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Abstract

Hepatocellular carcinoma (HCC) is the world’s third most widespread cancer. Currently
available circulating biomarkers for this silently progressing malignancy are not sufficiently
specific and sensitive to meet all clinical needs. There is an imminent and pressing need for
the identification of novel circulating biomarkers to increase disease-free survival rate. In
order to facilitate the selection of the most promising circulating protein biomarkers, we
attempted to define an objective method likely to have a significant impact on the analysis of
vast data generated from cutting-edge technologies. Current study exploits data available
in seven publicly accessible gene and protein databases, unveiling 731 liver-specific pro-
teins through initial enrichment analysis. Verification of expression profiles followed by inte-
gration of proteomic datasets, enriched for the cancer secretome, filtered out 20 proteins
including 6 previously characterized circulating HCC biomarkers. Finally, interactome anal-
ysis of these proteins with midkine (MDK), dickkopf-1 (DKK-1), current standard HCC bio-
marker alpha-fetoprotein (AFP), its interacting partners in conjunction with HCC-specific
circulating and liver deregulated miRNAs target filtration highlighted seven novel statistically
significant putative biomarkers including complement component 8, alpha (C8A), mannose
binding lectin (MBL2), antithrombin Ill (SERPINC1), 11B3-hydroxysteroid dehydrogenase
type 1 (HSD11B1), alcohol dehydrogenase 6 (ADHB6), beta-ureidopropionase (UPB1) and
cytochrome P450, family 2, subfamily A, polypeptide 6 (CYP2A6). Our proposed methodol-
ogy provides a swift assortment process for biomarker prioritization that eventually reduces
the economic burden of experimental evaluation. Further dedicated validation studies of
potential putative biomarkers on HCC patient blood samples are warranted. We hope that
the use of such integrative secretome, interactome and miRNAs target filtration approach
will accelerate the selection of high-priority biomarkers for other diseases as well, that are
more amenable to downstream clinical validation experiments.
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Introduction

Hepatocellular carcinoma (HCC), one of the most aggressive and devastating cancer, with an
annual incidence of 0.6 million new cases, is the third leading cause of cancer related mortality
worldwide [1, 2]. Its incidence remains highest in the developing world and is steadily increas-
ing across the developed world. Early diagnosis and metastasis monitoring of HCC still
remains a challenging task and is therefore highly important [3]. In most of the cases, HCC
patients die quickly because of the late diagnosis and rapid tumor progression. Hepatic resec-
tion and liver transplantation are the only potential curative treatments for HCC patients [3].
Even after curative resection, HCC recurrence occurs in 60-100% of the cases thus limiting the
long-term survival of HCC patients. Biomarkers in blood or in other body fluids for screening,
staging, prediction of recurrence, prognosis and monitoring of response to a therapy would be
an important contribution to the management of patients with HCC.

Biomarkers, as quantifiable traits can evaluate normal biological as well as pathological pro-
cesses [4]. Detection of tissue-specific circulating biomarkers to find tumor at an early stage
and to enable minimally invasive monitoring of patient health states have gained immense sci-
entific and clinical value. Various tumor-related genes, proteins, enzymes and microRNAs
(miRNAs) synthesized by the cancer tissues are secreted into the body fluids such as blood or
urine. They can be measured by non-invasive assays [3] and thus are considered to be rich
sources of potential biomarkers [5]. Currently, the level of serum alpha-fetoprotein (AFP) is
being used as a standard biomarker for the diagnosis of HCC with ultrasonography every 6 to
12 months [1]. The diagnostic performance of AFP is heavily constrained due to its low speci-
ficity and sensitivity which significantly reduces its reliability in clinical settings and is therefore
not recommended in the current American Association for the Study of Liver Diseases
(AASLD) guidelines [6]. Diagnostic accuracy of AFP is usually impaired due to its high cell
turnover which is often seen in patients with inflammatory active, HCV-associated liver cirrho-
sis. Therefore, integrated multidisciplinary research focusing on highly specific and sensitive
circulating biomarkers to detect HCC at an early stage can have a profound and significant
effect on increasing patient survival rate [7, 8].

Bioinformatics as a new emerging technology has the capacity to revolutionize biomarker dis-
covery by linking scientific data with clinical information. Meta-analysis efforts are scaled up via
searchable databases that motivate biologists and clinicians to aggregate data across various
studies. Since limited size is the major hurdle in studies involving human subjects, meta-analysis
methods that seek to improve the detection of reliable biomarkers through aggregation of vari-
ous datasets have received considerable attention. Furthermore, the quantitative proteomics usu-
ally generates a huge amount of data that needs to be further analyzed in order to identify
marker candidates. Here, we propose a multi-step prioritization process for the identification of
potential circulating HCC biomarkers via a comprehensive in-silico secretome and interactome
analysis along with HCC-specific circulating and liver deregulated miRNAs target filtration for
experimental evaluation. Major emphasis in the current study was on secretome analysis, as
most of the tumor biomarkers are likely to be found in the secretome (body fluids) [9, 10]. We
designed a biomarker prioritization approach which begins with data extraction from seven pub-
licly available gene and protein databases for the selection of liver-specific proteins. These data-
bases describe the expression of thousands of genes and proteins in multiple tissues and allow
investigators to select candidate markers with higher tissue specificity based on their relative
expression pattern [11]. Following the selection of liver-specific proteins, secretome analysis was
performed to sort out secreted or shed proteins. The in-silico pipeline for the prediction of
secreted proteins provides a rapid screen to identify biomarkers that are found extracellularly
and likely to be detectable by non-invasive assays. The secreted proteins identified in current
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study were further filtered by integrating proteomic datasets enriched with liver cancer secre-
tome [12]. Identified candidate biomarkers were further sorted via interactome analysis with
current standard HCC biomarker AFP and its interacting partners to assess possible involve-
ment in HCC pathogenesis. Interactome anlaysis with dickkopf-1 (DKK1) and midkine (MDK)
was also performed as these two serum biomarkers are considered more specific and sensitive
than currently used biomarker AFP [13, 14]. A final selection criterion in our prioritization strat-
egy was HCC-specific circulating and liver deregulated miRNAs target filtration. miRNAs con-
trol the expression of several genes which can be of high importance in biomarker validation.
The candidate proteins were further analyzed on the basis of their encoding genes and observed
whether they are validated targets of HCC-specific circulating miRNAs or not. We believe that
proteins identified through our proposed approach are highly specific and sensitive which can
serve as potential circulating biomarkers for detection and prognosis of HCC. Moreover, we pro-
pose a generalizable approach that could speed-up biomarker discovery and can be applied in
bulk to public datasets to achieve improved results in various other cancers and diseases as well.
We believe that by using existing and emerging computational data mining approaches for rig-
orously and systematically evaluating different types of genomic and proteomic information will
increase the probability of finding out highly potential biomarker candidates.

Materials and Methods

Microarray, immunohistochemistry (IHC) and expressed sequence tags
(ESTs) data processing

Seven gene and protein databases (S1 Table) based on the data extracted from microarray, IHC
and EST's experiments were mined to identify proteins highly specific to and strongly expressed
in liver. The C-It database [15] was used for proteins enriched in liver. The C-it database is
based on the Database-dependent Gene Selection and Analysis (DGSA) algorithm. This algo-
rithm identifies tissue-enriched genes by using EST profiles in all available tissues of organisms.
C-It combines microarray and SAGE data to give users integrated access to comprehensive tran-
scriptional profiles. Furthermore, C-It is linked with custom version of exon array analyzer to
allow tissue-enriched alternative splicing analysis. Only proteins with corresponding SymAtlas
z-score of > 1.96 that reveals 95% confidence level of enrichment were included. Proteins with-
out a SymAtlas z-score were ignored. The TiGER database [16] which provides and summarizes
large scale data sets for tissue-specific gene expression and regulation in a variety of human tis-
sues was used for proteins preferentially expressed in liver based on EST's by searching liver tis-
sue using ‘Tissue View’. The TiGER database contains three types of data including cis-
regulatory module detections, tissue-specific gene expression profiles and combinatorial gene
regulations. The UniGene database was searched for tissue restricted genes using the following
search criteria: [liver] [restricted] + “Homo sapiens”. UniGene computationally identifies tran-
scripts from the same locus; analyzes expression by tissue, age, and health status; and reports
related proteins (protEST) and clone resources. The BioGPS database [17], a gene annotation
portal based on a loose federation of existing genetic and genomic resources was also used. The
BioGPS database plugin ‘Gene expression/activity chart’ using the default human data set ‘Gen-
eAtlas U133A, gcrma’ was searched with a protein whose gene expression profile using the
BioGPS plugin showed it to be specific to and strongly expressed in liver. For each protein
searched, a correlation cutoff of 0.9 was used. BioGPS allows users to easily explore the land-
scape of gene annotation resources for one or more genes of interest. BioGPS is based on a sim-
ple, unstructured plugin interface that allows for simple community extensibility to harness the
principle of community intelligence toward the goal of efficiently organizing and querying
online gene annotation resources. TiSGeD database [18] was searched for proteins enriched in
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liver with SPM value of 0.9. SPM is a statistical parameter which serves as a sensitive indicator
in quantitative estimation of gene spatial expression patterns. Liver tissue was searched in the
VeryGene database [19] using ‘Tissue View’ for liver-selective proteins. The VeryGene database
is curated, web-accessible centralized database for the annotation of tissue-specific/enriched
genes. This database being configured into tissue view and gene view, retrieve information on
tissue/subcellular localization, drug-disease relation and functional annotation. The HPA [20-
22] was searched for proteins strongly expressed in normal liver tissue with annotated expres-
sion. Proteins identified in only one database were eliminated whereas those identified in two or
more databases were selected as they could represent more promising candidates at this stage.

Pipeline for the identification of secreted or shed proteins

Computational tools have been designed to assess proteins that follow either classical or non-
classical secretory pathways. Many proteins are secreted by a classical secretory mechanism,
i.e., with signal peptide (an N-terminal peptide, typically 15-30 amino acids long), which is
cleaved off during translocation of the protein across the membrane, and can be predicted
using the amino acid sequence of the protein. Prediction of secretory proteins was carried out
using a pipeline of five tools; SignalP 4.1 [23], SecretomeP 2.0 [24], ExoCarta [25], TargetP 1.1
[26] and TMHMM v. 2.0 [27]. In the first step, the amino acid sequences of proteins were
retrieved from the UniProtKB database [28] in FASTA format. Classical secretory proteins
with a signal peptide were predicted by SignalP 4.1 server and were selected on the basis of
their D-value above 0.45. SignalP server is considered to be most accurate method for the pre-
diction of cotranlsationally translocated proteins (proteins entering the classical secretory path-
way via the endoplasmic reticulum) [29]. Non-classical secretory proteins without a signal
peptide were predicted by SecretomeP 2.0server and were selected by their neural network
(NN) score > 0.5. The method is also capable of predicting signal peptide containing secretory
proteins in which only the mature part of the protein has been annotated or cases in which the
signal peptide remains uncleaved. The identified liver-specific proteins were also searched
against ExoCarta database [25] to determine whether they were present in exosome fractions
or not. The combined set of SignalP, SecretomeP and Exocarta predicted proteins were passed
to TargetP 1.1 for the exclusion of mitochondrial proteins. TMHMM v. 2.0 was used for the
prediction of transmembrane proteins with default options. TMHMM server is currently con-
sidered to be the best performing transmembrane prediction program [30]. Predicted secretory
proteins with no transmembrane helices were selected for further filtration.

Verification of expression profiles in liver and blood

Expression profile verification of the secreted or shed proteins in liver and blood was done via
pipeline of three databases; BioGPS, HPA and plasma proteome database. For liver tissue in
BioGPS database, proteins with gene expression profiles showing similar values of expression
or strong expression in other tissues along with liver tissue were eliminated (strong expression
is defined as > 10 times the median expression value in all tissues). In BioGPS, the color of the
bars in the ‘Gene expression/activity chart’ reflects a grouping of similar samples, based on
global hierarchical clustering. In order to systematically investigate the protein expression in
cancerous versus normal tissues and cell type, the HPA is a most comprehensive resource
because it includes millions of high-resolution IHC images with expert-curated annotations.
HPA was used for qualitative comparison of IHC staining of liver cancer tissue with normal
liver. HPA is an antibody-based database. Tissue microarray and IHC staining techniques are
applied in HPA and it has comprehensively accumulated millions of high-resolution images
with expert-curated annotations. IHC staining is regarded as an effective technique in
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proteomic research. On the basis of these images, especially those using IHC staining, the HPA
has been effectively used in a number of studies for cancer marker discovery. Plasma proteome
database [31, 32] was used next for further filtration of candidate biomarkers. The database
was developed as a part of Human Proteome Organization and is one of the largest resources
on proteins reported in plasma and serum.

Integration of liver secretome proteome datasets

Secretome proteomes are rich source of circulating biomarkers therefore in current study we
integrated various secretome studies conducted on HCC liver tissues, serum samples of HCC
patients and HCC cell lines in order to filter only those proteins which have been detected in
their secretomes. In biological research, mammalian cell lines are chosen to examine protein
function and cell response to perturbations and these cell lines are indispensable for many of
the biological insights. In the majority of the cases, these cell lines were extracted from tumors
of different origins, and were then adapted to growth in vitro and therefore serve as proxies not
only of the original tumors or tissues but also for fundamental biological processes [33]. The
proteomes of cell lines can highlight the biological processes and their variations across the
cells. In addition, the secretome signature of a cancer cell line can be considered a potential
tool to investigate tumor aggressiveness and a preclinical exploratory study required to opti-
mize the search of cancer biomarkers. Dealing with a cell-specific secretome limits the contam-
ination by the major components of the human serum and reduces the range of dynamic
concentrations among the secreted proteins, thus favouring under-represented tissue-specific
species. Such a characterization allowed corroborating the potential of a cell culture-based
model in order to describe the cell-specific invasive properties and to provide a list of putative
cancer biomarkers [34]. The characterization of various cell lines showed that they are, in fact,
an excellent model for the study of the biological mechanisms involved in cancer. The use of
cancer cell lines allowed an increment of the information about the deregulated genes and sig-
naling pathways in this disease. These cell lines are appropriate in vitro models in cancer
research and are crucial for the investigation of potential molecular markers and for the screen-
ing and characterization of cancer therapeutics [35]. The data of proteomes from the condi-
tioned media of 23 cancer cell lines (from 11 cancer types), characterized using one-
dimensional SDS-PAGE and nano-liquid chromatography tandem mass spectrometry on a
LTQ-Orbitrap mass spectrometer [36]; secretome of 12 individual paired samples of liver can-
cer and adjacent normal tissues analyzed by tandem mass spectrometery [37]; secretome of
cholangiocarcinoma (HuCCA-1) and hepatocellular carcinoma (HCC-5102, HepG2, SK-Hep-
1, and Alexander) cell lines analyzed by SDS-PAGE combined with LC/MS/MS [38]; secretome
of hepatoma HepG2 cells characterized using two-dimensional liquid chromatography coupled
with tandem mass spectrometry (2D LC-MS/MS) analysis [39]; secretomes of 21 cancer cell
lines derived from 12 cancer types analyzed by SDS-PAGE combined with MALDI-TOF MS
[40]; secretome of primary human hepatocytes (PHH), HepG2 and Hep3B cells analyzed by
2D-PAGE and shotgun proteomics [41]; serum analysis from patients with varying degree of
hepatic scarring induced by infection with the hepatitis C virus based on 2-dimensional gel
electrophoresis [42], proteome of HCC patients serum samples characterized using chroma-
tography and tandem MS combined with iTRAQ [43]; serum proteome of 12 HCV related
HCC patients characterized using reverse phase HPLC and SDS-PAGE [44] were integrated.

Interactome analysis and miRNA target filtration

Protein-protein interactions (PPIs), being critical regulatory events are useful for associating
proteins with diseases, fathoming signaling cascades and predicting protein functions. In
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order to determine whether the identified proteins interact with each other as well as with
MDK, DKKI1, current standard HCC biomarker AFP and its interacting partners, network
based tools: STRING [45], FpClass [46] and GeneMANIA [47] were used. Functional links
between proteins can often be inferred from genomic associations between the genes that
encode them: groups of genes that are required for the same function tend to show similar
species coverage are often located in close proximity on the genome and tend to be involved
in gene-fusion events. The STRING database is a precomputed global resource for the explo-
ration and analysis of these associations. FpClass database predicts high confidence experi-
mentally predicted PPIs by identifying sets of features (e.g domains, posttranslational
modifications, compatible domains that mediate interactions etc). GeneMANIA is a large
collection of networks that are functionally associated (protein and genetic interactions both
physical and predicted, pathways, protein domain similarity, coexpression and colocaliza-
tion). Genes encoding candidate proteins identified were used for GO (Gene Ontology) anal-
ysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis via string database.
GO analysis was applied to analyze the primary function of the differentially expressed genes
according to GO, which is the key functional classification of the National Centre for Bio-
technology Information (NCBI). Similarly, pathway analysis was used to determine the most
significant pathway of the differentially expressed genes according to KEGG.

In order to determine whether the candidate proteins are encoded by the target genes of
HCC-specific deregulated miRNAs, miRWalk [48], miRTarBase [49], TargetScan and
microRNA.org [50] databases were used. Various studies have reported that differential
expression of miRNAs can affect the expression of their target genes, leading to changes in
the levels of the proteins they encode. Study conducted by Wang et al. on sepsis patients
showed that genes encoding proteins ACVR2A, FOXO1, IHH, STK4 and DUSP3 were
found to be the targets of the six miRNAs (miRNA miR-223, miR-122, miR-15a, miR-483-
5p, miR-16 and miR-193b*). The expression profiles of these proteins were negatively corre-
lated with above mentioned six serum miRNA levels (Wang et al., 2014a). Cytoscape net-
work analysis platform [51] was used for the construction of interactome network.
Cytoscape software provides basic functionality for visualizing, modeling and analyzing
molecular and genetic interaction networks as well as integrating the network with expres-
sion profiles, phenotypes, and other molecular states; and to link the network to databases of
functional annotations. A computational framework of whole prioritization strategy is given
in Fig 1 and list of various databases/tools used in current study are given in S1 Table.

Statistical analysis

Validation of putative biomarkers based on statistical methodology must find out associa-
tions, established by authenticating its correlation with clinical outcome. Validated biomark-
ers can improve clinical diagnosis, serve as useful prognostic and predictive factors of
clinical outcome as well as lead to targeted therapies. Assessing the performance of proposed
candidate biomarkers in different populations or evaluating competing biomarkers are chal-
lenging tasks. For scrutinization and validation of biomarkers, tools as ITTACA [52], Recur-
renceOnline [53], GOBO [54], PrognoScan [55] and bc-GeneExMiner [56] have been
proposed. However, these tools have serious restrictions and limitations. SurvExpress [57],
Compared with other tools, is the largest and the most versatile free tool to perform valida-
tion of multiple biomarkers in human cancers, collecting more than 20,000 samples and 130
datasets with censored clinical information covering tumors over 20 tissues. Therefore, Sur-
vExpress validation tool was used to identify statistical significance of proposed candidate
circulating biomarkers for overall survival, HCC-free survival, relapse-free survival as well as

PLOS ONE | DOI:10.1371/journal.pone.0138913 September 28,2015 6/26



el e
@ : PLOS | ONE Identification of Putative HCC Biomarkers

Verification of expression profiles
(liver & blood)

THE HUMAN
PROTEIN ATLAS

Liver-specific secreted proteins

Expresses Sequence Tags

20
Server

SignalP 4.1 5
Server

—_— Exocarta

Non-classical secretion

Exosomal release

Classical secretion

|—> Target P 1.1 Server 4—,

(for exclusion of mitochondrial
proteins)

-
.
Microarray

1"# ‘;ig

L5 Immunohistochemistry ﬁg 7

s\/:oqd

BioBPS
R ‘«The Gene Portal Hub

The Plasma Blood
Proteome

Database

TMHMM Server v.2.0

(for exclusion of proteins with
transmembrane helices)

Interactome analysis with AFP and
its interacting partners to infer
possible involvement in HCC
pathogenesis

Interactome analysis with HCC-
specific liver deregulated &
circulating miRNAs

HCC patients, HCC cell ines and primary human
hepatocytes

miRNA target gene
predlctlon

TargetScan MiRWalk P

MiRTarBase MicroRNA.org

W etal, 2010

| Wang et al., 2009
| Srisomsap et al., 2010
| Yamashita et al., 2007
| Wu et al., 2008

| Slany etal., 2010

1 Gangadharan et al., 2007

P13K/AKE
signaling
pathway.

: Heetal., 2014
1 Kimura etal., 2012
'

,-;:lf.

\ microRNA protein /

¥

Statistical Analysis
&
Validation

SurvExpress

A Biomarker Validation Tool ﬁ { Biomarkers for HCC

Prioritized Putative Circulating 1

Fig 1. Schematic outline of multi-step HCC circulating biomarkers prioritization process. Liver-specific proteins extracted from various databases
were screened using SignalP 4.1, SecretomeP 2.0, ExoCarta, TargetP 1.1 and TMHMM v. 2.0 servers to assess their secretory nature. Liver-specific
secreted proteins once verified for their expression in liver (HPA and BioGPS) and blood (Plasma Proteome Database) were further prioritized depending
upon their presence in secretome proteome of HCC patients, HCC cell lines and primary human hepatocytes. To infer possible involvement of prioritized
proteins in HCC pathogenesis, their interactome analysis was done with AFP (as a standard biomarker for the diagnosis of HCC). Interacting proteins were
then analysed for their interaction with HCC specific liver deregulated and circulating miRNA. Results were then statistically verified using SurvExpress
validation tool to finally prioritize putative circulating biomarkers for HCC.

doi:10.1371/journal.pone.0138913.g001

the ability to discriminate from cirrhotic patients. In order to analyze the performance of
our proposed biomarkers in relation to HCC-free survival rate as well as relapse-free survival
rate, ROC curves (using Kaplan—Meier (KM) and Nearest Neighbor Estimation (NNE)
methods) by analyzing the area under the curve (AUC) were calculated. In a ROC curve,
each point represents a sensitivity/specificity pair corresponding to a particular decision
threshold by plotting the true positive rate (Sensitivity) in function of the false positive rate
(100-Specificity).

In order to assess whether proposed biomarkers can discriminate HCC from cirrhosis we
performed ROC analysis to determine correlation of the proposed biomarkers with cirrhosis.
Patients’ data of HCC (with hepatitis) and cirrhosis (with hepatitis) was taken from survEx-
press dataset (162 samples) (Hoshida Golub Liver GSE10143) which includes data from
patients with tumor (HCC) and non-tumor (with cirrhosis).

SurvExpress validation tool accomplishes multivariate survival analysis and risk assessment
of cancer datasets via Kaplan—Meier Plot and log-rank test. Kaplan-Meier Plot is a graphical
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representation of the survival probability (vertical axis) versus time (horizontal axis) estimated
with data using

(n,—d)

n.

1

S(t) =S(t, — 1) =

Where,

S(te) = 1,

t;is i-th observed time.

d; is the number of events at time t; (deaths) and

n; is the number of individuals not having the event (alive) just before ¢; (assuming ordered
times t;).

As a result, a staggered curve is generated, which represents the fraction of deaths in every
stage known as instantaneous hazard. Whereas, the Log-rank test has been proposed to statisti-
cally evaluate the equality of survival curves.

Utilizing SurvExpress tool, overall survival, HCC-free survival and relapse-free survival
(RES) functions were compared using Kaplan—Meier estimates and statistical significance was
determined using the log-rank test. Kaplan Meier plot includes the Concordance Index (CI)
and the p value testing for equality of survival curves using a log rank test, and the correlation
coefficient estimated from deviance residuals. The CI estimates the probability that subjects
with higher risk prediction will experience the event after subjects of lower risk. CI is a generali-
zation of the AUROC used in classification problems. The CI is expressed as:

1
Cl=— E
||

ijeQ

1zfri>rj

0 otherwise

Where

ri = the risk predictors given by the corresponding prognostic index for subjects i.

rj = the risk predictors given by the corresponding prognostic index for subjects j.

Q = all subjects pairs (4, j) where ti < tj and subject i is not censored.

As in AUROC, CI values close to 0.5 are putatively ‘random’ whereas higher values are asso-
ciated with better prediction.

Results
Liver-specific proteins

Seven gene and protein databases (S1 Table) used in the current study identified 731 proteins
that were highly specific and strongly expressed in liver (Fig 2). The C-It database identified
89 liver-enriched proteins, the TiGER database identified 309 proteins preferentially
expressed in liver and the UniGene database identified 75 liver-restricted proteins. The
BioGPS database identified 185 proteins similarly expressed as protein with known liver speci-
ficity, the VeryGene database identified 465 liver-specific proteins and the TiSGeD database
identified 195 liver enriched proteins. The HPA identified 69 proteins showing strong liver
tissue staining with annotated expression. A total of 272 (37%) proteins were identified in two
or more than two databases and therefore selected for further filtration, eliminating approxi-
mately 63% of the proteins (Table 1). A complete list of proteins identified by each database is
presented in S2 Table.
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Fig 2. Identification of liver-specific secreted proteins. Liver-specific secreted proteins identified using seven publicly available gene and protein
databases. Databases based on microarray data (TiSGeD, BioGPS and VeryGene) unveiled 845; ESTs data (TiGER, UniGene and C-It) revealed 473 and
HPA database based on immunohistochemistry data revealed 69 liver-specific proteins. A total of 272 proteins were identified in two or more than two
databases and thus selected for further analysis.

doi:10.1371/journal.pone.0138913.g002

UniGene
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Table 1. Total number of liver-specific proteins identified in gene and protein databases.

Parameters Liver Specific
Total number of proteins identified 731

(in > two databases) 272

Number of proteins identified by individual databases

One database 459

Two databases 77

Three databases 81

Four databases 64

Five databases 26

Six databases 24

doi:10.1371/journal.pone.0138913.t001

Liver-specific secreted/shed proteins

Most of the currently known biomarkers for cancer are secreted or shed proteins and it is
expected that secreted or shed proteins have the highest chance to reach the circulation [58].
According to our results, majority of the proteins identified in two or more databases were des-
ignated as secreted or shed. The number of times each protein is identified in all databases is
presented in S3 Table. In total, 208 out of 272 proteins identified as liver-specific were desig-
nated as secreted or shed. SignalP (version 4.1) software identified 128 proteins being secreted
based on classical secretory mechanism. SecretomeP identified 86 proteins as secretory pro-
teins based on non-classical secretory mechanism. ExoCarta database identified 82 proteins
being released via exosomes. 18 proteins were excluded from combined set of Signalp 4.1,
SecretomeP 2.0 and Exocarta predicted secretory proteins after scanning via TargetP and
TMHMM server. A complete list is given in the 54 Table.

Expression profile verification

Manual verification of the expression profiles of those secreted or shed proteins identified in
two or more than two databases eliminated 170 proteins. Only 5% of the 731 proteins initially
identified as highly specific to liver were found to meet the filtering criteria. 38 proteins were
filtered out to be liver-specific and secreted or shed therefore represent potential candidate
biomarkers.

Evaluation of the used databases

The performance of the databases was evaluated by determining how many of the 38 proteins
that passed the filtering criteria were initially identified by each database (Table 2) (Fig 3A).
The BioGPS database identified the greatest number of proteins that passed the filtering criteria
(37 out of 38). The VeryGene database identified 35 of the 38 proteins. The TiSGeD database
identified 29 of the 38 proteins. The TiGER database had identified 25 of the 38 proteins. The
UniGene database identified 14 of the 38 proteins. The C-It database identified 2 of the 38 pro-
teins. The HPA identified 17 of the 38 proteins. The accuracy of the initial protein identifica-
tions was evaluated by comparing the proportion of proteins that had passed the filtering
criteria to the total number of proteins each database initially identified (Fig 3B). The HPA
database showed the highest 25% (17 of 69) accuracy of initial protein identification. The Very-
Gene database showed 8% accuracy (35 of 465), TiSGeD database showed 15% (29 of 195),
TiGER database showed 8% (25 of 309), UniGene database showed 19% (14 of 75), C-It
showed 2% (2 of 89) and BioGPS database showed 20% accuracy (37 of 185).
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Table 2. Liver-specific secreted/shed proteins identified by each database utilized in this study.

BioGPS

Gene

ADH6
ANG
APOA5
APOC3
APOC4
APOF
ASL

C4A

C8A
CFHR4
CYP2A6
CYP2A7
CYP2C18
CYP2E1
CYP4A22
F10

F9

FCN2
GCKR
GSTM1
HAMP
HP

HRG
HSD11B1
ITIH4
MBL2
NROB2
PLGLB2
PON3
RDH16
SERPINC1
SLC25A47
SLC27A5
SPP2
TFR2
TMPRSS6
UPB1
VTN

TiSGeD

< L < L=< L L < < <

v
A

TiGER UniGene C-it

<< << < <

L

SN SN S < BN< BN < <<
<

doi:10.1371/journal.pone.0138913.1002

VeryGene

= B RN Y

SN S-S EN< EN<_ N SN SN EN< EN< - < EN< EN< ES<

SNI< SN EN< EN< EN< EN< EN< EN< ES< SN< SS< SNE< SSE< < SSI< SSI< SSI< SSI< EN

HPA

L

< L < < < < <

Reference

Secretome of primary human hepatocytes [37]
Previously studied as biomarker [59]
Secretome of HCC cell line [36]

Secretome of primary human hepatocytes [37]

Secretome of primary human hepatocytes [37]
Previously studied as biomarker [1]
Secretome of HCC (Hep3B, serum) [40, 44]
Previously studied as biomarker [60]
Secretome of primary human hepatocytes [37]

Secretome of HCC cell lines [36, 41]

Normal and HCC liver tissue [37]

Previously studied as biomarker [61]

Previously studied as biomarker [37]

Secretome of primary human hepatocytes [37]
Previously studied as biomarker [62]

Secretome of HCC cell lines (Hep3B, HepG2) [41]

Secretome of primary human hepatocytes [37]
Secretome of HCC serum [43]

Secretome of HCC (Cell line Hep3B) [40, 41]

Secretome of primary human hepatocytes [37]
Previously studied as biomarker [63, 64]

Proteins reported in plasma proteome database and liver proteomic

datasets

Plasma proteome database further reduced the number of proteins from 38 to 33. Out of these
33 candidate biomarkers, 20 proteins were identified in proteomic datasets enriched with can-
cer secretome with 6 proteins namely vitronectin (VTN), inter-alpha-trypsin inhibitor heavy
chain family, member 4 (ITIH4), haptoglobin (HP), Histidine-rich glycoprotein (HRG),
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Fig 3. Performance and accuracy evaluation (%) of databases. 3A. Graphical representation of databases performance has been shown in percentages.
BioGPS database revealed 97%, VeryGene database 92%, TiSGeD database 76%, TIGER database 66%, UniGene database 37%, C-It database 5% and
the HPA unveiling 45% performance for the identification of liver-specific protein biomarkers. Performance % was calculated by dividing number of proteins
identified by each database to total number of proteins that passed the filtering criteria. 3B. Graphical representation of accuracy of the initial protein
identifications with HPA database showing the highest accuracy of 25%, VeryGene database showing 8% accuracy, TiSGeD database showing 15%, TIGER
database showing 8%, UniGene database showing 19%, C-It showing 2% and BioGPS database showing 20% accuracy. The accuracy was calculated by
dividing number of proteins that had passed the filtering criteria by each database to the total number of proteins each database initially identified.

doi:10.1371/journal.pone.0138913.g003

complement component 4A (C4A) and angiogenin (ANG), being previously studied and char-
acterized as circulating HCC biomarkers.

Functional classification and interactome network analysis

Interactome analysis with current standard HCC biomarker AFP, its interacting partners
(TP53, FOXA1, FOXA3, GPC3, IGFBP1, NR3Cl, F2, AHSG, ACTL6A and JUN) along with
DKK1 and MDK filtered 11 candidates ADH6, APOA5, APOC3, C8A, CYP2A6, F10, GSTM1,
HSD11B1, MBL2, SERPINCI and UPBI as potential circulating biomarkers (Fig 4). Studies
have shown the potential of AFP not only as a diagnostic marker but also as a growth factor in
promoting pathological progression of HCC through P13K/AKT signaling pathway [65, 66]. Li
et al. also reported the interaction of AFP with caspase-3 in the cytoplasm which ultimately
blocks the apoptotic signaling pathway by impeding onward transmission of signaling from
caspase-8 [67]. Rationale behind the use of DKK1 and MDK is that they are recent reliable
serum biomarkers and are expected to be used clinically to facilitate screening for and diagnos-
ing HCC at an earlier stage. The 11 candidate proteins appeared at the fulcrum of the func-
tional network, suggesting possible association with HCC progression. Cancer atlas results of
HPA were also integrated in further filtration process.

Candidate proteins were further enriched on the basis of their encoding genes as validated
targets of HCC-specific circulating and liver deregulated miRNAs, as differential expression of
miRNAs can affect the expression of their target genes, leading to changes in the levels of pro-
teins they encode [68], prioritizing seven proteins as candidate biomarkers (S6 Table). Interac-
tome analysis of seven putative candidates with HCC-specific circulating miRNAs (hsa-miR-
30c, hsa-miR-520b, hsa-miR-150 [69], hsa-miR-130b [70], hsa-miR-1 [71], hsa-miR-192, hsa-
miR-26a [72, 73], hsa-miR-7, hsa-let-7f [72], has-miR-224 [74], hsa-miR-199a-5p [75], hsa-
miR-23a, hsa-miR-23b, hsa-miR-146a [76], hsa-miR-206 [77], hsa-miR-215, hsa-miR-93, hsa-
miR-17, hsa-miR-520a-3p [78]) has been shown in Fig 5 (Table 3).

SurvExpress results of candidate biomarkers

SurvExpress results revealed CI of AFP to be 53.7 whereas for our proposed seven biomarkers
(C8A, MBL2, SERPINCI, HSD11B1, ADH6, UPB1, CYP2A6), SurvExpress showed CI value
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Fig 4. Interactome network analysis (protein-protein). Interactome analysis of candidate proteins with current standard HCC biomarker AFP was

retrieved by tools: GeneMANIA (A & B), STRING (C & D). Interacting partners of AFP (TP53, FOXA1, FOXA3, GPC3, IGFBP1, NR3C1, F2, AHSG, ACTL6A
and JUN) along with DKK1 and MDK are also main elements of the interactome. The size of the gray nodes in Fig 4A and 4B represents the degree of
association with the input genes (i.e., smaller size represents less association).

doi:10.1371/journal.pone.0138913.9004
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doi:10.1371/journal.pone.0138913.9005

of 83.33. CI values close to 0.5 are putatively ‘random’ whereas higher values are associated to
better prediction. Expression of AFP in the tumor compartment was not statistically significant
with longer RES (log rank P = 0.2) whereas the expressions of C8A, MBL2, SERPINC1,
HSD11B1, ADH6, UPB1 and CYP2A6 were statistically significantly with longer RES (log rank
P =0.03) as shown in Fig 6.

In predicting disease and relapse-free survival, the proposed candidate biomarkers per-
formed better comparing to AFP as shown by the Kaplan-Meier method and the ROC curves
analysis (Figs 7 and 8). The ROC curves documented a significant statistical correlation of the
proposed candidate biomarkers with MBL2, C8A, SERPINC1, HSD11B1, ADH6, UPB1 and
CYP2AG6 levels predicting HCC-free survival considerably well {area under ROC = 0.861 (KM),
and area under ROC = 0.854 (NNE)}, while no significance was found for AFP and HCC-free
survival rate (area under ROC = 0.354 (KM), and area under ROC = 0.5 (NNE).
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Table 3. Seven statistically significant putative HCC specific biomarkers prioritized through integrated in-silico approach.

Gene

ADH6

UPB1

C8A

HSD11B1

MBL2

SERPINC1

CYP2A6

Biological functions

Metabolism of xenobiotics by cytochrome P450,
drug metabolism, glycolysis/gluconeogenesis,
tyrosine metabolism, metabolic pathways, retinol
metabolism and fatty acid metabolism.

Beta alanine metabolism, metabolic pathway,
pantotheanate and CoA biosynthesis, drug
metabolism-other enzymes and pyrimidine
metabolism.

Complement and coagulation cascades, prion
disease, systemic lupus erythematosus and
amoebiasis.

Steroid hormone biosynthesis, metabolic
pathways, and in aldosterone-regulated sodium
reabsorption.

Complement and coagulation cascades, acute-
phase response, classical pathway, negative
regulation of viral process, opsonization, positive
regulation of phagocytosis.

Complement and coagulation cascades,
neuroactive ligand receptor interaction and
regulation of actin cytoskeleton.

Drug metabolic process, epoxygenase P450
pathway, exogenous drug catabolic process,
oxidation-reduction process, small molecule
metabolic process, steroid metabolic process,
xenobiotic metabolic process.

doi:10.1371/journal.pone.0138913.1003

HCC-specific deregulated miRNAs (Liver) (Circulating)

hsa-miR-182, hsa-miR-185, hsa-miR-203,
hsa-miR-199a-5p, hsa-miR-199b-5p,
hsa-miR-146a, hsa-miR-211, hsa-miR-
150

hsa-miR-216a, hsa-miR-181c, hsa-miR-
181a, hsa-miR-181b, hsa-miR-134, hsa-
let-7e, hsa-let-7b, hsa-let-7a, hsa-let-7c,
hsa-let-7f, hsa-let-7g, hsa-let-7d, hsa-
miR-224

hsa-miR-212, hsa-miR-132, hsa-miR-93,
hsa-miR-106a, hsa-miR-106b, hsa-miR-
17, hsa-miR-20a, hsa-miR-302b, hsa-
miR-26a, hsa-miR-26b, hsa-miR-145,
hsa-miR-148a, hsa-miR-148b, hsa-miR-
152, hsa-miR-186, hsa-miR-129-5p

hsa-miR-181c, hsa-miR-181a, hsa-miR-
181b, hsa-miR-374a, hsa-miR-374b,
hsa-miR-192, hsa-miR-215, hsa-miR-
23a, hsa-miR-23b, hsa-miR-132, hsa-
miR-212, hsa-miR-26a, hsa-miR-26b,
hsa-mir-122, hsa-mir-125a, hsa-mir-
125b-1, hsa-mir-125b-2, hsa-mir-145,
hsa-mir-222

hsa-miR-320c, hsa-miR-374b, hsa-miR-
374a, hsa-miR-186, hsa-miR-200b, hsa-
miR-301a, hsa-miR-301b, hsa-miR-137,
hsa-miR-23a, hsa-miR-23b, hsa-miR-
206, hsa-miR-216b, hsa-miR-30a, hsa-
miR-30e, hsa-miR-30c, hsa-miR-146a,
hsa-miR-190b, hsa-miR-190, hsa-miR-
130a, hsa-miR-130b, hsa-miR-148a,
hsa-miR-148b, hsa-miR-152, hsa-miR-
145, hsa-miR-196a, hsa-miR-216a, hsa-
miR-1, hsa-let-7a-2, hsa-let-7a-3, hsa-
let-7a-1, hsa-let-7b, hsa-let-7¢, hsa-let-
7d, hsa-let-7e, hsa-let-7f-2, hsa-let-7g,
hsa-mir-1-2, hsa-mir-1-1, hsa-mir-10a,
hsa-mir-125b-1, hsa-mir-125b-2, hsa-
mir-15a, hsa-mir-16-1, hsa-mir-16-2,
hsa-mir-7-1, hsa-mir-7-2, hsa-mir-7-3,
hsa-mir-99a

hsa-miR-186, hsa-miR-19a, hsa-miR-19b,
hsa-miR-143, hsa-miR-7

hsa-mir-101-1, hsa-mir-101-2, hsa-mir-126,
hsa-mir-199a-1, hsa-mir-199a-2, hsa-
mir-199b, hsa-mir-34a

hsa-miR-199a-5p, hsa-miR-146a, hsa-
miR-150

hsa-let-7f, hsa-let-7c, hsa-miR-224

hsa-miR-93, hsa-miR-17, hsa-miR-
520a-3p, hsa-miR-520b, hsa-miR-
26a,

hsa-miR-192, hsa-miR-215, hsa-miR-
23a, hsa-miR-23b, hsa-miR-26a,
hsa-mir-122, hsa-mir-222

hsa-miR-23a, hsa-miR-23b, hsa-miR-
30c, hsa-miR-146a, hsa-miR-130b,
hsa-miR-1, hsa-miR-206, hsa-let-7f-
2, has-let-7¢, hsa-mir-16-1, hsa-mir-
16-2

hsa-miR-7

hsa-mir-199a-1, hsa-mir-199a-2

For further confirmation we also analyzed the existing experimental data on circulating cir-
rhotic markers and performed a meta-analysis. The proposed biomarkers were investigated in
the studies related to circulating biomarkers for cirrhotic patients in order to assess whether
these proteins were present in their list or not. None of the predicted proteins appeared in their
study, suggesting that our proposed biomarkers are not specific for cirrhosis, further confirm-
ing the reliability of our proposed pipeline.
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Fig 6. Comparison of Kaplan-Meier curves of the current standard HCC biomarker (AFP) and candidate seven circulating biomarkers (C8A, MBL2,
SERPINC1, HSD11B1, ADH6, UPB1, CYP2A6). SurvExpress analysis showed the results from liver hepatocellular carcinoma dataset using TCGA
RNASeq platform of SurvExpress. A shows the Kaplan-Meier curve for risk groups, concordance index, and P-value of the log-rank testing equality of
survival curves for AFP. B shows the Kaplan-Meier curve for risk groups, concordance index, and P-value of the log-rank testing equality of survival curves
for C8A, MBL2, SERPINC1, HSD11B1, ADH6, UPB1 and CYP2A6.

doi:10.1371/journal.pone.0138913.g006

Discussion

HCC ranks third in overall cancer related mortality worldwide. The discovery of novel circulat-
ing biomarkers is expected to facilitate screening and diagnosis of HCC at an earlier stage
which will help in limiting HCC related morbidity and mortality [7]. The importance of highly
sensitive and more specific clinical biomarkers for HCC has been well established therefore we
endeavored to design a performance-based study to identify and evaluate predictive and prog-
nostic biomarkers. The pipeline integrates various bioinformatics tools, databases and litera-
ture to comprehensively analyze vast proteomics expression data in order to find highly
sensitive and specific protein biomarkers. The study identifies seven important proteins includ-
ing C8A (complement component 8, alpha polypeptide), MBL2 (mannose binding lectin 2),
SERPINCI1 (Antithrombin IIT), HSD11B1 (11B-hydroxysteroid dehydrogenase type 1), ADH6
(Alcohol dehydrogenase 6), UPB1 (Beta-ureidopropionase) and CYP2A6 (Cytochrome P450,
family 2, subfamily A, polypeptide 6). These predicted proteins are novel, highly specific and
sensitive, which may serve as more efficient clinical biomarkers in case of HCC. Additionally,
these proteins also satisfy the following criteria for example, liver-specificity, secretory nature,
verified expression in liver and blood, presence in liver secretome, direct or indirect interaction
with AFP, MDK, DKK1 and encoded by genes which are validated targets of HCC-specific cir-
culating and liver deregulated miRNAs. All of the prioritized proteins were critically evaluated
based on literature data and experimental evidences in order to analyze their biological role
and significance as probable clinical biomarker.

Alcohol dehydrogenase 6 (ADH6) is among one of the prioritized biomarker which encodes
class V alcohol dehydrogenase (ADH). Several studies showed elevated level of ADH in sera of
liver cancer patients [79, 80]. Moreover, various cancer studies (secretome analysis) have
reported differential expression of ADH6 in HCC-specific cell lines, sera and liver tissues
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Fig 7. Receiver operating characteristic (ROC) analysis of sensitivity and specificity by proposed seven candidate biomarkers and AFP in
predicting disease-free survival (DFS). The score performance was assessed by calculating the area under the ROC (AUROC) which was 0.861 (KM
method) and 0.854 (NNE method), respectively for proposed candidate biomarkers while for AFP; AUROC was 0.354 (KM method) and 0.5 (NNE method)

respectively.

doi:10.1371/journal.pone.0138913.g007

indicating its specificity and sensitivity in detecting HCC. Unlikely, ADH6 also showed up to
five fold decreased expression in the HCC secretome analysis as compared to normal [37]
(Table 2) (S7 Table). Furthermore, a PPI network analysis revealed direct interaction of ADH6
with GSTM1 (Fig 4). GSTM1 is one of well-studied metabolic gene and is an interacting part-
ner of TP53 and CYP2A6. GSTMI belongs to GSTs family which plays a regulatory role in
MAP kinase pathway (cellular survival and death signaling) and are involved in various cancers
[81]. This is also evident from the fact that ~50% of HCC patients are TP53 positive [82] and
detection of serum TP53 along with AFP increased the frequency of HCC prediction from
79.5% (AFP only) to 86.3% (AFP and p53). As ADH6 is an interacting partner of GSTM1 and
is more specific to liver, thus it is highly probable that ADH6 can be a good biomarker candi-
date. Additionally, ADH6 is also targeted by three circulating and eight liver deregulated miR-
NAs (Fig 5) (Table 3) suggesting its possible involvement in HCC pathogenesis.

Another protein identified as potential biomarker is mannose binding lectin 2 (MBL2). It is
an acute phase reactant that is secreted from liver and is critical in host defenses against a spec-
trum of viral, bacterial, fungal and parasitic pathogens. MBL deficiency has been associated
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Fig 8. Relapse-free survival and ROC curve analysis. Proposed candidate biomarkers better predicted relapse-free survival (p =0.01191) (A) as
compared to AFP (P = 0.1987) (B). With respect to the discriminating ability of proposed biomarkers, long rank equal curve showed statistically significant p-
value (<0.05) for HCC p = 0.02361 while for cirrhotic liver p-value was 0.1985 (which not significant) (Fig 9A and 9B).

doi:10.1371/journal.pone.0138913.9008

with a range of auto-immune and infectious diseases, including HIV-1 and hepatitis B viral
infections [83, 84]. It was also revealed through literature that MBL2 has strong secretory
nature [41] and strong presence in liver cancer tissue and cell line (HepG2). Serum levels of
MBL2 have been reported to be significantly higher in pancreatic cancer patients [85] suggest-
ing possible involvement in cancer progression. PPI network analysis further strengthened its
potential as a candidate biomarker because MBL2 showed direct interaction with MDK, C4A
and SERPINCI (Fig 4). Interestingly, C4A and MDK are previously characterized circulating
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Fig 9. ROC curve analysis of proposed candidate biomarkers in HCC and cirrhotic datasets. With respect to HCC, the candidate biomarkers showed

statistically significant relation (p = 0.02824) (A) while for cirrhosis there was no significant correlation (p = 0.1985) (B).

doi:10.1371/journal.pone.0138913.9g009
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biomarkers for HCC [1] whereas SERPINCI (also prioritized as a potential biomarker in our
study) is an interacting partner of AFP, C8A, F2, UPB1, F10, AHSG, APOA5, APOC3 and
IGFBP1 (involved in cancer progression) (Fig 4). MBL2 have also been shown to be involved in
complement & coagulation cascades and phagosomes. As a matter of fact complement and
coagulation cascade has been reported to be the most perturbed pathway in various cancers
[86, 87] strengthening the notion that MBL2 may serve as a good predictive and prognostic
clinical biomarker. Current study also revealed that gene encoding MBL2 protein is a target of
eleven circulating and forty-eight liver deregulated miRNAs (Fig 5) (Table 3). These findings
strongly suggest that MBL2 should be further validated and characterized as a biomarker for
HCC.

Furthermore, antithrombin III (SERPINC1) is a serine proteinase inhibitor which controls
the process of coagulation. SERPINCI1 was found to be differentially expressed between serum
of HCC patients and healthy subjects [43]. Likewise, complement component 8, alpha (C8A),
one of the end terminals of the complement system in the membrane attack complex (MAC),
is also a potential biomarker. C8A has been reported to be present in the secretome of HCC
cell line HEP3B [40]. Another protein, 11B-hydroxysteroid dehydrogenase type 1 (HSD11B1),
a primary reductase, is an NADPH-dependent microsomal enzyme, highly expressed in liver
and is also a biomarker candidate prioritized in the current study. Its presence in primary
human hepatocytes secretome was confirmed in a study conducted by Wang et al. revealing its
potential as a secretory protein [37]. CYP2A6 was also found to be strongly associated with
HCC and liver secretome as validated by various experimental evidences present in literature.
Beta-ureidopropionase (UPB1) catalyzes the last step in the pyrimidine degradation pathway.
Cancer tissue and cell line atlas of HPA also showed strong antibody staining of these proteins
in liver cancer and in HCC cell line HepG2. Interactome analysis revealed direct or indirect
interaction of these proteins with current standard HCC biomarker AFP as well as with other
important proteins which are either previously characterized as HCC biomarkers or are
involved in cancer pathogenesis (Fig 4).

In order to analyze the interactions between the target genes encoding candidate proteins
and HCC-specific circulating miRNAs, a miRNA and corresponding gene network was built
based on the hypothesis that differential expression of miRNAs can affect the expression of
their target genes, leading to changes in the levels of proteins they encode [68]. miRNA-gene
interactome (Fig 5) (Table 3) revealed that C8A and HSD11B1 are the common target genes of
hsa-miR-26a where as HSD11B1 was also found to be the target gene of hsa-miR-122 and hsa-
miR-192. Zhou et al. showed that a panel of miRNAs (hsa-miR-122, hsa-miR-192, hsa-miR-
21, hsa-miR-223, hsa-miR-26a and hsa-miR-27a) has considerable clinical importance in diag-
nosing early-stage HCC [73]. SERPINC1, MBL2 and UPB1 were found to be common target
genes of hsa-let-7 family with MLBL2 and UPB1, common target genes of hsa-let-7f and hsa-
let-7¢c; SERPINCI as a target gene for has-let-7. hsa-miR-7f and has-let-7c are shown to be
highly expressed in the serum of HBV-positive HCC and have been studied as biomarker for
HBYV induced HCC [77, 88]. MBL2 was also found to be the target gene of has-miR-130b. Stud-
ies have shown has-miR-130b as a circulating miRNA originating from tumor. Its level is sig-
nificantly up-regulated in HCC tissues, cell lines and serum samples. Post-surgery analysis of
HCC Serum level of hsa-miR-130b also showed down-regulation [70, 88]. HSD11B1 and
MBL2 were observed as common target genes of hsa-miR-23a and hsa-miR-23b. MBL2 was
also found to be the target gene of hsa-miR-146a. Serum level of hsa-miR-146a was signifi-
cantly down-regulated in HCC patients [76]. Interactome analysis also revealed MBL2 as a tar-
get gene of has-miR-16. Qu et al. found serum level of has-miR-16 having highest sensitivity
for HCC followed by hsa-miR-199a, AFP, DCP and AFP-L3 [75]. ADH6 and CYP2A6 were
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observed as common target genes of hsa-miR-199a. has-miR-199a was shown to be signifi-
cantly reduced in HCC serum samples [75].

This data suggests that these proteins are highly specific and sensitive to liver tissue and can
be detected easily in the serum of the patients. Due to their differential expression in normal
and diseased state, they can be used as clinical biomarkers. It is suggested that instead of using
a single biomarker, combination of multiple biomarkers may increase diagnostic sensitivity
and specificity [89]. Our proposed prioritization pipeline also unveiled 6 previously character-
ized circulating HCC biomarkers including VTN, ITIH4, HP, HRG, C4A and ANG, further
increasing the reliability of our strategy. The protein signatures should be investigated in cohort
studies with a large numbers of patients in order to verify the potential use of these above men-
tioned proteins as clinical biomarkers.

Conclusions

High-throughput quantitative proteomics technology and a combination of computational
methods have provided a technological advancement for identifying tumor markers. Our pri-
oritization strategy has identified seven potential putative circulating protein biomarkers for
HCC which are encoded by the target genes of HCC-specific liver deregulated and circulating
miRNAs. Given the heterogeneity and complexity of etiology and clinical behaviors of HCC, it
would be very difficult to find single biomarker that is both specific and sensitive enough.
Combination of pathological features and biomarkers with high sensitivity and specificity
seems to be more practical for early diagnosis and prognostication of HCC. Further experimen-
tal studies are necessary to validate our proposed novel biomarkers in human subjects in order
to elucidate the role of these proteins as circulating biomarkers and their role in HCC patho-
genesis and progression. We have demonstrated an unbiased bioinformatics and proteomics
filtering strategy to objectively identify a set of proteins which are attractive candidates for bio-
marker testing. Current study has demonstrated that an integrative secretome, interactome
and miRNAs target filtration strategy can be used as an effective screening approach to effec-
tively extract valuable new insight from the huge number of existing datasets. Our pipeline is
straight forward, user-friendly and can be extended explicitly to other cancer biomarker
studies.
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