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Abstract

Background Periods of growth are thought to be the best
time to increase bone mineral content, bone area, and areal
bone mineral density (aBMD) through increased loading
owing to high rates of bone modeling and remodeling.
However, questions remain regarding whether a benefit of
exercise is seen at all bone sites, is dependent on pubertal
status or sex of the child, or whether other factors such as
diet modify the response to exercise.

Questions/purposes We asked: (1) Does bone-loading
exercise in childhood consistently increase bone mineral
content, bone area, or aBMD? (2) Do effects of exercise
differ depending on pubertal status or sex? (3) Does cal-
cium intake modify the bone response to exercise?
Methods A literature search identified 22 unique trials for
inclusion in this meta-analysis of the effect of exercise on
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bone changes by bone site, pubertal status, and sex. Sample
sizes ranged from 16 to 410 subjects 3 to 18 years old with
length of intervention ranging from 3 to 36 months. Fifteen
of 22 trials were randomized (child randomized in nine,
classroom/school randomized in six) and seven were
observational trials. Ten trials were Level 2 and 11 were
Level 3 based on the Oxford Centre for Evidence-Based
Medicine criteria. Random effects models tested the dif-
ference (intervention mean effect—control mean effect) in
percent change in bone mineral content, bone area, and
aBMD. Meta-regression was used to identify sources of
heterogeneity and funnel plots were used to assess publi-
cation bias.

Results Children assigned to exercise had greater mean
percent changes in bone mineral content and aBMD than
children assigned to the control groups. Mean differences
(95% CI) in bone mineral content percent change between
intervention and control groups at total body (0.8; 95% CI,
0.3-1.3; p = 0.003), femoral neck (1.5; 95% CI, 0.5-2.5; p
= 0.003), and spine (1.7; 95% CI, 0.4-3.1; p = 0.01) were
significant with no differences in bone area (all p > 0.05).
There were greater percent changes in aBMD in interven-
tion than control groups at the femoral neck (0.6; 95% CI,
0.2-1.1; p = 0.006) and spine (1.2; 95% CI, 0.6-1.8; p <
0.001). Benefit of exercise was limited to children who
were prepubertal (bone mineral content: total body [0.9;
95% CI, 0.2-1.7; p = 0.01], femoral neck [1.8; 95% CI,
0.0-3.5; p = 0.047], spine [3.7; 95% CI, 0.8-6.6; p = 0.01],
and aBMD: femoral neck [0.6; 95% CI, —0.1-1.2; p =
0.07], spine [1.5; 95% CI, 0.7-2.3; p < 0.001]), with no
differences among children who were pubertal (all p >
0.05). Changes in aBMD did not differ by sex (all p >
0.05), although the number of studies providing male-
specific results was small (six of 22 eligible studies
included boys). There was significant heterogeneity in bone
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mineral content and bone area for which a source could not
be identified. Heterogeneity in spine aBMD was reduced
by including calcium intake and intervention length as
covariates. Three trials designed to determine whether
calcium intake modified the bone response to exercise all
reported a greater effect of exercise on leg bone mineral
content in children randomized to receive supplemental
calcium than those receiving placebo.

Conclusions Exercise interventions during childhood led
to 0.6% to 1.7% greater annual increase in bone accrual,
with effects predominantly among children who were
prepubertal. If this effect were to persist into adulthood, it
would have substantial implications for osteoporosis pre-
vention. It is important to identify sources of heterogeneity
among studies to determine factors that might influence the
bone response to increased exercise during growth.

Level of Evidence Level 11, therapeutic study.

Introduction

Numerous observational studies have reported higher areal
bone mineral content and areal bone mineral density
(aBMD) in physically active children compared with
sedentary children [4, 5, 10, 11, 20]. Furthermore, there are
biophysical reasons to expect higher aBMD and bone
mineral content with increased bone-loading activities [14].
However, there is a possibility that physically active chil-
dren differ from other children in ways that may confound
these results. For example, physically active children might
eat differently than other children or have more muscle
than other children before they are physically active. It is
possible these other factors are leading to greater aBMD
and bone mineral content and not physical activity per se.

During growth, increased body weight, muscle strength,
and longitudinal bone growth lead to increased loads
placed on the skeleton. As reported to be proposed by
Wolff in 1892, and later developed as the “mechanostat”
theory by Frost, bone adapts to these loads by increasing its
strength [14]. It has been suggested that periods of growth
are the best time to influence bone through increased
loading owing to the high rates of bone modeling and
remodeling that are occurring [44]. During prepuberty and
early adolescence, periosteal surfaces are growing rapidly,
whereas during late adolescence, endocortical apposition is
occurring and cortical thickness is increasing. It is possible
that exercise at these different periods of development may
affect bone differently: exercise during the prepubertal
period and early adolescence may affect periosteal sur-
faces, whereas exercise during late adolescence may affect
endosteal surfaces and cortical thickness. The bone
response to exercise around the time of puberty also may

vary by sex. During puberty boys experience greater peri-
osteal expansion likely resulting from growth hormone,
IGF-1, and testosterone, whereas girls have greater endo-
steal contraction likely resulting from the inhibitory effects
of estrogen on periosteal formation and stimulatory effects
on endocortical bone formation [17, 47].

Randomized trials are the gold standard for evaluating
whether an intervention is effective. Numerous trials have
been completed evaluating the effect of bone-loading
activities on pediatric bone [3, 6, 8, 9, 15, 23, 25, 26, 31,
32, 35, 36, 38, 39, 41-43, 48, 49, 51, 54, 55]. Unfortu-
nately, most used dual-energy x-ray absorptiometry (DXA)
methodology to assess bone changes such as bone mineral
content and aBMD [6, 9, 15, 23, 25, 26, 35, 36, 38, 39, 41—
43, 48, 49, 51, 54, 55] and few report results pertaining to
changes in bone area by peripheral quantitative computed
tomography (pQCT) [3, 26, 31, 32, 48]. Therefore, it often
is not possible to determine whether exercise increases
bone size. In our analyses, we therefore included DXA
measures of bone mineral content, bone area, and aBMD.

The purpose of this review was to determine whether
data from pediatric trials (randomized, prospective, or
historically controlled) could answer the following ques-
tions: (1) Does exercise in childhood consistently increase
bone mineral content, bone area, or aBMD? (2) Do effects
of exercise differ depending on pubertal status or sex of the
children? (3) Does calcium intake modify the bone
response to exercise?

Search Strategy and Criteria

The literature was searched for reports of exercise inter-
vention trials in normal healthy children 3 years old and
older. The following search criteria were used in MED-
LINE, limited to clinical trials published in English:
exercise[All Fields] AND bone[All Fields] AND pedi-
atrics[All Fields] (n = 23); physical activity[All Fields]
AND bone[All Fields] AND pediatrics[All Fields]) n = 37);
and exercise[All Fields] OR physical activity[All Fields]
AND bone[All Fields] AND children[All Fields] (n = 231).
From these 291 references, 242 unique references were
identified.

Pediatric studies that reported an exercise intervention
and had a control group with prospectively collected bone
measurements before and after the activity intervention
(and control period) were included. Nonrandomized trials
or trials that randomized schools rather than individuals
were included owing to the small number of trials that
randomized individual children.

The 242 references were further screened by one of the
authors (BS) based on the article title and the following
(n = 190) were deleted (Fig. 1): articles related to
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Potentially relevant studies identified
and screened for retrieval (n = 242)

References excluded (n = 190):

« Variety of interventions in diseased or
obese populations (n = 85)

« Activity interventions in infants or
children younger than 3 years (n = 8)

» Orthopaedic-related interventions or
procedures (n = 31)

« Observational studies of either calcium
or activity (n = 28), or other reasons
(n=38)

Retrieved for more detailed evaluation
(n=52)

» Excluded owing to lack of appropriate
bone measures (n = 8)

« Study did not include an activity/exercise
intervention (n = 14)

Potentially appropriate trials to be
included in meta-analysis (n = 30)

« Trials excluded owing to duplication
> of study populations (n = 14)
« No variance estimate on change (n = 1)

Trials located from review of existing
references (n =7)

<
<

Trials with usable data (n = 22)

Fig. 1 The flowchart shows the numbers of articles initially identi-
fied and exclusion and inclusion steps.

interventions in populations with disease or obesity (n =
85), activity interventions conducted on a population
younger than 3 years (n = 8), orthopaedic-type interven-
tions or procedures (n = 31), observational studies related
to either activity or calcium intake (n = 28), or miscella-
neous articles (n = 38; eg, bone studies related to drug
treatments, kinetic or metabolic studies, behavioral inter-
ventions aimed at increasing activity or calcium intake,
vitamin D studies, dietary interventions, studies measuring
ground reaction forces, surveys, strength training studies,
early life determinants of adolescent bone, anthropometric
studies).

The remaining 52 studies were retrieved and reviewed:
eight were excluded because of lack of appropriate bone
measures (bone mineral content, bone area, or aBMD not
included) or the method used to obtain bone measures was
not dual photon absorptiometry, DXA, or peripheral
quantitative CT (pQCT); 14 were excluded as the study did
not include an activity or exercise intervention (eg, calcium
supplementation trials that also measured activity levels).
Total body, femoral neck, and spine sites by DXA most
often were measured.

A total of 30 trials were reviewed with sample sizes
ranging from 16 to 410 total subjects, ages ranging from 3
to 18 years, and the length of the intervention ranging from
3 to 36 months. On review of these trials an additional
seven trials were identified and added to those being

@ Springer

reviewed [8, 29, 38, 42, 43, 49, 55] (Table 1). Of these
trials, 14 were excluded because of duplication of study
populations (Table 1), and one did not present measures of
variance for changes in bone outcomes [8]. Two studies
had inconsistencies between tables or between tables and
graphs resulting in only a fraction of the bone data being
used [23, 42]. Authors of two studies provided mean per-
cent changes and SDs of percent change by sex and
pubertal status for control and intervention groups because
these could not be determined from the articles [41, 54].

Two authors (BS, NWT) reviewed each paper and
assigned a level of evidence based on material published by
the Oxford Centre for Evidence-Based Medicine, Oxford,
UK [24] (Table 1). When there was disagreement, the study
was discussed and a consensus reached. Owing to the
scarcity of randomized trials related to the effect of bone-
loading activities on bone accretion, nonrandomized trials
that included a comparison group with prospective bone
measurements were included. In addition, some trials
involved clustered randomization by classroom or school (n
=7), rather than randomizing the individual (n =9), owing to
the ease of performing the intervention in classrooms or
schools. The majority of the cluster-randomized trials did
not take clustering into account during the analyses (six of
seven), which influenced scoring of the level of evidence.
Trials that had a cluster randomization were assigned a
Level III unless the analysis took into account clustering
[41]. Trials in which the individuals were randomized
received a Level II despite that individuals were not blinded
to the intervention. There were four nonrandomized trials
with parallel groups (three involved cluster assignment) and
two nonrandomized clustered trials that used a previous
control group that received a Level III rating (Table 1).

Some trials provided estimates of bone change within
different subgroups (eg, prepubertal versus pubertal, males
versus females) [25, 28, 31, 36, 39, 48, 49, 54]. Results
from each of these subgroups were used in this review. In
addition, three studies were designed specifically to
investigate the effect of exercise on bone by pubertal status
[23, 35, 41]. To compare study findings, mean percent
changes in bone outcomes were determined for each sub-
group and results were expressed as percent change from
baseline.

Because DXA measures of bone area may not be sen-
sitive enough to detect subtle effects of exercise on bone
size, results from pQCT tibia measurements were
reviewed. However, a meta-analysis of these findings was
not performed owing to lack of reporting on variability of
change in intervention and control groups.

Nutritional intake was not available for the majority of
the studies that focused on the effect of bone-loading
activity on bone. Although calcium intake may influence
the bone response to exercise or bone-loading activities,
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Table 2. Difference in percent change between intervention and control groups by meta-analysis

Bone measurements Number Mean 95% CI' (p value) Q statistic Funnel plot
of subgroups difference (p value) asymmetry
(p value)
Bone mineral content
Total body 22 0.8 0.3-1.3 (0.003) 244 (< 0.001) 0.29
Prepubertal 8 0.9 0.2-1.7 (0.01)
Postpubertal 5 0.9 —0.4 to 2.2 (0.17)
Femoral neck 19 1.5 0.5-2.5 (0.003) 308 (< 0.001) 0.60
Prepubertal 7 1.8 0.0-3.5 (0.047)
Postpubertal 7 0.2 —0.2 to 0.5 (0.42)
Spine 23 1.7 0.4-3.1 (0.01) 410 (< 0.001) 0.04
Prepubertal 7 3.7 0.8-6.6 (0.01)
Postpubertal 6 0.7 —0.3 to 1.6 (0.19)
Bone area
Femoral neck 9 0.5 —0.7 to 1.6 (0.45) 18 (0.02) 0.92
Prepubertal 2 * *
Postpubertal 4 * *
Spine 8 0.4 —0.2 to 1.1 (0.20) 14 (0.04) 0.67
Prepubertal 2 * *
Postpubertal 4 * *
aBMD
Femoral neck 15 0.6 0.2-1.1 (0.006) 8 (0.89) 0.76
Prepubertal 7 0.6 —0.1 to 1.2 (0.07)
Postpubertal 3 * *
Spine 15 1,2 0.6-1.8 (< 0.001) 25 (0.04)* 0.90
Prepubertal 7 1.5 0.7-2.3 (< 0.001)
Postpubertal 3 * *

* Number of subgroups was too small to estimate the combined effects; Cls that include 0 are not significantly different; “heterogeneity was
decreased (p = 0.07) when calcium intake and intervention length were included as covariates.

it would be expected that mean calcium intakes would not
differ between intervention groups in a study. There were
three studies designed specifically as two-by-two factorial
trials to investigate the effect of calcium intake on the bone
response to exercise [6, 25, 48]. Since all three studies
found statistically significant interactions between calcium
intake and exercise group a meta-analysis was not per-
formed and an overview of the results are presented below.

Analysis

To compare studies on the same scale in the pooled analysis,
we calculated the percent change in bone mineral content,
bone area, and aBMD for each study population. We used the
raw mean difference (intervention mean effect—control mean
effect) as our outcome measure. Subgroup analyses were
conducted by pubertal status. Subgroup analyses also were
performed by sex for bone mineral content outcomes, but the
number of studies providing sex-specific data for bone area
and aBMD were too small to test for sex-specific effects. All

meta-analyses were performed using the metafor Package
from R Statistical Computing [46, 53].

Heterogeneity and Publication Bias

Because differences in the measurement methods and popu-
lation characteristics in published studies may introduce
variability among studies, a random effects model was used
to account for heterogeneity among studies. Heterogeneity
was estimated using the restricted maximum likelihood
estimator procedure and tested using Cochran’s Q-test [21].
We performed meta-regression to determine whether study
covariates, including study intervention length, mean age,
mean calcium intake, pubertal status, or sex could explain
heterogeneity among studies. Heterogeneity was not signifi-
cant for femoral neck aBMD and we were able to reduce spine
aBMD heterogeneity by including calcium intake and inter-
vention length as covariates (Table 2). However, significant
heterogeneity among studies was observed for all bone
mineral content and bone area measurements. Inclusion of
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Authors Sex Year Mean Difference [95% CI]

Prepubertal
Meyer et al. BOTH 2011 : —— 32[ 19, 44)
Specker & Binkley. - placebo BOTH 2003 . 11109, 1.3]
Specker & Binkley. - calcium BOTH 2003 H 08[ 06, 1.1]
Lofgren et al. FEMALE 2011 : HiH 16[ 1.2, 1.9]
Van Langendonck et al. FEMALE 2003 —a— -05[-22, 1.2]
MacKelvie et al. FEMALE 2001 - 04[-04,612]
Lofgren et al. MALE 2011 LI -05[-06,-0.3]
MacKelvie et al. MALE 2002 P 15[ 05, 26])
; - 09[02,1.7]

Prepubertal/Early Puberty :
luliano-Burns et al. - placebo FEMALE 2003 k . i 15[-12, 42]
luliano-Burns et al. - calcium FEMALE 2003 L - - i 11[-15, 3.7])
Bass et al. - placebo MALE 2007 — -1.0[-3.1, 1.0]
Bass et al. - calcium MALE 2007 - - > 11[-53, 76]
el 0.3[-12,19]

Early Puberty :
Meyer et al. BOTH 2011 - — 06[-20, 3.2]
McKay et al. BOTH 2005 -~ -1.3[-26,-0.1]
MacKelvie et al. FEMALE 2001 —a— 1.0[ 0.0, 2.0]
Morris et al. FEMALE 1997 - - » 55[-7.0,18.0]
i 0.1[-15,17]

Postpubertal :
Weeks et al. FEMALE 2008 Db 1 26[ 04, 48]
Stear et al. - calcium FEMALE 2003 —a— -02[-1.2, 0.8]
Stear et al. - placebo FEMALE 2003 —— 01[-09, 1.1]
Witzke & Snow FEMALE 2002 —_— 01[-1.8, 21]
Weeks et al. MALE 2008 . » 33[ 09, 58]
il 0.89[-0.39,2.18]

ALL :
Johannsen et al. BOTH 2003 i 1.2[ 02, 22]
RE Model for All Studies e 08[ 03, 1.3]

Fig. 2 The forest plot shows the mean difference between the
exercise and control groups in total body bone mineral content
percent change by pubertal status. The size of the squares is
proportional to the inverse of the variance and the error bars represent

covariates did not explain the variation in bone mineral
content and bone area among studies. Almost all reported trial
results were expressed as marginal means for bone mineral
content adjusting for potential covariates, and the covariates
differed significantly among the trials (Table 2). Itis possible
that this may have led to the significant heterogeneity that was
observed. To assess potential publication bias, we used
asymmetric funnel plots [13]. No publication bias was pre-
sent based on funnel plot analyses (Table 2).

Results

Does Exercise in Childhood Consistently Increase Bone
Mineral Content, Bone Area, or aBMD?

Children assigned to the exercise interventions had signifi-
cantly greater increases in bone mineral content and aBMD,

@ Springer

-2.0 0.0 2.0
Mean Difference

the 95% Cls. The ClIs for the pooled mean difference are shown by
the diamond-shaped figure. CIs that include O are not statistically
significant. Table 2 shows p values for pooled mean differences.

but not bone area, than children assigned to the control
groups. The overall mean difference between the percent
change in bone mineral content in the intervention and con-
trol groups was 0.8% (95% CI, 0.3-1.3; p=0.003) (Fig. 2) for
total body; 1.5% (95% CI, 0.5-2.5; p = 0.003) for femoral
neck; and 1.7% (95% CI, 0.4-3.1; p = 0.01) for spine.
Results for femoral neck and spine bone area were not
significant indicating no effect of exercise on bone area
(Table 2). This finding is consistent with the majority of
pQCT studies that report no differences in the increase in
bone cross-sectional area among children assigned to exer-
cise versus those who were not [3, 26, 32], although a study in
3- to 5-year-old children did find an effect [48]. A meta-
analysis on the pQCT results could not be performed because
of lack of reported measures of variability in the percent
change in intervention and control groups in those reports.
Overall, results for aBMD were similar to those
observed for bone mineral content at the femoral neck
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Authors Sex Year Mean Difference [95% CI]
Prepubertal
Meyer et al. BOTH 2011 —— -01[-18, 18]
Fuchs et al. BOTH 2001  ——— 1.3[ 0.0, 27]
Valdimarsson et al. FEMALE 2006 - - 08[ -3.2, 48]
Van Langendonck et al. FEMALE 2003 H—— 16[ -04, 35]
MacKelvie et al. FEMALE 2001 — 03[ -1.2, 1.8]
Linden et al. MALE 2007 -« Y > -0.1[-19.0,18.8]
MacKelvie et al. MALE 2002 —a— 01[-1.0, 1.3]

- 06[-0.1,12]
PrepubertalEarly Puberty
McKay et al. BOTH 2000 —&— 0.2[ -0.9, 1.3]
Early Puberty -
Meyer et al. BOTH 2011 - — -0.8[ -3.3, 1.8]
McKay et al. BOTH 2005 ——— 06[-15, 26]
MacKelvie et al. FEMALE 2001 I—I—I 14[ 01, 27]
Postpubertal
Weeks et al. FEMALE 2008 t ; > 28[-21,77]
Nichols et al. FEMALE 2001 < : & 2.3[-25.8,30.4]
Weeks et al. MALE 2008 - : > -01[ 55, 53]
ALL
Johannsen et al. BOTH 2003 n—-—-—c 1.3[ -0.4, 3.0]
RE Model for All Studies e 06[ 0.2, 1.1]

| | |
-3.0 0.0 3.0

Fig. 3 The forest plot shows the mean difference between the
exercise and control groups in femoral neck areal bone mineral
density (aBMD) percent change by pubertal status. The size of the
squares is proportional to the inverse of the variance and the error bars

(Fig. 3) and spine (Fig. 4) with children in the exercise
groups having a greater change in aBMD than children in
the control groups (Table 2).

Do Effects of Exercise Differ Depending on Pubertal
Status or Sex of the Children?

The beneficial effects of exercise on bone accrual were limited
to children who were prepubertal and there were no sex dif-
ferences in the response to exercise. Children who were
prepubertal who were assigned to exercise had larger increases
in total body (Fig. 2), femoral neck, and spine bone mineral
content than children who were prepubertal who were assigned
to the control groups (Table 2). A forest plot by pubertal
status indicated that the mean difference in the percent change
between exercise and control groups in spine aBMD
(p <0.001) (Fig. 4) was significant and the effect on femoral

Mean Difference

represent the 95% Cls. The Cls for the pooled mean difference are
shown by the diamond-shaped figure. Cls that include O are not
statistically significant. Table 2 shows p values for pooled mean
differences.

neck aBMD was marginally significant (p = 0.07). There was
no significant effect of exercise on bone mineral content or
aBMD in any of the children who were postpubertal (Table 2).
There were insufficient numbers of studies (fewer than five)
reporting changes in bone area to determine whether the effect
of exercise on bone area differed by pubertal status.

For studies specifically designed to test for a pubertal
effect of exercise on pediatric bone, MacKelvie et al. [35]
found that a school-based intervention led to greater bone
accrual at the femoral neck and spine in females in early
puberty but not in females who were prepubertal. Heinonen
et al. [23] reported greater gains in femoral neck and spine
bone mineral content in females in early puberty who par-
ticipated in the exercise intervention than those who did not,
but no difference was observed in females who were post-
pubertal. A school-based study by Meyer et al. [41] included
two different age groups (67 and 11-12 year olds) to
specifically determine whether the bone response to exercise

@ Springer
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Authors Sex Year Mean Difference [95% CI]
Prepubertal
Meyer et al. BOTH 2011 Po— 20[ 09, 3.1]
Fuchs et al. BOTH 2001 P —— 20[ 05, 35]
Valdimarsson et al. FEMALE 2006 —— 28[ 16, 40])
Van Langendonck et al. FEMALE 2003 —_— 02[-1.8, 22]
MacKelvie et al. FEMALE 2001 —— 03[ -1.2, 18]
MacKelvie et al. MALE 2002 ——— 07[-05, 18]
Bradney et al. MALE 1998 r—-—'—P 22[-07, 51]

S 15[0.7,23]
Prepubertal/Early Puberty
McKay et al. BOTH 2000 —.— 00[ -1.0, 1.0]
Early Puberty §
Meyer et al. BOTH 2011 . - i -0.7[ -29, 18]
MacKelvie et al. FEMALE 2001 N e 22[ 09, 35]
Morris et al. FEMALE 1997 < > 36[-159,231]
Postpubertal -
Weeks et al. FEMALE 2008 r : - > 13[-18, 44]
Nichols et al. FEMALE 2001 “ > -0.1[-246,24.3]
Weeks et al. MALE 2008 — 25[-14,63]
ALL
Johannsen et al. BOTH 2003 A 06[-1.0, 21]
RE Model for All Studies R 1.2[ 06, 1.8]
| | |
-3.0 0.0 36

Fig. 4 The forest plot shows the mean difference between the
exercise and control groups in spine areal bone mineral density
(aBMD) percent change by pubertal status. The size of the squares is
proportional to the inverse of the variance and the error bars represent

differed between children who were pre- or early pubertal.
They found a significant group-by-puberty interaction with
the effect of exercise on the whole body, femoral neck, and
spine bone mineral content being greater in children who
were prepubertal than children who were early pubertal;
males and females responded to exercise in a similar manner.

There were no sex differences between exercise and
control groups in total body, femoral neck, or spine bone
mineral content (all p > 0.05; data not shown), and there
were insufficient numbers of studies to evaluate sex dif-
ferences in bone area and aBMD.

Does Calcium Intake Modify the Bone Response
to Exercise?
A meta-analysis was not necessary to evaluate whether cal-

cium intake modifies the bone response to exercise since all
three [6, 25, 48] specifically designed to investigate the effect

@ Springer

Mean Difference

the 95% Cls. The ClIs for the pooled mean difference are shown by
the diamond-shaped figure. ClIs that include O are not statistically
significant. Table 2 shows p values for pooled mean differences.

of calcium intake on the bone response to exercise found that
the increase in leg bone mineral content with exercise was
greater in children who were randomized to receive supple-
mental calcium (statistically significant calcium-by-exercise
interaction) (Fig. 5). The differences in percent change ranged
from 1.5% to 3.7% greater in children assigned to exercise
compared with children assigned to the control group, and in
all three studies this effect was statistically significant. Another
study [26] found a correlation between change in leg bone
mineral content and calcium intake among the intervention
group but not the control group, supporting the hypothesis that
calcium intake modifies the bone response to exercise, at least
for leg bone mineral content.

Discussion

The purpose of this meta-analysis was to determine
whether children randomized to exercise interventions
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—e— Age = 4 years (Specker & Binkley.)
—a— Age =9 years (Bass et al.)
10 - —a- Age = 9 years (luliano-Burns et al.)

Leg Bone Mineral
Content

-2

Difference in Percent Change
(Exercise-No Exercise)
N B
\
\
\
\
\
\
\\\\

4 ‘ : : |
500 750 1000 1250 1500

Mean Calcium Intake (mg/day)

Fig. 5 The mean differences in percent change between the exercise
and no-exercise groups for leg bone mineral content are shown, with
the dashed line connecting the effect of exercise in the calcium and
placebo groups in the same study. The differences between the groups
were greater at higher calcium intakes in all three studies (all
exercise-by-calcium interactions significant at p < 0.05).

have greater increases in bone mineral content, bone area,
or aBMD than children randomized to a control group, and
whether bone benefits of exercise varied by pubertal status,
sex, or calcium intake. Although it commonly is believed
that exercise has significant bone benefit, results from
exercise trials do not always show a greater increase in
bone mineral content, bone area, or aBMD in children
assigned to exercise compared with no exercise. Our cur-
rent analysis supports a benefit of exercise on bone mineral
content accretion and gains in bone mineral content and
aBMD, with no effect on bone size. The benefits of exer-
cise appear to be limited primarily to children who are
prepubertal, with no sex differences. Calcium intake
modifies the bone response to exercise, with a greater
exercise effect in children with higher calcium intakes.

One of the limitations of many of the studies is the
randomization of schools rather than the individual child to
the intervention. A major advantage of randomization is to
increase the chance that the groups are not different at
baseline in terms of other factors, or potential confounders,
that could be associated with bone changes. It is likely that
children in a school are more similar in many other factors
(eg, ethnic background, dietary intakes, and other related
factors) than children between schools. The major advan-
tage of randomizing a group of individuals (classroom or
school) rather than the individual is in the feasibility of
performing the study and reduced costs to conduct the
study. It is much easier and less expensive to incorporate
an exercise program in a classroom or school rather than to
ask individual children to participate in interventions out-
side their usual classroom activities.

Significant heterogeneity was observed in the meta-
analysis. Heterogeneity among studies could arise for

several reasons. For instance, the original studies used
various covariates, especially for bone mineral content
measurements, and most reported marginal or least-square
means (not raw means) that were used in the meta-analysis.
The majority of trials involved high-impact activities and
few reported actual increases in lean mass or muscle
strength. Increased lean mass or muscle strength would
apply forces on bone beyond the forces from the impact
activity and theoretically should lead to even greater bone
response. The variable responses in terms of changes in
lean mass or muscle strength may have contributed to the
heterogeneity that was observed. Additionally, there were
wide ranges in the length of the interventions and the types
and intensity of exercise prescribed. However, the inclu-
sion of intervention length in the meta-analysis did not
reduce the heterogeneity that we observed in total body,
femoral neck, and spine bone mineral content.

Based on the meta-analysis, the overall effect of exer-
cise during growth was to increase bone mineral content
and aBMD. Some studies found a positive effect of exer-
cise on bone mineral content or aBMD but only when they
limited their analyses to compliant participants [49, 54].
Additionally, children who do not routinely load their
skeletons seem to be more responsive to an exercise pro-
gram as supported by findings from two of the trials [36,
52]. MacKelvie et al. [36] found a positive effect of
exercise when they limited their analyses to children who
had low or average BMI and not those with high BMI. This
could be the result of increased loading of the skeleton that
already occurs in children with a higher BMI. This is fur-
ther supported by the findings of Van Langendonck et al.
[52], who showed that the effect of exercise was significant
only among females with minimal weightbearing activity
during leisure time. Although it has been proposed that
bone loading during early adolescence may augment the
increase in bone size that occurs during this period of
growth [44], few results support this. Because DXA mea-
surements of bone area may be unable to detect subtle
changes, we also looked at studies that measured cross-
sectional area or periosteal circumference of the tibia [3,
26, 32]. Only one study found that children randomized to
exercise had a greater increase in periosteal circumference
and this was a study of 3- to 5-year-old children [48]. Thus,
if exercise or bone-loading activities do influence perios-
teal expansion, it would be at very young ages because it
has not been reported in older children.

Our meta-analysis results showed a benefit in children
who were prepubertal but not children who were early or
postpubertal. These results are consistent with those of
Meyer et al. [41]. They enrolled two age groups with dis-
tinct pubertal stages to an exercise intervention and a
control group and were able to formally test for pubertal
status-by-intervention (significant) and sex-by-intervention
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(not significant) interaction. There is large natural vari-
ability in skeletal growth and sexual maturation among
children, both of which are difficult to control for in any
longitudinal study around the age of puberty. To determine
whether pubertal status or sex of the child modify the bone
response to exercise, it is important to design studies in a
manner that will allow for these interactions to be formally
tested. The sample sizes required for these types of studies,
and therefore the costs associated with conducting them,
are large because of the need to have adequate power in
each pubertal stage and sex category.

As we showed, the trials designed to test for a calcium-
by-exercise effect all found that the gain in leg bone
mineral content in response to exercise was greater in the
group of children randomized to receive supplemental
calcium. Few studies have controlled for calcium intake
when investigating the influence of exercise on bone, and
this may partially explain the inconsistent findings and
heterogeneity among studies. However, we did consider
calcium intake in our meta-regression as a possible reason
for the high degree of heterogeneity but did not find it to be
a significant predictor of total body, femoral neck, or spine
bone mineral content. It could be that the modifying effect
of calcium intake on the bone response to loading is seen
only in the bones that were directly loaded (eg, the legs).

This meta-analysis indicates that bone-loading exercise
interventions can lead to a greater increase in bone mineral
content and aBMD but may not affect bone area, and that
children who are prepubertal appear to be more responsive
to bone loading than children who are postpubertal, and
other factors such as calcium intake may modify the bone
response to loading. Simple exercise interventions during
childhood led to 0.6% to 1.7% greater annual increase in
bone accrual. If this effect were to persist into adulthood it
could have substantial implications for osteoporosis pre-
vention. It is important to identify the sources of
heterogeneity in the results of the pooled studies to identify
factors that may influence the bone response to increased
exercise during growth. Because most studies were com-
pleted among girls, the question regarding whether
increased bone loading during growth affects bone simi-
larly in boys and girls at various times throughout puberty
has not been adequately addressed, especially because few
studies have been conducted in boys who are prepubetal.
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