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In situ biomarker discovery 
and label-free molecular 
histopathological diagnosis of 
lung cancer by ambient mass 
spectrometry imaging
Tiegang Li1,*, Jiuming He1,*, Xinxin Mao2, Ying Bi3, Zhigang Luo1, Chengan Guo3, Fei Tang3, 
Xin Xu4, Xiaohao Wang3, Mingrong Wang4, Jie Chen2 & Zeper Abliz1

Sensitive and spatial exploration of the metabolism of tumors at the metabolome level is highly 
challenging. In this study, we developed an in situ metabolomics method based on ambient mass 
spectrometry imaging using air flow-assisted desorption electrospray ionization (AFADESI), which 
can spatially explore the alteration of global metabolites in tissues with high sensitivity. Using this 
method, we discovered potential histopathological diagnosis biomarkers (including lipids, amino 
acids, choline, peptides, and carnitine) from 52 postoperative lung cancer tissue samples and then 
subsequently used these biomarkers to generate images for rapid and label-free histopathological 
diagnosis. These biomarkers were validated with a sensitivity and a specificity of 93.5% and 
100%, respectively. Moreover, a single imaging analysis of a cryosection that visualized all these 
biomarkers, taking tens of minutes, revealed the type and subtype of the cancer. This method could 
potentially be used as a molecular pathological tool for rapid clinical lung cancer diagnosis and 
immediate image-guided surgery.

Molecular pathology testing is becoming an integral part of clinical practice by pathologists1,2. However, 
the current methods for molecular pathology diagnosis, including immunohistochemical analysis (IHC), 
fluorescence in situ hybridization (FISH), and polymerase chain reaction (PCR), are focused primarily 
on monitoring changes in macromolecules (i.e., mRNAs and proteins) in a low-throughput manner3. 
Moreover, most of these molecular pathology techniques are complex and time-consuming owing to 
their requirements for special antibodies or chemical labeling4. Currently, surgical excision remains the 
main curative therapeutic modality for cancer5; intraoperative consultation between a pathologist and a 
surgeon requires rapid and accurate diagnosis to guide immediate surgical management6,7.

Metabolites serve as direct signatures of biochemical activity and are therefore easier to correlate 
with phenotype7. Several reports have demonstrated that comprehensive metabolite measurement 
and evaluation through metabolomic profiling enable more thorough characterization of pathological 
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conditions8–12. Metabolomics—the study of the entire set of small-molecule metabolites present in a 
biological sample—is widely used to identify and evaluate potential diagnostic biomarkers in a vari-
ety of malignancies13,14. Because tissues are the locations of most cancerous lesions, tissue metabolite 
profiling is a powerful tool for deciphering the abnormal metabolisms of tumors15,16. Although mass 
spectrometry-based metabolomics methods are widely used, they require multi-step metabolite extrac-
tion and separation; consequently, a loss of pathophysiology-associated localization information in tissue 
samples represents a major limitation on their utility.

Mass spectrometry imaging (MSI), a spatially resolved label-free bioanalytical technique, can directly 
identify and map the spatial arrangement of known or unknown molecular species in tissues in associa-
tion with histological features; hence, this approach can be considered a high-throughput and label-free 
form of IHC17–19. Matrix-assisted laser desorption ionization (MALDI) MSI allows direct analysis of the 
spatial distribution of proteins in tissue specimens, enabling the discovery of diagnostic and prognostic 
markers of cancer20,21. Desorption electrospray ionization (DESI) MSI, one of the earliest ambient MSI 
methods, has been applied to the classification of tumors and can provide valuable prognostic informa-
tion such as tumor subtype and grade, mainly in terms of the lipid profile22,23.

Lung cancer is by far the most common cancer and the largest contributor to cancer-related mortal-
ity throughout the world24. Several groups have demonstrated that on-tissue digestion combined with 
MALDI MSI can be used to histopathologically study lung cancer via interrogation of the protein expres-
sion patterns in tissues25–27.

We recently developed a novel air flow-assisted desorption electrospray ionization (AFADESI) that 
uses high-rate air flow to enhance ion transmission and ionization efficiency under ambient conditions. 
Using this technique, we successfully achieved rapid real-time monitoring28 and whole-body molecular 
imaging of a known anticancer agent29. Furthermore, we investigated the molecular mechanism of drug 
action in vivo30.

In the current study, we developed an in situ metabolomics method based on the ambient 
AFADESI-MSI technique and multivariate statistical analysis (MVSA), with the aim of simultaneously 
exploring the spatial distribution of all unknown metabolites under a pathological state within a tissue 
sample. The goal was to address the challenges outlined above regarding a rapid and direct pathological 
diagnosis of cancer. The strategy for the development of this method is shown in Fig. 1. AFADESI-MSI 
was used to acquire a massive amount of data associated with multiple species of endogenous metabo-
lites from different pathological conformation tissues, while preserving in situ and spatial information. 
Then, the MVSA method was conducted so as to screen and identify reliable biomarker candidates from 
low-content metabolites. Subsequently, MSI on cryosections generated images with these biomarkers for 
rapid, label-free histopathological diagnosis. Finally, when the in situ metabolomics method based on 
AFADESI-MSI was applied to the histological diagnosis of lung cancer, the results demonstrated that this 
method is effective and feasible.

Results
Global metabolite profiling in lung cancer tissues.  To reveal alterations in global metabolites 
associated with cancer, it is essential to use a method that allows evaluation of complex tissues with 
high throughput and sensitivity. To this end, we constructed an AFADESI-MSI platform in-house and 
used it to image metabolites in tissue. Because it uses high-speed air flow, this technology can achieve 
remote ambient MS analysis with high sensitivity, particularly in surface analyses of large objects28, which 
has potential advantages in the context of rapid detection of clinical materials. Using this system, we 
analyzed 52 clinical postoperative lung tissues, including adenocarcinoma (AC), squamous cell lung 
carcinoma (SCC), and corresponding adjacent normal tissues (for information on the samples, see in 
Supplementary Table S1), with AFADESI-MSI in both the positive- and negative-ion modes. In gen-
eral, the scanning time for the AFADESI-MSI analysis of a tissue section with an area of 1 ×  1 cm2 was 
approximately 40 minutes. Representative AFADESI-MS spectra from several histological types of lung 
cancer tissue are shown in Supplementary Fig. S1. An abundance of peaks, corresponding to all types 
of metabolites, was observed in the AFADESI-MS spectra. Most of the detected metabolites were tenta-
tively assigned according to accurate mass measurements, MS/MS analyses, and database searches22,31. 
The primary ions observed in the low mass/charge (m/z) range corresponded to amino acids, choline, 
peptides, and carnitine, among others, whereas above m/z 500, the spectra were dominated by various 
lipids, primarily sphingomyelins (SMs), glycerophosphoethanolamines (PEs), glycerophosphocholines 
(PCs), phosphatidylserines (PSs), and lysophosphatidylcholines (LysoPCs). These results suggested that 
AFADESI-MSI has the ability to acquire multiple types of in situ information about endogenous metab-
olites from tissues, with high sensitivity and broad metabolite coverage.

Multivariate statistical analyses.  Although different types of lung tissues have different metabolite 
profiles, it would be inappropriate to discriminate among them based solely on a single mass spectrum. 
Compared with other biological samples, such as plasma and urine, tissue is not a uniform biological 
sample. Therefore, sampling of different regions will yield different metabolite profiling due to the dif-
ferentiated tissue morphology and tissue type and even the number of tumor cells. Furthermore, such 
an approach would not be practical in clinical histopathological applications because single spectra can-
not represent the common features of whole samples or reflect intra-sample variability. Therefore, we 
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propose an in situ metabolomics method based on AFADESI-MSI that integrates histology-defined fea-
tures extraction (HDFE) from ROIs and multivariate statistical analysis (MVSA) to investigate changes 
in metabolites and screen for potential diagnostic biomarkers in massive MSI datasets.

HDFE from ROIs was based on the visual ion image and the corresponding optical image of the 
tissue section. Supplementary Fig. S2. shows how histopathological features were extracted from the 
raw MSI datasets. Specifically, an ROI was defined on the basis of examination of the hematoxylin and 
eosin (H&E)-stained adjacent section (optical image), and the resultant outline was then drawn over 
the ion image. The profiles of metabolites in specific regions were extracted from the ROI, resulting in 
a two-dimensional data matrix (m/z, intensity) that contained histopathological information. All the 
separated sample matrixes were then grouped according to histopathology after peak alignment, nor-
malization, and background deduction, and then subjected to further MVSA.

We used a supervised statistical analytical method—orthogonal projections to latent structures dis-
criminant analysis (OPLS-DA)—to describe the disease state of tissue and screen potential diagnostic 
biomarkers32. As shown in Fig.  2, the score plot exhibited a clear separation between malignant and 
adjacent normal tissues, suggesting that the metabolites were significantly altered in the tumor tissue. 
The classification of the tumor and non-tumor groups resulted in one predictive (tp) and two orthogonal 
(to) (1 +  2) components with a cross-validated predictive ability Q2 (cum) of 57.3%. In addition, a value 
of 52.7% variance in X [R2(X)] was used to account for 71.0% of the variance of Y [R2(Y)]. To further 
validate this model, we performed a random permutation test with the partial least squares discriminant 
analysis (PLS-DA) model, corresponding to the OPLS-DA model across three components. Validation 
with 100 random permutation tests generated intercepts R2 =  0.294 and Q2 =  − 0.253, indicating that the 
model was not overfitted33,34.

Diagnostic biomarker discovery and evaluation.  Following the MVSA analysis, we performed 
multi-step biomarker screening processes, including S-plot, VIP value, and t-test, to discover reliable 
biomarkers33,35. The result was identification of 38 variables that discriminated between tumor and 

Figure 1.  The strategy for developing an in situ metabolomics method to discover diagnostic biomarkers 
for a rapid, direct and label-free molecular histopathological diagnosis of cancer. (ROIs: regions 
of interest; HDFE: histology-defined features extraction; MVSA: multivariate statistical analysis, AC: 
adenocarcinoma, SCC: squamous cell carcinoma; Poorly: poorly differentiated lung cancer; M/W: moderate/
well-differentiated lung cancer)
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non-tumor samples. Furthermore, because the distinct features of an MSI dataset are composed of a 
large number of points (couple [m/z, intensity]) with spatial information, the two-dimensional distri-
bution maps of ions of interest can be intuitively reconstructed for further biomarker screening. After 
the imaging tests (Supplementary Fig. S3), 12 discriminated variables were excluded because they did 
not have distinct contours relative to the background area, leaving 26 variables as potential biomarker 
candidates that reflected metabolic feature differences between tumor and non-tumor tissues. Ultimately, 
24 potential biomarkers were tentatively identified. Detailed information is provided in Supplementary 
Table S2. All of these potential biomarkers were upregulated in lung cancer tissues.

We next performed in-depth receiver operating characteristic (ROC) analysis to evaluate the reli-
ability of these putative biomarkers. Heat maps were created to illustrate the discriminatory power 
of each potential biomarker, and the biomarkers were ranked in order of their area under the curve 
(AUC) values. All the potential biomarkers had AUC values within the range of 0.73–0.93. Metabolites 

Figure 2.  (A) Score plot of the OPLS-DA models (R2(Y) =  71.0% and Q2 =  57.3%) derived from AFADESI-
MSI data to differentiate lung cancer tissue (Red squares) and adjacent normal tissue (Blue circles). 
Sample points for different histopathological classes are grouped and clearly separated from one another. 
(B) Permutation test results (after 100 permutations) of the PLS-DA models (R2 =  0.294, Q2 =  − 0.253) 
correspond to the OPLS-DA models, indicating that the model was not overfitted and can be further 
processed.

Figure 3.  A visualization of the discriminatory power across individual diagnostic biomarker candidates 
and classification performance of the combined biomarker group. (A) A heat map was used to depict 
the discriminatory power of each metabolite, estimated by the AUC. The colors correspond to the AUC 
values: red and blue represent high and low values, respectively. (B) The ROC curve illustrates the combined 
discriminatory performance of a group of valuable clinical biomarkers with AUC > 0.90.
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with AUC > 0.90, including choline, [PC(38:2) +  Na]+, [PC(16:0/20:4) +  Na]+, and [PC(36:3) +  Na]+, 
[PC(34:1) +  K]+, [PC(18:1/20:3) +  Na]+, were combined into a group of valuable clinical biomarkers 
that was then used to evaluate discrimination performance. After combining these biomarkers by binary 
logistic regression, we performed ROC curve determination, which revealed that the valuable clinical 
biomarker group had an AUC of 0.968, providing the best available discrimination between lung cancer 
and non-tumor tissue. The sensitivity and specificity, calculated at the best cutoff points, were 93.5% and 
100%, respectively (Fig. 3). The results of the ROC analysis further demonstrated that the in situ metab-
olomics method based on AFADESI-MSI, combined with HDFE and MVSA, could effectively identify 
reliable biomarkers from massive MSI data and eliminate the effects of sample variability.

Label-free molecular histopathological diagnosis of lung cancer.  Clinical management and 
ultimate prognosis of lung tumors depend largely on tumor type, subtype, and grade. Molecular imaging 
by MSI allows correlation of the identity of a metabolite with its spatial distribution on the tissue surface; 
this information has been demonstrated to be important in tumor diagnosis and surgical resection23. 
Hence, after the discovery of potential biomarkers via in situ metabolomics with AFADESI-MSI, we 
further validated the ability of these biomarkers to diagnose lung cancer according to the corresponding 
ion images.

The distribution of potential biomarkers across the tissue was visualized as ion images, shown in 
Fig. 4 and Supplementary Fig. S3. The representative ion images from SCC and AC tissues delineate the 
histopathology of lung cancer at the molecular level. The imaging results suggested that the intensities 
of the signals corresponding to potential biomarkers were elevated in cancerous tissue. Furthermore, the 
spatial distributions of potential biomarkers presented in the ion images were consistent with the statisti-
cal trends shown in the box plots (Fig. 4). Remarkably, close examination of the ion images in the transi-
tion region containing normal and cancerous tissue revealed a heterogeneous distribution of metabolites; 
specifically, the area marked with a red dotted line in Fig. 4C presented with a higher ion signal intensity. 
Compared with the corresponding H&E stained sections, tumor cells were clearly observed in this area, 
which is the major factor contributing to this phenomenon. In addition, a discriminated ion at m/z 246.9 
in the negative-ion mode was identified as a potential diagnostic biomarker. In contrast to other potential 
biomarkers, this ion (Fig.  4H) exhibited an inverse distribution with high expression in adjacent nor-
mal tissue but low concentration in tumor tissue. Therefore, the accuracy of histopathological diagnosis 
of tumors would be improved by the specific inverse distributions of multiple biomarkers. This result 
emphasizes that biomarker ion images discovered via in situ metabolomics based on AFADESI-MSI not 
only clearly delineate the tumor margin but also characterize the neoplasms’ infiltration. In addition, 
these ion images show that the potential biomarkers distribute uniformly in the tissue sections and that 
tumors display pronounced heterogeneity in many morphological and physiological features; MSI tech-
nology thus shows an extraordinary superiority for characterization of tumor tissues.

Lipids have high ionization efficiency because they possess a polar head and are therefore more easily 
detected than other endogenous metabolites. For this reason, and because they are abundant in tissues, 
these molecules are key targets for MSI studies10,36. However, the in situ metabolomics method based 
on AFADESI-MSI also identified many non-lipid endogenous metabolites present at low concentrations, 
including amino acids and carnitine, as potential biomarkers (Fig. 4F,G). Thus, this strategy can mini-
mize ion suppression from high-abundance metabolites or a complex matrix, at least to some extent, ena-
bling exploration of large numbers of metabolites that are significantly associated with the histopathology 
of tissues and potentially providing insight into the mechanisms and etiology of disease.

Because of differences in the origin, treatment, and prognosis of various cancer subtypes, it is essential 
to discriminate between histological types. Using the in situ metabolomics method described above, we 
investigated the correlation between the tissue metabolite profiles of SCC and AC lung cancer. After an 
OPLS-DA model was generated, the score plots exhibited a clear discrimination (Supplementary Fig. 
S4A) between SCC and AC, and three metabolites that accounted for this discrimination were tagged 
as potential biomarkers. Detailed information is provided in Supplementary Table S3. Representative 
imaging analysis results (Fig. 5) revealed that the signal intensities of all three metabolites were higher 
in SCC than in AC; this trend was in accord with the statistical results, represented in the box plots.

In addition to discrimination of pathological type, we investigated the differentiation degree of SCC 
and AC using these methods. Poorly differentiated cancer cells are more likely to grow quickly and 
spread, leading to weaker curative effects and less favorable prognoses, whereas moderate-differentiated 
and well-differentiated cancer cells are prone to be slow-growing and less aggressive. This information is 
valuable for determining treatment plans and prognosis. Hence, we divided the tumor samples into two 
groups—“poorly differentiated” and “moderate/well-differentiated”—and then conducted in situ metab-
olomics via AFADESI-MSI, OPLS-DA modeling, and variable screening approaches to discriminate 
between SCC and AC of different degrees.

In the SCC samples, there was a clear separation (Supplementary Fig. S4B) between the 
poorly-differentiated and moderate/well-differentiated groups; a number of lipid compounds, such as 
[PC(16:0/18:2) +  Na]+ (m/z 780.5), [PC(34:1) +  K]+ (m/z 798.5), and m/z 824.5 (P <  0.01,VIP > 1.5), 
were all expressed in the adjacent normal, moderate/well and poorly-differentiated groups in increasing 
order of expression levels (Fig. 6). In the AC samples (Supplementary Fig. S4C), three metabolites that 
contributed the most discriminatory power in the model were selected as potential biomarkers associated 
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with the differentiation degree of AC. These metabolites are all lipid species, including one sphingomy-
elin (SM) and two phosphatidylcholines (PC) (Supplementary Table S4). All these species were upregu-
lated in the moderate/well differentiated group relative to that in the poorly-differentiated and adjacent 
normal groups (Supplementary Fig. S5); this trend is apparent in the representative images and box plots.

Discussion
Cancer cells grow and divide at an unregulated, quickened pace due to damage or changes to the DNA, 
and it is well known that cancer cells have atypical metabolic characteristics relative to normal cells37. 
Therefore, cancer cells must generate enough energy and acquire or synthesize biomolecules at a rate 
sufficient to meet the need for intensified cell membrane synthesis and cell replication38. Using in situ 
metabolomics based on AFADESI-MSI, we found that 20 specific lipid species were significantly elevated 

Figure 4.  Distributions of representative potential biomarkers (group) across tumors and adjacent 
normal tissue sections from AC and SCC lung cancer. (A,B) Optical images of corresponding H&E-
stained sections and the amplified figures (× 200). (C–H) Ion images and corresponding statistical box 
plots. Column 1: potential biomarkers with their molecular ions (m/z); Column 2: comparison of ion 
images between tumors and adjacent normal tissue sections from AC; Column 3: comparison of ion images 
between tumors and adjacent normal tissue sections from SCC; Column 4: the statistical box plots show the 
ion intensity of tumors and adjacent normal tissue sections.
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in tumor tissues; these additional lipids are likely to be used by tumor cells for the synthesis of cell 
membranes, lipid rafts, and lipid-modified signaling molecules39. Choline itself plays a critical role in the 
structure and function of biological membranes in all cells, and numerous studies have demonstrated 
that elevation of the choline level in cancer cells may correlate with a higher rate of choline transport 
due to increased expression of choline-transporting transmembrane systems40. In addition, we detected 
elevated levels of proline, betaine, and L-carnitine in malignant tumors. Proline is an α -amino acid, and 
a previous study demonstrated that the oncogenic transcription factor c-MYC (MYC) can markedly 
increase the biosynthesis of glutamine-derived proline41,42. In another report, metabolomic analysis of 
serum and tissue samples from lung cancer patients revealed that proline was elevated in both serum 
and tumor tissue, which suggests that when a tissue becomes cancerous, metabolites move from the 
blood into the tissue to promote cancer cell proliferation43. Betaine is a major methyl donor that can be 
synthesized from choline oxidation. The upregulation of betaine in lung cancer may be due to enhanced 
choline transport 44,45. Carnitine plays an important role in energy metabolism by mediating the trans-
port of long-chain fatty acids across the inner mitochondrial membrane46,47; the high energy expenditure 
in cancer cells may perturb carnitine homeostasis, resulting in high overall levels of this compound45.

The three molecules were capable of discriminating the pathological types of cancer, indicating that 
tumors with different pathological features possess different metabolite profiles. The differences in metab-
olites in histological subtypes of lung cancer may represent the influence of cancer as well as inflam-
mation43. In addition, the relationship between metabolites and the degree of cell differentiation in lung 
cancer indicates that lipid compounds, especially PC, play a vital role in tumor differentiation. However, 
the opposing trends in the levels of potential biomarkers in AC and SCC remain to be investigated.

Figure 5.  Distribution of representative potential biomarkers across tissue sections from subtypes of 
lung cancer. (A,B) Optical images of corresponding H&E-stained sections and the amplified figures (× 200). 
(C–E) Ion images and corresponding statistical box plots. Column 1: potential biomarkers with their 
molecular ions (m/z); Column 2: ion images from tissue sections of AC; Column 3: ion images from tissue 
sections of SCC; Column 4: the statistical box plots show the ion intensity of tumor tissue sections with 
subtypes of AC and SCC.
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We developed an in situ metabolomics method based on ambient MSI and demonstrated that it 
could effectively discover reliable biomarkers, with spatial information, for use in histological diagnosis. 
This method takes advantage of the capacity of AFADESI-MSI to explore the diversity of global and in 
situ metabolite information from tissue in a single experiment. The detection coverage for endogenous 
metabolites was greatly extended by adopting this method, specifically by including not only lipids but 
also amino acids, choline, peptides and carnitine. Furthermore, the histology-defined data-extraction 
method allowed acquisition of histopathological information from ROIs, and MVSA enabled identifi-
cation of diagnostic biomarkers from massive MSI data and effectively eliminated the effect of sample 
variability. As shown by the distributions of these potential biomarkers, this integrated MSI strategy can 
achieve rapid and direct histopathological diagnosis of cancer.

We used this in situ metabolomics method to discriminate between cancerous and adjacent normal 
tissue, as well as to display the distribution of tumor cells in lung cancer tissue, and thereby identi-
fied multiple types of endogenous metabolites as potential biomarkers. The spatial distribution of these 
potential biomarkers revealed that they were present at significantly different concentrations in lung 
cancer and its subtypes and were therefore able to distinguish between lung tumor and adjacent nor-
mal tissues and to characterize the degree of differentiation and the pathological type. These potential 

Figure 6.  Distribution of representative potential biomarkers across tissue sections from SCC, with 
degree of differentiation in the tumorous and adjacent normal tissue. (A,B) Optical images of the 
corresponding H&E-stained sections and the amplified figures (× 200). (C–E) Ion images and corresponding 
statistical box plots. M/W: moderate/well. Column 1: potential biomarkers with their molecular ions 
(m/z); Column 2: ion images from adjacent normal tissue sections; Column 3: ion images from tumorous 
tissue sections with moderate/well differentiation; Column 4: ion images from tumorous tissue sections 
with poorly differentiation; Column 5: the statistical box plots show the ion intensity of the tumorous and 
adjacent normal tissue sections with the degree of differentiation.
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biomarkers were found for the first time using the mass spectrometry imaging method; except for m/z 
255.0910 (C10H14N4O2S), other potential biomarkers have been previously identified using other tech-
nologies, such as NMR and LC-MS, from serum and/or urine. However, analysis of additional unknown 
samples should be performed on a large scale to further validate the potential biomarkers described in 
this research. We also applied this method to the histopathological diagnosis of breast and thyroid cancer, 
and it successfully distinguished the tumor and adjacent normal tissues as shown in images of discrimi-
nated endogenous metabolites (unpublished results). Metabolite-based histopathology provides intuitive 
molecular phenotypes and biochemical information, breaking through the limitations of traditional H&E 
and immunohistochemistry methods. Thus, this approach is potentially valuable in the elucidation of 
pathogenic mechanisms, screening for biomarkers, prediction of therapeutic effect, and identification of 
new therapeutic targets.

Although this in situ metabolomics method based on AFADESI-MSI can perform an untargeted 
analysis of all the small-molecule metabolites in tissue, there are still many problems that need to be 
solved. For example, how can we detect more species of endogenous metabolites with low-content in 
tissue without losing spatial resolution, how can we investigate ion suppression from different patho-
logical conformations, and how can we correctly identify the structure of these diagnostic biomarkers? 
Nevertheless, direct tissue analysis by the in situ metabolomics method based on AFADESI-MSI could 
be correlated with histological and clinical features for the purpose of disease diagnosis. By providing 
visual images of biomarker distribution, this technique enables investigation and spatial localization of 
both known and unknown endogenous metabolites in a single experiment, without the need for labeling. 
Thus, this method has great potential to contribute to the next generation of metabolite-level diagnostic 
tests, which will improve both clinical prognoses and patient quality of life.

Based on biomarker discovery and histopathology of specific metabolites, AFADESI-MSI enables 
accurate delineation of the tumor margin, potentially facilitating optimal tumor resections in the clinic 
while avoiding recurrence. Furthermore, in situ metabolomics combined with fine-needle aspiration 
(FNA) technology could lead to less invasive early tumor screening and diagnosis in clinical practice.

Methods
Sample collection and processing.  All post-operative tissue samples, including 52 lung tumor tis-
sues and 21 adjacent normal tissues, were collected in the Peking Union Medical College Hospital and 
Cancer Institute Hospital, Chinese Academy of Medical Sciences. The study protocols were approved by 
the Ethics Review Committee of the Peking Union Medical College Hospital, and all the experiments 
were carried out in accordance with the approved guidelines. Meanwhile, all the patients involved in the 
study signed the informed consent form and agreed to participate the research. Supplementary Table S1 
summarizes the clinical pathological profiles of the lung tumor samples. The samples were snap-frozen 
in liquid nitrogen and stored at − 80 °C before subsequent processing. The frozen samples were cut into 
8 μ m sections at − 20 °C on a cryomicrotome (CM 3050S, Leica Microsystems, Wetzlar, Germany) and 
thaw-mounted onto microscope glass slides (Superfrost Plus slides, Thermo Fisher Scientific, USA). One 
set of adjacent cryosections was acetone-fixed and subsequently stained using H&E for pathological 
examination. The sections were stored at − 80 °C until they were analyzed. Prior to analysis, the sections 
were allowed to return to room temperature and then dried under a vacuum in a desiccator for approx-
imately 30 minutes22,48.

AFADESI-MSI experimental configuration and MSI analysis.  AFADESI-MS imaging analysis of 
the lung cancer tissue was conducted in both the positive- and negative-ion modes on a commercial 
Q-TOF mass spectrometer (QSTAR Elite®, AB Sciex, USA) equipped with a custom-made AFADESI ion 
source as well as a computer-controlled imaging stage. Real-time internal mass calibration (using back-
ground ions m/z 149.0233 and 391.2843) was performed to acquire accurate mass spectra in each MSI 
experiment. (A more detailed description of the configuration of the AFADESI ion source was provided 
in previous papers28,29.) The distance between the transport tube and the curtain plate was 20 mm. The 
spray voltage was set at (± ) 4600 V, and the transport tube voltage was the same as the voltage applied 
to the curtain plate, i.e., (± ) 1200 V. The declustering potential was set at (± ) 50 V. The nebulizing gas 
and curtain gas pressure were set at 60 arb and 20 arb, respectively. The extracting air flow rate was 45 L 
min−1, and the solvent flow rate was 5 μ L min−1. In the positive-ion scan mode, the spray solvent for the 
MS acquisition was prepared by mixing methanol and water (9:1, v/v) with 0.1% formic acid, whereas 
acetonitrile:water (8:2, v/v) was used as the spray solvent in the negative-ion scan mode. The molecular 
imaging experiments were performed by continuously scanning the tissue surface in the y-direction at 
a constant velocity of 200 μ m s−1, separated by a 200 μ m vertical step in the x-direction, until the entire 
tissue sample was assayed49.

Histology-defined features extraction.  The raw data (.wiff) collected in each line scan as a sep-
arate file containing the endogenous metabolite information for the specimens were converted into the 
required format (.mat) for image generation. Next, a spatially accurate image depicting the contours of 
the tissue sections and the spatial distributions of specific ions was plotted using the IMS V 2.5.1 imaging 
software, developed in-house, with a preselected ion. The same rainbow color scale is used throughout 
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the figures: the red pixels represent the highest signal intensity (100%) of a particular ion; the black pixels 
represent the lowest signal (0%)50.

Based on the visual ion image of a tissue, the software was able to extract spectral data from ROIs. 
Specifically, an ROI was created by drawing an outline over the ion image based on the pathological char-
acteristics of the H&E-stained adjacent section; thus, the profile of metabolites concerning a particular 
region could be extracted from the ROI. Moreover, a two-dimensional data matrix (m/z, intensity) in .txt 
format was built up for each ROI. The two-dimensional data matrix from the ROI was averaged in each 
pixel and adopted for further data analysis to balance the weight of each specimen.

The separated sample dataset matrixes were then imported into the MarkerviewTM software 1.2.1 (AB 
SCIEX) for background deduction, peak picking and peak alignment. Specifically, first, an exclusion list 
of background ions was generated from the background region (process spectra options: for the scan 
range from 100 to 500 Da, the mass tolerance was 0.03 Da and the minimum required response was 50 
Cps, whereas for the mass range from 500 to 1000 Da, the mass tolerance was 0.05 Da and the minimum 
required response was 1 Cps). When importing the sample dataset matrixes for peak picking, the back-
ground ions in the exclusion list were deducted. The list of sample ions was generated with the following 
parameters: for the scan range from 100 to 500 Da, the minimum required response was 20 Cps, whereas 
for the mass range from 500 to 1000 Da, the minimum required response was 0.5 Cps. Meanwhile, the 
ions marked with an isotope checkmark or their intensity at a 0 value account for more than 70% of the 
samples and were deleted from the peak aligned list. Next, the list was exported in .txt format for later 
multivariate statistical analysis.

Multivariate statistical analysis and biomarker screening.  The datasets from the ROIs were 
imported into SIMCA-P 11.0 (Umetrics AB, Umea, Sweden), centered, and Pareto scaled to reduce the 
impact of noise and artifacts on the models. The significantly changed metabolites that contributed most 
to the model were selected as potential biomarkers for further study. More specifically, an S-plot showing 
the covariance and correlation between the metabolite variables and the model was used to select the 
discriminating variables. Variables with both high covariance and high correlation were preferentially 
selected. The VIP value reflects the influence of every variable on the classification; only variables with 
a VIP value above 1.5 were considered. Moreover, a jack-knifing confidence interval was applied, and 
the metabolites with a positive score were kept as further candidates33,35. The biomarker candidates were 
further confirmed by an independent t-test (P <  0.01) using PASW Statistics 18.0 (formerly SPSS Inc., 
Chicago, IL USA), and the variation and comparison in the levels of the potential biomarkers between 
the experimental groups were presented in box plots. Finally, retrospective imaging tests were performed 
to further confirm the reliable potential biomarkers, according to whether their ion images have distinct 
contours relative to the shape of the tissue section.

Metabolite identification.  Metabolite assignments were tentatively confirmed by tandem mass spec-
trometry (MS/MS) experiments, using the LC-MS technique and AFADESI-MS. For the LC-MS/MS 
experiment, the frozen lung tissue specimens were weighed at approximately 50 mg prior to homogeni-
zation in an ice-cold mixture solution (methanol 410 μ L and water 210 μ L); then, 280 μ L of methylene 
dichloride and 210 μ L of water were added. The samples were thoroughly vortexed for 2 minutes, fol-
lowed by centrifugation at 15000 rpm for 10 min at 4 °C. The resulting supernatants that were methanol 
and water were collected and dried under nitrogen. The dried extracts were stored at − 80 °C until the 
LC-MS/MS analysis. Before the analysis, the extracts were resuspended in 1200 μ L of acetonitrile/water 
(8:2). The analyses were performed using an UltiMate 3000 RSLC System (Dionex, Thermofisher, USA) 
coupled to a Q-Orbitrap mass spectrometer (Q-Exactive, Thermofisher, USA). The MS spray voltages 
were 3.5 kV in the positive mode. The capillary temperature was set at 350 °C with the sheath gas at 40 
arbitrary units and the aux gas at 11 arbitrary units. The chrom. peak width (FWH) was 15 s, and the 
mass scan range was set from 70 to 1000 Da. The resolution of the Orbitrap was set at 70,000. The MS/
MS data were collected with the collision energy between 10 and 45 eV. A linear 30 min water (5 mM 
ammonium acetate) to acetonitrile gradient was run on a Phenomenex Kinetex HILIC column (2.6 μ m 
2.1 ×  150 mm) in the positive electrospray mode. The AFADESI-MS/MS analysis was performed directly 
on the tissue samples, with a series of line scans across the tissue sample until the desired results were 
achieved, and the detailed scan parameters were shown in AFADESI-MSI experimental configuration 
and MSI analysis; the collision energy was set between 10 and 35 eV. Comparison with literature data 
and authentic standards, as well as exact molecular weights (accurate mass of molecular and product 
ions) and a query of the LIPID MAPS (http://www.lipidmaps.org/), Massbank (http://www.massbank.
jp/), HMDB (http://hmdb.ca/), and METLIN (http://metlin.scripps.edu)49,51 databases, resulted in tenta-
tive assignment of the structures of these potential biomarkers.

Intra-day reproducibility.  To ensure data stability and reliability, intra-day reproducibility was inves-
tigated by scanning red bars (Rhodamine B solution, m/z 443.2) on 6 successive days under the same 
experimental conditions. The relative standard deviation (RSD) values of the average peak area on 6 
successive days were 18.19%. For biomarker studies, the FDA guidelines specify an RSD < 20% as an 
acceptable level of precision52.

http://www.lipidmaps.org/
http://www.massbank.jp/
http://www.massbank.jp/
http://hmdb.ca/
http://metlin.scripps.edu
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Data quality assessment.  When multiple analytical experiments are to be performed, the stabil-
ity and suitability of the analytical system must be taken into consideration. In this study, the dataset 
extracted from the background area was recognized as the QC (quality control) samples, applied to assess 
and ensure the reliability of the analytical processes. According to a previous report, the most straight-
forward way to begin analysis of the QC data is to use principal component analysis (PCA), an unsuper-
vised technique53. Multivariate analysis results of the QC samples are shown in Supplementary Fig. S6. 
The dataset deviation was < 2 SD, suggesting that the AFADESI-MSI data are worthy of further study.
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