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Summary
Objectives: This paper aims to predict childhood obesity after age two, using only data collected 
prior to the second birthday by a clinical decision support system called CHICA.
Methods: Analyses of six different machine learning methods: RandomTree, RandomForest, J48, 
ID3, Naïve Bayes, and Bayes trained on CHICA data show that an accurate, sensitive model can be 
 created.
Results: Of the methods analyzed, the ID3 model trained on the CHICA dataset proved the best 
overall performance with accuracy of 85% and sensitivity of 89%. Additionally, the ID3 model had 
a positive  predictive value of 84% and a negative predictive value of 88%. The structure of the tree 
also gives insight into the strongest predictors of future obesity in children. Many of the strongest 
predictors seen in the ID3 modeling of the CHICA dataset have been independently validated in the 
literature as correlated with obesity, thereby supporting the validity of the model.
Conclusions: This study demonstrated that data from a production clinical decision support system 
can be used to build an accurate machine learning model to predict obesity in children after age 
two.
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1.  Introduction
Childhood obesity has increased at an alarming rate in the United States in the past few decades. As 
stated by the CDC, “The percentage of children aged 6–11 years in the United States who were obese 
increased from 7% in 1980 to nearly 18% in 2010. Similarly, the percentage of adolescents aged 
12–19 years who were obese increased from 5% to 18% over the same period” [1].

Much research has been done to identify interventions to prevent and remediate obesity in 
children, since obesity in adulthood has several adverse health effects [2–5]. Prevention may be key 
since reversing already established obesity in grade school children and adolescents through exer-
cise, nutrition, and other lifestyle interventions is difficult. Poor eating habits and a sedentary life-
style are often ingrained at this point and hard to change [6, 7].

Typically, a child is not considered obese until approximately 2 years of age. Before then, Body 
Mass Index (BMI) percentiles cannot be reliably calculated due to variability of growth patterns in 
infants. Along with more stable growth, mature eating patterns become more developed by age two 
since children no longer drink formula and reduce consumption of milk in favor of adult foods [8, 
9]. Therefore, this age is a prime target for obesity intervention. If clinicians could predict at age two 
which children would later become obese based on clinical data collected for that child before age 
two, early intervention programs could target those at risk.

Machine learning techniques provide an attractive modeling method for analyzing early clinical 
data to predict later obesity in children. Such techniques can encompass the complexity of this prob-
lem more completely than simpler modelling techniques like linear regression and other statistical 
techniques [10]. Clinical data are inherently noisy, though, and machine learning techniques pro-
vide more robust methods for handling missing and incorrectly recorded data. We hypothesized 
that  machine learning could be an effective approach to predicting future obesity among children 
younger than two years.

1.1 Survey of the Literature
A limited number of publications exist that address using machine learning techniques to predict 
childhood obesity. Three describe algorithms only and do not provide actual experimental  results 
[11–13]. Of the remaining three, one [14] uses data from 9 to 11 year olds to predict obesity, an age 
when obesity is believed by many to be well established and harder to remediate. Another [15] finds 
data with specific idiosyncrasies and improves the performance only on that tiny subset (12 sub-
jects). A study by Zhang et al. [16] is the only one that comprehensively analyzes machine learning 
techniques to predict childhood obesity. 

Zhang et al. do an excellent job of comparing the performance metrics of several machine learn-
ing techniques. However, the best sensitivity (which the study notes is most important in predicting 
obesity) of any of the algorithms, based on the dataset used, was 62%, when looking at obesity pre-
diction after the second birthday. Zhang et al. do not provide accuracy or specificity for this analysis.

We suspected that Zhang et al’s work could be improved by considering a different set of at-
tributes for the model. Zhang’s group analyzed the Wirral child database, which was limited to basic 
demographics (like sex) and biometrics (like height, weight, and BMI). By using a broader range of 
attributes collected by a production clinical decision support system, we hypothesized, the model 
 accuracy can be improved, and some light can be shed on what predictors are most influential in 
 determining future obesity in children.

2. Objectives
The goal of this study was to leverage machine learning techniques to analyze clinical data collected 
before age 2 to predict future obesity in children after the second birthday. Clinicians could use such 
a model to identify candidate children for early obesity interventions, thereby targeting at risk 
children at a critical age of development related to establishing eating and lifestyle habits.
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3. Methods

3.1  Clinical Dataset Used for Analysis
Data collected from a pediatric clinical decision support system called CHICA (Child Health Im-
provement through Computer Automation) [17] were used for the analysis. The data include nine 
years of clinical information collected from 4 different community health centers affiliated with Es-
kenazi Health, a safety net hospital system. The CHICA system provides clinical decision support to 
 physicians based on dynamic patient questionnaires and past clinical history. The CHICA system 
presents a parent with a 20 question survey (▶Figure 1) with questions tailored to the pediatric 
 patient based on age, other demographics, and previous clinical history. The survey is dynamic, 
presenting a unique set of questions to every child at every visit. The parent fills out the question-
naire on an electronic tablet or scannable paper form, and a medical assistant or nurse enters bio-
metrics such as height, weight, etc. The system then uses these data as input to create a custom 
 physician worksheet (▶Figure 2) with six dynamically generated prompts based on the parent’s re-
sponses to the questionnaire and previous clinical history.

In this analysis, the CHICA data were mined for all children with at least one BMI percentile rec-
orded after the second birthday, and at least one visit prior to age 2. The data was pulled from the 
parent questionnaire, the physician worksheet, and vitals collected by the clinical staff. The parent 
questionnaire and physician worksheets were optional and not always fully completed. The cohort 
was comprised of 7 519 patients. ▶Table 1 describes some basic demographics of the cohort.

The patient population was primarily minority race and low income. Since CHICA has been run-
ning for 9 years, the cohort consists only of children ranging from age 2 to 10. In the data set, 167 at-
tributes collected before the patient’s second birthday were analyzed for each patient. A data label of 
OBESE (yes/no) was created based on the BMI percentile after the second birthday. If the child had a 
BMI percentile greater than or equal to 95 percent based on CDC growth curves [9] at any point 
after the second birthday, the child was labeled as obese. 

Since multiple answers could exist for a single attribute across multiple visits, one value needed to 
be chosen for each patient. For categorical attributes, the most common value was chosen. For 
height and weight, the only non-categorical attributes analyzed, nominal attributes were created to 
indicate whether a child was overweight, obese, tall, or very tall at different age points (2, 6, 12, 18, 
and 24 months), based on percentiles published by the CDC.

After data transformations, the dataset contained one row per patient with 167 attributes plus the 
OBESE category label. If an attribute did not exist for the patient, the coded value MISSING was rec-
orded.

3.2 Machine Learning Models
Since the data set included categorical data, Bayes and Decision Tree classifiers were the most appro-
priate models. In principle, the categorical attributes can be converted to numerical ones by assig-
ning numerical codes to their values, allowing the application of a quantitative classifier model such 
as an artificial neural network. However, we felt the arbitrary nature of such attribute conversion 
would make the model non-intuitive and non-robust. Therefore, six models were tested in our 
study: RandomTree, RandomForest, ID3, J48 (Java implementation of C4.5 algorithm), NaiveBayes, 
and BayesNet [18].
•  RandomTree: considers K randomly chosen attributes at each node and does not prune the tree.
•  RandomForest: creates a forest of random trees and outputs the mode of the classes created by in-

dividual trees.
•  ID3: creates a tree based on the ID3 algorithm with no pruning.
•  J48: creates a tree based on the C4.5 algorithm with pruning.
•  NaiveBayes: creates a classifier based on the Naïve Bayes method which assumes all attributes are 

independent. Local search methods were used.
• BayesNet: creates a classifier based on non-Naïve Bayes which does not assume all attributes are 

independent. Local search methods were used.
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Weka [19], an open source machine learning software written in java, was used to run the analyses. 
The analysis for each method was run with 10 cross folds validation [20], meaning the dataset was 
randomly divided into 10 parts and 10 runs of the model were executed with each run consisting of 
one of the 10 parts being the testing data and the remaining 90% being the training data. Perform-
ance statistics were then averaged across all 10 runs. Three analyses were run over all six methods.

The first analysis applied each machine learning technique to the entire dataset with no resam-
pling or manipulation of the data. The idea was to establish a baseline among the different machine 
learning methods for the given dataset.

The second analysis was similar to the first but the data were resampled. Resampling is a com-
mon technique used in statistics to select a subset of the data points for learning of a model to cope 
with non-uniformity of class labels. Since the obesity prevalence in this population after the second 
birthday was about 30%, the second analysis hoped to improve on the first by resampling the obesity 
categorization so that the dataset had a uniform distribution of the classification category of OBESE. 
Weka randomly resamples the data to balance the distribution.

In the third analysis, the goal was to find the attribute set for each of the six models with the mini-
mum number of misclassified and unclassified values across all 10 folds. The algorithm first ran the 
full model over the resampled data (the analysis described in the previous paragraph). After running 
the full model, the algorithm then iterated through each attribute in the data set, removed the 
 attribute, trained the model, and evaluated the accuracy. If the number of misclassified and unclassi-
fied values was less than or equal to the previous dataset’s value, the attribute was marked and the 
loop continued. The attribute would be added back into the dataset and the same process would 
continue for the remaining attributes. After removing all attributes one at a time, whichever 
 attribute minimized the misclassified and unclassified values the most would be removed from the 
dataset. The new dataset was then analyzed again by removing attributes one at a time. This process 
continued until the next step of attribute removal decreased the accuracy. The final model was the 
minimum number of attributes that provided that optimal accuracy.

The accuracy of the models was evaluated using the following measures:
•  Sensitivity: proportion of individuals classified obese to total number of actual obese cases.
• Specificity: proportion of individuals classified non-obese to total number of actual non-obese 

cases.
•  Positive predictive value: proportion of obese individuals to total number classified as obese.
• Negative predictive value: proportion of non-obese individuals to total number classified as non-

obese.
•  Overall accuracy: the number of correctly classified values over the total size of the cohort.

4.  Results
The first analysis with no resampling provided fairly poor results. ▶Table 2 details the overall accu-
racy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 
each of the models. The best sensitivity was achieved by the BayesNet model at .58, which is fairly 
poor.

The second analysis attempted to improve on the performance of the previous models by resam-
pling the data so there was a uniform distribution of data points classified as obese and not obese. 
▶Table 3 details the same set of accuracy measures as reported for the non-resampled models.

The tree models improved significantly. The non-Naïve Bayes model remained the same and the 
Naïve Bayes model actually degraded slightly in performance.

The third analysis aimed to improve upon the models created in the second analysis by removing 
“noisy” attributes. It iterated through each attribute in the model to see if the attribute could be 
 removed without negatively affecting the accuracy of the model. ▶Table 4 details the same set of ac-
curacy measures as reported for the previous two analyses. Only two of the six models showed im-
provement when removing attributes.

The data illustrate a slight increase in the performance of both ID3 and Naïve Bayes over the pre-
vious analysis. The accuracy measures modestly improved but the size of the attribute set necessary 
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for the model was significantly reduced. The ID3 model was reduced from 167 attributes to 87 
 attributes. The NaiveBayes model was reduced to 107 attributes.

4.1  ID3 Structure and Obesity Prediction
Based on the results of the three analyses, the Random tree and ID3 methods had the highest sensi-
tivity. The ID3 model was slightly more sensitive in predicting obesity.

The structure of the resulting ID3 tree is also important to consider. Since the ID3 algorithm 
builds the tree in a way that maximizes the reduction in entropy at each level, the structure of the 
tree gives us some insight into what the most important predictors of future obesity are in this 
 cohort. In ▶Figure 3, we see a detail of attributes contained in the first 3 levels of the tree. Please 
refer to the supplementary material for details about each attribute. The percentages within the tree 
indicate the percentage of patients with the given characteristics that were obese after age two.

4.2 Clinical Applications for the Decision Tree
The ID3 tree has maximum depth of 24. Since a path in the decision tree corresponds to an impli-
cation logical operator whose premise is a conjunction of all the attribute tests, this implies that the 
model, thus constructed, is not exhaustively testing all attributes along all paths. Further, this implies 
that in theory, at most, a 24 step dynamic questionnaire could be created to move through the deci-
sion tree nodes to predict future chance of obesity based on answers to the earlier questions. Since 
the RandomTree method has comparable performance to the ID3 method and the algorithm allows 
a maximum depth value to be defined, we can examine how performance metrics change based on 
tree depth. ▶Figures 4 through 6 illustrate the relationship between tree depth and accuracy, sensi-
tivity, and area under the ROC curve for the RandomTree method.

The performance metrics increase fairly steeply as the tree gets deeper but level off around 17 to 
20 questions, depending on the metric of interest. Once again, this indicates that the model is a non-
exhaustive one, using only a relatively small set of attributes along any path. Researchers can also use 
this information to determine the tradeoff of respondent burden, i.e. number of questions to answer, 
versus the performance of different metrics.

5. Discussion
The most influential attribute of the tree is OVERWEIGHT_BEFORE_24mo. In the pediatric com-
munity, there is not clear evidence that being overweight prior to age two is correlated with later 
obesity status. From the tree, we see that a child is twice as likely to be obese after age two if the child 
is overweight at some point prior to 24 months. Being obese before 24 months slightly increases the 
chances the child will later be obese to 72%. What is interesting, however, is that if a child is not 
obese before age 24 months and is not overweight before 12 months, they are nearly as likely (71%) 
to be obese after age two. That seems to indicate that being overweight between age 12 and 24 
months is a key risk factor for obesity after the second birthday. Furthermore, it is more of a risk 
 factor if the child was not overweight prior to age 12 months. In other words, accelerated weight 
gain seems to be the real risk factor.

We also note that being very tall before 6 months old appears to be somewhat protective against 
obesity. Children who are both overweight and obese prior to 24 months have a 72% chance of being 
obese later, but if they are very tall prior to 6 months, that risk is reduced to 63%. This seems to indi-
cate that if a child is proportionally large at a young age, i.e. both very heavy and very tall, the child 
could still have a healthy weight.

If a child is not overweight prior to 24 months, we see that minority race increases the chance of 
being obese after age two. A child has a 34% chance of later being obese if non-white but a 25% 
chance if white. Race has been independently verified in the literature as a predictor of future obesity 
in children which further validates our model [21]. Children of minority race and ethnicity are at 
higher risk of obesity than non-Hispanic white children.
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The model also shows children that are not overweight before 24 months with race black, Asian 
Pacific / Islander, or Other/Unknown are slightly more likely to become obese if they have evidence 
of depression in a parent (28%) versus no evidence (25%). In the literature, there are known corre-
lations between maternal depression and increased risk of childhood obesity [22].

For white children that are not overweight before 24 months, using a walker seems to be a signifi-
cant risk factor for obesity. A child who uses a walker is nearly 3 times as likely to be obese after two 
years, even if the child was not overweight before 24 months. The authors are not aware of any lit-
erature previously associating walkers and childhood obesity.

Finally, having the pediatrician provide any dental advice at all seems to be protective against 
later obesity in Hispanic children. The overall risk of obesity in Hispanic children drops from 42% to 
25% when the physician provides dental advice. Part of the dental advice provided by CHICA in-
cludes reducing bottle usage and night feeding which may explain the reduction in obesity. Previous 
work has suggested the combined reduction of weight gain and dental caries from dietary interven-
tions, particularly in Native North Americans [23].

After analyzing the structure of the tree, it appears that the basic model is valid since several of 
the most influential attributes in the tree have been independently verified as predictors of future 
obesity.

As with any study, the analyses in this paper could be improved and expanded. One notable area 
of exploration should be to delve deeper into the Bayes models. Local search methods were used in 
this analysis with fairly poor results. Such methods only employ a local search algorithm (such as 
hill-climbing) over possible model structures (topologies) to determine a “good” candidate in terms 
of explaining the data. Convergence to a local maximum, rather than a global one, is a common 
problem with such local search methods. Global methods, which employ global search over the 
model structure space, require considerably more computing power than their local counterparts 
but have the potential to provide considerably better predictive accuracy, by avoiding relatively poor 
local minima. Constructing the best possible Bayesian network is, in general, a computationally 
hard problem whose complexity grows exponentially with the number of attributes. The use of 
probabilistic semi-global search methods (such as simulated annealing and genetic algorithms) can 
be explored towards this end.

These analyses considered the entire CHICA dataset from its inception. By nature, clinical deci-
sion support systems are dynamic and new rules are introduced and old rules are retired on an on-
going basis. It would be interesting to re-analyze the data in a more abbreviated timeframe, such as 
within the last year to see how the model changes. The idea is that if the rule set is more cohesive the 
model’s predictive power could be stronger.

In terms of data, a limitation of this analysis is that a single erroneous weight or height measure 
after age two could incorrectly mark the child as obese. However, the fact that the screening tool is 
highly accurate, in spite of this, shows how well the machine learning models can handle errors and 
missing data. Additionally, height and weight were modeled as discrete versus continuous values due 
to required input types for the machine learning models employed, which could have potentially re-
duced the statistical power of the resulting models. Another limitation of the data is that the popu-
lation is mostly minority, low income, and concentrated in one particular geographic area. Finally, 
race and ethnicity are reported as a single value in the dataset instead of being properly split into two 
categories.

Additionally, further work could be done in modeling the data to predict obesity for ages older 
than 2 to see if the data recorded before the second birthday can predict obesity at ages 3, 4, and 
older. The resulting trees could possibly contain different attributes for predicting short term child-
hood obesity versus long term obesity.

Even with these limitations, our model improves upon analyses such as [24] by using supervised 
machine learning techniques to discover novel associations not discovered by traditional statistical 
techniques. By using robust machine learning techniques, our model is able to handle the missing 
data of a clinical dataset without the need to carefully curate a longitudinal dataset for analysis.
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6. Conclusions
In conclusion, this study demonstrated that data from a production clinical decision support system 
can be used to build a valid and accurate machine learning model to predict obesity in children. Real 
clinical data are, by nature, messy with missing and erroneous values. In spite of this, our model per-
formed well and provided a high level of accuracy and sensitivity. 

Our model was highly accurate at 85% and sensitive at nearly 90%. Many of the most influential 
nodes in the tree have been independently validated in the literature as well. 

A further area of research would be to incorporate the tiered structure questionnaire indicated by 
the ID3 tree into the CHICA clinical decision support system to screen children at the two year 
checkup to see which children are likely to become obese. This would provide clinicians with the 
tools to provide targeted interventions at a critical age of development to stop obesity before it has a 
chance to take hold. By doing so, they can hopefully protect those children against the epidemic of 
obesity.

Clinical Relevance Statement
The results of our research provide a pathway for creating a highly accurate dynamic questionnaire 
to screen very young children for future obesity. It provides a key screening tool to facilitate early 
obesity intervention in children. We plan to implement this screener in the CHICA system and 
study its effectiveness. 
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Fig. 1 CHICA 20 question survey
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Fig. 2 Physician worksheet
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Fig. 3 Attributes contained in the first three levels of the tree.
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Fig. 4 Relationship between tree depth and accurancy.

Fig. 5 Relationship between tree depth and sensitivity.
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Fig. 6 Relationship between tree depth and area under the ROC curve.

Research Article

T.M. Dugan et al.: Prediction of Early Childhood Obesity



518

© Schattauer 2015

Table 1 DemographicsSex

Male

Female

* Race/Ethnicity

Hispanic

Black

White

Other/Unknown

Asian Pacific / Islander

Insurance

Medicaid

Unknown

Self Pay

Commercial

* Note: Race/Ethnicity is not reported using the 
Office of Management and Budget coding stan-
dard. The data was received from an external 
EHR and could not be standardized by CHICA.

51%

49%

45%

43%

10%

2%

< 1%

65%

31%

3%

1%

Table 2 Analysis 1 metrics ( RT - RandomTree, RF - RandomForest, NB - NaiveBayes, BN - BayesNet)

Method

RT

RF

ID3

J48

NB

BN

Accuracy

69%

69%

62%

70%

66%

63%

Sensitivity

.26

.26

.40

.29

.52

.58

Specificity

.88

.88

.75

.88

.71

.68

PPV

.50

.50

.41

.51

.45

.65

NPV

.73

.73

.74

.73

.77

.62

Table 3 Analysis 2 metrics

Method

RT

RF

ID3

J48

NB

BN

Accuracy

84%

86%

84%

79%

63%

63%

Sensitivity

.88

.86

.88

.82

.58

.58

Specificity

.80

.85

.82

.76

.69

.68

PPV

.81

.84

.83

.78

.65

.65

NPV

.87

.86

.88

.81

.62

.62

Method

ID3

NB

Accuracy

85%

65%

Sensitivity

.89

.59

Specificity

.83

.70

PPV

.84

.66

NPV

.88

.63

Table 4 Analysis 3 metrics
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