs detected for G-Blups are in bold type and * stand for QTLs detected for G-Blups and G-means.

Traits LGa LODb R2c R2globald Position Cofactor Allelic effecte Af Am D

NDVI_WW 14 4.27 0.149  26.318 CH05g11_SG D, Af, Am -7.80E-03 1.96E-03 -9.11E-03
sdNDVI 08 4.71 0.142  29.763 CH02g09_SG Af 3.15E-03 1.60E-04 -9.93E-04
sdNDVI_WS 06 4.02 0.141  1 HB09TC_S Af -1.33E-03 3.08E-04 9.00E-05
sdVARI_WW* 01 4.08 0.143  12.749 Hi02c07_SG D 5.00E-05 -1.75E-06 -1.45E-04
VARI_DI* 03 4.15 0.145  62.417 CH03g12y_SG D, Af, Am 5.71E-04 -3.94E-04 -6.76E-04
SRPI* 09 4.08 0.143  34.112 CH01h02_SG Af, Am, D 2.23E-03 1.97E-03 1.86E-03
SRPI_WW 09 4.51 0.157  34.112 CH01h02_SG Am, Af, D 3.14E-03 3.32E-03 1.32E-03
sdSRPI 08 4.55 0.158  29.763 CH05a02y_G Af 1.74E-03 -9.55E-05 -9.76E-04
sdSRPI_WW 08 4.37 0.153  35.571 MdPI_SG Af 3.51E-03 9.96E-04 1.49E-04
TsTa_2_DI 05 4.19 0.119  0 Hi09b04_G Am, Af -1.48E-01 -1.64E-01 -5.78E-02
 06 6.74 0.202 0.208 0 HB09TC_S Af, Am -2.47E-01 1.63E-01 -7.77E-02
WDI_WW* 03 4.2 0.147  0 CH03e03_SG Am, Af 3.89E-03 -4.50E-03 3.80E-05
TCSA_WS 10 4.14 0.145  15.783 MdVRN1b_S Af, D -7.03E+01 4.05E+00 2.90E+01
NbFr_WW 13 5.79 0.196  77.149 MdARF104_S Af, Am -1.07E+01 -1.03E+01 4.52E+00
NbFr_WS 05 4.51 0.156  0 Hi09b04_G Af, D 2.31E+00 -5.11E-01 -1.19E+00
BmFr_WS 05 4.59 0.159  0 Hi09b04_G Af, D 1.89E+00 -4.14E-01 -1.19E+00
TCSA_DI* 10 4.42 0.154  16.687 MdVRN1b_S Af -1.57E+02 -1.17E+01 6.40E+01
NbFr_DI* 13 5.19 0.178  77.149 MdARF104_S Af, Am 2.65E+01 2.55E+01 -8.87E+00

a Linkage group.
b Maximum LOD score value.
c Percentage of phenotypic variation explained by the QTL.
d Percentage of phenotypic variation explained by QTL when it was detected with at least 2 cofactors.
e Female (Af) and male (Am) additive effect estimated as [(μac+μad)–(μbc+μbd)]/4 and [(μac+μbc)–(μad+μbd)]/4 respectively; dominance (D) estimated 
as = [(μac+μbd)–(μad+μbc)]/4, where μac, μbc, μad, and μbd are the estimated phenotypic means associated with each of the four possible 
genotypic classes ac, bc, ad and bd, deriving from an <ab×cd> cross.
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heritability values were also found (e.g. in wheat: Babar et al., 
2006; in cotton: Andrade-Sanchez et al., 2014). Heritability 
values found for agronomic traits in apple, TCSA, NbFr and 
BmFr, were in the same order of magnitude as those for spec­
tral indices. However, TCSA, which is an integrative variable, 
exhibited the highest h2

b value whereas the lower values for 
NbFr and BmFr likely resulted from the influence of Y, and Y 
and M effects, respectively. When heritability was computed 
for DIs, values of most variables stayed high except for WDI_
DI, probably because of the composite nature and complexity 
of this trait. Concerning TsTa and TsTa_DI, high heritability 
values were found, consistent with previous results found in 
wheat (Mason et al., 2013; Rebetzke et al., 2013).

Trait correlations, QTL detection and co-localization

Positive correlations between the vegetation indices, TCSA 
and fruit production were observed. In particular NDVI 
exhibited the highest correlation with the trunk diameter, 
TCSA, and with fruit yield biomass, BmFr. As well as NDVI, 
TCSA is generally related to plant size, leaf area and light 
interception (González-Talice et  al., 2012), which suggests 
that NDVI is a good indicator of vigour and development in 
apple trees. However, QTLs that were found for vegetation 
indices, fruit yield and TCSA did not co-localize, and this indi­
cated that genetic determinisms controlling these traits likely 
differ. Moreover, while the three vegetation indices presented 
high and positive intercorrelations, related QTLs did not 
co-localize. Indeed, QTLs for NDVI and SRPI were mostly 
detected on two different LGs: LG14 and LG09, respec­
tively. This could be explained by the spectral bands used: 
the former vegetation index, making use of NIR for compu­
tation, is more related to canopy structure than the second 
one, only computed from visible bands that are more related 
to light absorption (Zarco-Tejada et  al., 2005; Lebourgeois 
et al., 2012). Otherwise, the QTL found for VARI_DI, which 
highlights differences between WS and WW tree responses, 
suggests that drought could affect the radiation absorption 
capacity, by lowering the fractional vegetation cover.

Intra-crown variations of vegetation indices, sdNDVI and 
sdSRPI, presented high and negative correlations with means 
of NDVI and SRPI, and moderate and negative correlations 
with TCSA. This indicates that the highest density of vegeta­
tion was less variable than the lowest, but also that the vegeta­
tion heterogeneity was lower where tree vigour increased. As 
the intra-crown variability could be an indicator of branching 
patterns or leaf clumpiness (Da Silva et al., 2014), this needs 
further investigation. Similarly, as WDI and sdWDI were 
positively correlated, this could be due to spatial heterogene­
ity in stomatal conductance within the tree crown in response 
to moderate stress (González-Dugo et  al., 2012). The QTL 
detected for sdNDVI_WS could be attributed to the variation 
of leaf rolling over genotypes in response to drought, a phe­
nomenon also observed in other species and limiting plant 
cover fraction (e.g. maize: Lu et  al., 2012). Furthermore, 
sdNDVI and sdSRPI were strongly intercorrelated and QTLs 
for these variables co-localized at the middle of the LG08 
(Table  5; Supplementary Table S2). The location of these 

QTLs also matched with a QTL zone for traits involved in 
gas exchange, xylem conductance and fruit production on 
the STK×GS population (Regnard et al., 2009; Lauri et al., 
2011, Guitton et al., 2012). These co-localizations could be 
explained by an increased capacity of the plant to transport 
water, carbohydrates and sugar to the growing organs, as sug­
gested by Lauri et al. (2011). Nonetheless, these co-localiza­
tions might also be explained by a pleiotropic effect of these 
QTLs, or by clustering of functionally related genes (Cai and 
Morishima, 2002). Gene clusters have already been reported 
in apple for various traits such as resistance to pathogens (Xu 
and Korban 2002; Baldi et al., 2004). However, discrimina­
ting between linked and pleiotropic QTLs was not practicable 
in the present study, considering the limited population size 
and the density of the genetic map available.

Among QTLs detected for fruit production, two of them, 
NbFr_WW and NbFr_DI, were located at the bottom of 
LG13. This zone was adjacent to the one found for bien­
nial bearing on the same STK×GS population (Guitton 
et al., 2012). Otherwise, a year-specific QTL, NbFr_11, was 
detected at the same location as NbFr_WW and NbFr_DI 
(Supplementary Fig. S2), which could confirm the importance 
of this zone in the control of biennial bearing. In addition, 
QTLs for fruit production in WS trees (NbFr_WS and BmFr_
WS) and for leaf temperature (TsTa_2_DI) co-localized on 
LG05. Although matching for those traits was only tempo­
rary, i.e. when the difference between WW and WS treatments 
was considered at Date 2 for TsTa, it illustrates the negative 
relationship between yield and leaf temperature. Indeed, as 
stated by Naor and Girona (2012), a positive link between 
plant yield and evapotranspiration is generally observed, and 
the increase in leaf temperature (here in WS trees) is an indi­
cator of lower transpiration rate and likely of lower carbon 
assimilation. Reduction of stomatal conductance in WS trees 
could likely be invoked for limitation of fruit production in 
this case because water constraint was severe (no irrigation 
occurred during the summer period). Such a causal relation 
between water withholding and its effect on yield reduction is 
nevertheless not straightforward in fruit trees (Bassett, 2013), 
particularly when a moderate water deficit occurs during 
stages of low fruit growth (Goodwin and Boland, 2002).

Although one QTL was detected on LG03 for WDI_WW,  
no co-localization with fruit production variables was 
observed. Moreover, genetic correlations of WDI with fruit 
production variables during the two years of study (Table 4) 
were not significant, whereas significant negative correlations 
of this variable were observed with NbFr and BmFr (r value of 
−0.53 and −0.55 respectively, data not shown) when only year 
2011 was considered. This negative correlation in a specific 
year could be attributed to the propensity to biennial fruit-
bearing already shown on this progeny (Guitton et al., 2012).

It has been recently shown that wild germplasm of Malus 
is exhibiting a certain range of tolerance to drought (Bassett, 
2013), but available information on the commercial paren­
tal genotypes used in the present study is scarce. González-
Talice et al. (2012) suggested that the ‘Granny Smith’ cultivar 
has a lower hydraulic conductance and/or stomatal conduc­
tance than that of the ‘Gala’ cultivar, indicating a stronger 
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sensitivity of the former to high evaporative demand and/or 
soil drought. In contrast, the ‘Starkrimson’ cultivar is well 
known for its photosynthetic efficiency (Yang and Wang, 
1993), while its response to drought is not documented. In the 
present study, prevailing female allelic effects were found for 
almost all variables, suggesting a larger polymorphism and 
allelic contrast in the ‘Starkrimson’ parent than in ‘Granny 
Smith’. ‘Starkrimson’ could thus provide interesting alleles 
for adaptation to drought, even though other Malus genetic 
backgrounds need to be explored in the next future.

Partial homology between LGs that has been described in 
the ‘Golden Delicious’ apple genome (Velasco et al., 2010) led 
us to examine homologous regions in which main QTL zones 
were detected. The median zone on LG08, around CH02g09 
in which many QTLs were detected, matches the top of LG15, 
above CH03b6, where a QTL was detected for SRPI_1_DI. 
Similarly, the QTL zone on the top of LG03 detected for 
NDVI_4_WW corresponds to the region on LG11 on which 
a QTL was detected for sdNDVI_1_DI. By contrast, the 
QTL zones found in LG05 and LG10 for NbFr_WS and 
NbFr_11_DI, respectively, were located on chromosomal 
fragments that are inverted on their respective chromosome 
and therefore did not matched. Similarly, the QTLs detected 
on LG06 that were located either above or below CH03d07 
were compared to those detected on LG14, without finding 
evident homology in those regions. These findings suggest 
that further investigations of QTL zones homologies will be 
required, along with identification of candidate genes in the 
zones of highest interest.

To summarize, this work is an important step in the study 
of tree field phenotyping for response to abiotic stress. It 
confirmed—if proof was needed—the strong potential of 
remote sensing tools as a method for screening a large panel 
of genotypes. Airborne imagery proved relevant to acquire 
simultaneous information on a tree population, notably for 
characterizing transpiration behaviour at the individual tree 
scale as a result of images yielded in the thermal infrared 
domain. Indices derived from high-resolution airborne field 
imagery appeared to be highly heritable and enabled detec­
tion of a large number of QTLs, for vegetation and water 
stress indices, and the tree response to water deficit. This 
study opens future avenues for analysis of candidate genes 
related to foliage response to drought, and may contribute to 
future selection of new plant woody plant material bred for 
its response to drought and/or water use efficiency.

Supplementary data

Supplementary data is available at JXB online.
Supplementary Fig. S1. Total QTLs detected on the consen­

sus ‘Starkrimson’ × ‘Granny Smith’ (STK×GS) genetic map.
Supplementary Table S1. Total list of QTLs detected for 

all phenotypic variables in well-watered and/or water-stress 
conditions and for the differential index.

Supplementary Table S2. Values of traits (mean and SD) 
investigated in well-watered or water-stressed conditions and 
for the differential index.
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