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Optical Limiting and Theoretical 
Modelling of Layered Transition 
Metal Dichalcogenide Nanosheets
Ningning Dong1, Yuanxin Li1, Yanyan Feng1, Saifeng Zhang1, Xiaoyan Zhang1, 
Chunxia Chang1, Jintai Fan1, Long Zhang1 & Jun Wang1,2

Nonlinear optical property of transition metal dichalcogenide (TMDC) nanosheet dispersions, 
including MoS2, MoSe2, WS2, and WSe2, was performed by using Z-scan technique with ns pulsed 
laser at 1064 nm and 532 nm. The results demonstrate that the TMDC dispersions exhibit significant 
optical limiting response at 1064 nm due to nonlinear scattering, in contrast to the combined 
effect of both saturable absorption and nonlinear scattering at 532 nm. Selenium compounds show 
better optical limiting performance than that of the sulfides in the near infrared. A liquid dispersion 
system based theoretical modelling is proposed to estimate the number density of the nanosheet 
dispersions, the relationship between incident laser fluence and the size of the laser generated micro-
bubbles, and hence the Mie scattering-induced broadband optical limiting behavior in the TMDC 
dispersions.

Under the promotion of research into graphene, two-dimensional (2D) nanomaterials have become one 
of the most widely studied fields in nanoscience1–5. Layered transition metal dichalcogenide (TMDC), 
as analogues of graphene, have attracted tremendous attention and been considered as potential candi-
date materials for photonic and optoelectronic devices owing to their extraordinary properties, such as 
ultrafast carrier dynamics, photoluminescence and electroluminescence, ultrafast nonlinear absorption, 
second and third harmonic generations, as well as indirect-to-direct band gap transition as bulk TMDC 
decreasing to monolayers4,6–13. Ultrafast nonlinear optical (NLO) property investigation is a fundamental 
but important aspect for the development of photonic and optoelectronic devices. For the purpose of 
developing diverse high performance photonic devices, it is actually essential to have a comprehensive 
understanding on the NLO properties of the potential working substances.

Recently, we reported the prominent broadband saturable absorption (SA) performance in layered 
TMDC nanosheets for fs and ps pulses over a broad wavelength range (ref. 14,15). Zhou et al. revealed 
the size-dependent NLO properties of thin MoS2, WS2, and NbSe2 nanosheets for ps pulses at 532 nm 
(ref. 16). Fu et al. reported nonlinear SA in vertically stood WS2 nanoplates using ps pulses at 532 nm 
(ref.  17). Wang et al. observed wavelength selective optical limiting effect in MoS2 dispersions for fs 
pulses (ref. 18). TMDC-based mode-locking and Q-switching operations have been successfully demon-
strated in a range of ultrashort pulsed laser systems14,19–22. As the most conventional laser source, ns 
pulses have been widely used in many science and technology fields. Thus, it is significant to understand 
the nonlinear interaction between intense ns pulses and TMDC nanosheets. So far, very few experimen-
tal studies on the NLO property of layered TMDC in the ns regime have been reported.

In this work, we prepared a series of layered TMDC nanosheets, including MoS2, MoSe2, WS2, and 
WSe2, in N-methyl-2-pyrrolidone (NMP) by using liquid-phase exfoliation technique. For compari-
son, graphene dispersions were prepared at the same time. Transmission electron microscopy (TEM), 
absorption spectroscopy and Raman spectroscopy were performed to characterize the quality of the 
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layered nanostructures. We systematically investigated the NLO response of these 2D nanomaterials 
under the excitation of ns pulses at 1064 and 532 nm through a Z-scan apparatus. The TMDC disper-
sions exhibit significant nonlinear scattering induced optical limiting response at 1064 nm and 532 nm. 
Selenide compounds show better limiting performance than that of the sulfides in the near infrared. We 
propose a liquid dispersion system based theoretical modelling to estimate the number density in the 
nanosheet dispersions, the relationship between incident laser fluence and the size of the laser generated 
micro-bubbles, and hence the Mie scattering-induced broadband optical limiting behavior in the TMDC 
dispersions.

Methods
Materials.  All chemicals used in this work were of analytical grade and used as supplied. Graphite 
flakes (product number 332461), MoS2 (product number 234842) and WS2 (product number 243639) 
powders, N-methyl-2-pyrrolidone (product number 328634) were purchased from Sigma-Aldrich. MoSe2 
(product number 778087) and WSe2 (product number 13084) powders were purchased from Alfa Aesar 
and Sterm Chemicals, respectively.

Preparation of nanosheet dispersions in NMP.  It has been proven that liquid-phase exfoliation 
is a simple and effective method to exfoliate bulk layered materials into mono- and/or few-layer 2D 
nanosheets with the help of appropriate dispersants7,23,24. In this work, high quality TMDC, including 
MoS2, MoSe2, WS2, and WSe2, as well as graphene dispersions in NMP were prepared with the similar 
procedure as our previous works25,26. The commercial TMDC powders were added in NMP with initial 
concentrations of 5 mg/ml, respectively. Ultra sonication was carried out through a point probe (flat head 
sonic tip) for 60 min with a power output of 285 W. To maintain sonication efficiency and prevent over-
heating, the samples were kept in ice-water bath. The resultant dispersions were centrifuged at 3000 rpm 
for 90 min to remove large aggregates, and the top two-thirds of the dispersions were gently extracted by 
pipetting. The obtained TMDC dispersions were stable against sedimentation over several weeks.

Characterization.  The quality of the obtained TMDC nanosheets was characterized by TEM (Tecnai 
G2 F20 S-TWIN, FEI). UV-visible absorption spectra of the nanosheet dispersions in NMP were con-
ducted using a PerkinElmer Lambda 750 instrument. Raman spectroscopy measurements for the nano-
sheets (dried on SiO2/Si wafers) were carried out using a Monovista-P optical workstation (a confocal 
microscopy system) with a LD pumped laser at 532 nm.

Nonlinear optical measurements.  The NLO property of the TMDC dispersions were measured by 
using an open aperture Z-scan apparatus, which is widely adopted to investigate the nonlinear absorption, 
scattering and refraction processes27. The optical arrangement is similar to what we used in our previous 
works26,28. All experiments were performed using 6 ns pulses from a Q-switched Nd:YAG laser operating 
at 1064 nm and its second harmonic 532 nm, with the pulse repetition rate of 2 Hz. The laser beam was 
tightly focused with a 15 cm focus lens, and all dispersions were tested in 10 ×  10 mm quartz cuvettes. 
Meanwhile, another focusing lens was setup at ~45° to the incident beam to collect the scattering signal 
from the dispersions. Three high-precision photo-detectors were used to monitor the reference, trans-
mitted and scattering light, respectively. Focusing on practical applications, NLO samples should keep 
certain transmittance under low ambient light. In order to evaluate the NLO responses, these nanosheet 
dispersions were adjusted to have a same moderate linear transmittance ~80% at 1064 nm. At 532 nm, 
the corresponding linear transmittances were then ~63.8%, ~25.3%, ~55.1%, ~37.2% and ~79.7%, for the 
MoS2, MoSe2, WS2, WSe2 and graphene dispersions, respectively. The beam waist radii at the focus were 
estimated to be ~61 μ m at 1064 nm and ~33 μ m at 532 nm25.

Results
TEM was performed to analyze the status of these dispersed nanoflakes. Figure 1(a–e) show the typical 
TEM images of MoS2, MoSe2, WS2, WSe2, and graphene nanoflakes. The sizes of the TMDC nanosheets 
are mostly below 500 nm which are significantly smaller than the graphene flakes with the average size 
of a few micrometers. Large quantities of TMDC flakes were observed as few-layer layered nanosheets, 
and aggregated particles are absent in these TEM images, confirming the high quality of the prepared 
liquid-phase exfoliated samples. Furthermore, monolayer or few-layer structures can be seen at the edge 
of the nanosheets, and then high-resolution TEM images were captured from these edge regions and 
followed by digital periodic filter processing (Fig.  1(f–j)). It appears that both TMDC and graphene 
possess hexagonally symmetric structures.

Figure 2(a) is the UV-visible absorption spectra of the TMDC and graphene dispersions. As expected, 
two typical characteristic absorption peaks of MoS2, MoSe2, WS2, WSe2 are clearly observed at the region 
of 500–900 nm, which correspond to the A1 and B1 direct excitonic transitions of the TMDC originated 
from the energy split of valence-band and spin-orbital coupling6,7,14,29–32. These two peaks indicate that 
the TMDC are dispersed in NMP as the 2H-phase. No prominent absorption peaks are observed for 
graphene. The Raman spectra of the TMDC and graphene nanosheets were performed in a Monovista-P 
optical workstation using a 532 nm excitation laser. The 521 cm−1 phonon mode from the Si substrate 
was used for calibration. As seen in Fig. 2(b), the expected A1g mode and E1

2g mode are observed to be 
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406.7 cm−1 and 381 cm−1 in MoS2, 241.8 cm−1 and 287.5 cm−1 in MoSe2, 420 cm−1 and 351.2 cm−1 in WS2 
flakes, respectively12,24,33,34. For WSe2, agreeing with the works of Tonndorf et al.12 and Terrones et al.13, 
we only find a single broad peak around 252 cm−1 as a result of A1g mode and E1

2g mode degeneration 
in few layer WSe2 nanosheets. At the same time, they observed that the peak position changes with 
layer number12,13. Therefore, we deduce the widened peak in our experiment mainly originates from the 
conjunct effects of nanoflakes with different thicknesses prepared through liquid exfoliation technique23. 
Graphene is characterized with the D, G, and 2D peaks located at 1345 cm−1, 1575 cm−1, and 2700 cm−1, 
respectively23,35–37. These results demonstrate that the prepared nanosheets are of high quality.

Figure  3 shows the excitation pulse energy dependent open-aperture Z-scan results of the TMDC 
and graphene dispersions at 1064 nm (top row) and 532 nm (bottom row), respectively. At 1064 nm, 
both TMDC and graphene dispersions exhibit a reduction in the transmittance on the focus of the lens, 
indicating a typical optical limiting property (Fig. 3(a–e)). In the TMDC, the value of the valley trans-
mittance at the beam focus decreases gradually as the input pulse energy increasing. However, the value 
shows a slight rising after decreasing with the incident pulse energy clamping in graphene dispersions. 
This is preliminary considered to be associate with the low graphene nanosheet concentration in the dis-
persions. These prominent optical limiting behavior mainly originates from thermally induced nonlinear 
scattering26,28. Strong light scattering was observed when the dispersions passed through the focus of the 

Figure 1.  Low-resolution TEM images (top row) and high-resolution TEM images (bottom row) of the 
MoS2, MoSe2, WS2, WSe2, and graphene nanoflakes. 

Figure 2.  (a) UV-visible spectra of the TMDC (MoS2, MoSe2, WS2, and WSe2) and graphene dispersions. 
(b) Raman spectra of the dried TMDC and graphene films.
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incident beam (see Fig. 4). When 532 nm laser pulses were used, these samples displayed different NLO 
responses. Take MoS2 for example, the normalized transmission curve shows a symmetrical peak with 
respect to the focus (z =  0) at the lowest excitation energy of 10 μ J, indicating a SA mechanism in this 
sample. As the incident pulse energy increases, a valley inside the peak appears at the focus and becomes 
deeper gradually, which contributes to the nonlinear scattering (NLS) behavior occurring following SA 
in MoS2. It should be pointed out that, at the highest excitation energy of 1500 μ J, only the valley can be 
observed and the peak disappears, which means NLS occupies a predominant role at the higher excita-
tion pulse energy. The other three TMDC, i.e., MoSe2, WS2, and WSe2, exhibit the similar phenomena 
as MoS2 (Fig.  3(f–i)). Although we have reported the SA behaviors of graphene at femtosecond35,36, it 
is quite easy to generate NLS at nanosecond for graphene dispersions, and the SA performance can be 
buried by strong NLS at higher laser pulse excitation25,26. This is the reason that graphene only shows 
NLS induced optical limiting under the similar excitation condition (Fig. 3(j)).

Figure 3.  Typical open-aperture Z-scan data with normalized transmittance as a function of the sample 
position Z for the MoS2 (a,f), MoSe2 (b,g), WS2 (c,h), WSe2 (d,i), and graphene (e,j) dispersions in NMP at 
1064 and 532 nm, respectively, with different incident laser pulse energy. 

Figure 4.  Normalized transmittance (solid circles) and scattering response (open circles) of these nanosheet 
dispersions at (a) 1064 and (b) 532 nm, respectively. 
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Figure 4(a) depicts the nonlinear transmission and scattering as functions of incident fluence of the 
TMDC and graphene dispersions at 1064 nm. At the same level of linear transmittance (~80%) at 1064 nm, 
graphene possesses prominent optical limiting behavior at lower pulse energy excitation. However, TMDC 
show better optical limiting responses at higher pulse energy excitation, as shown in Fig. 3(a–e). Among 
the four TMDC, optical limiting responses follow the order MoSe2 >  WSe2 >  MoS2 ~ WS2. As shown in 
Fig. 4, the scattering signals increase significantly along with decrease of transmittance which implies that 
NLS is dominating the optical limiting performance in these 2D nanosheet dispersions. Similar optical 
limiting behavior at 532 nm (with different linear transmittances) are concluded, as shown in Fig. 4(b). 
It should be pointed out that the minimal transmittance (Tmin) of TMDC decrease to ~0.2–0.3 at both 
532 nm and 1064 nm, indicating their excellent attenuation effects over a broadband range from the vis-
ible to the near infrared. The optical limiting onset values (Fon, defined as the incident fluence at which 
optical limiting activity starts) and optical limiting threshold values (Fth, defined as the incident fluence 
at which the transmittance falls to 50% of the linear transmittance) for these samples at 1064 and 532 nm 
are summarized in Table 1. Among the five nanosheet dispersions, graphene possesses the minimum Fon 
value which may related to the large nanosheet size and huge thermal conductivity ~5.3 ×  103 W/mK  
in graphene, which is about dozens of times larger in comparison with single layer MoS2 (~103 W/mK),  
MoSe2 (~54 W/mK), WS2 (~142 W/mK) and WSe2 (~53 W/mK) at room temperature38,39. Whereas 
TMDC possess quite lower Fth values and Tmin values, these advantages make them to be potential can-
didates for broadband optical limiters at both the near infrared and the visible ranges.

Discussion
As mentioned above, the optical limiting response in these 2D nanomaterials at nanosecond is mainly 
attributed to NLS, and the scattering efficiency is largely dependent on the scattering cross section, hence 
relating to the size of scattering centers, i.e., micro-bubbles and/or micro-plasmas40. In our previous 
work, we have simulated the normalized transmission as a function of the radius of micro-bubbles by 
assuming different densities of graphene nanoflakes in dispersions25. As a consequence, it is vital to get 
the number density of the nanostructures for the investigation of NLS property. Here, we afford an effec-
tive method to estimate the nanosheet number density combing with the linear transmission. We treat 
the prepared dispersions as homogeneous media, and the nanosheets are uniform with the area of S, layer 
number of n in each suspension although the size and layer number show actually somewhat distribu-
tions in certain ranges. Ignoring the reflection and scattering, the transmittance Tnano of an individual 
nanosheet can be expressed as Tnano =  e−and, where α is the absorption coefficient of the nanosheet and 
d is the thickness of monolayer. And then, the absorbance of this nanosheet can be defined as A′  =  1 −  Tnano. 
Dividing the cuvette into m equal pieces along the laser transmitting direction (z axis), the thickness of 
each part can be expressed as l =  L/m, L is the thickness of the quartz cuvette. If m is large enough, the 
part covered by the Gaussian beam in the dispersions can be considered as an area constituted by many 
pieces of circular slabs, and the thickness of each slab corresponds to l. Take one individual slab at zi 
(i =  1, 2, …, m.) for example, the volume can be defined as Vi =  πR2(zi) · l, where R(zi) is the radius of 
this slab. The Gaussian beam can be seen as a normal distribution with the standard deviation σ = ω( )z i

1
2

, 

and ω (zi) is the beam waist at zi with the expression of ( )ωω( ) = ⋅ + λ

πω

⋅z 1i
z

0

2
i

0
2 , λ is laser wave-

length, and ω0 is the beam waist radius of the Gaussian beam. Figure  5 gives a schematic about the 
process. Take R(zi) =  3σ (3σ principle, the proportion of photons distributed in the circular equals to 
99.73%), the number of the nanosheets in this slab can be given by

( )π ω= ⋅ = ⋅ ⋅ ( ) ( )J N V N l z9
4 1eff i eff i

2

Neff is the effective nanosheet number per unit volume, say, effective nanosheet number density in 
the dispersions.

Sample

1064 nm 532 nm

T0 Fon (J/cm2) Fth (J/cm2) T0 Fon (J/cm2) Fth (J/cm2)

MoS2 79.7% 3.28 19 63.8% 1.52 11.16

MoSe2 79.8% 1.37 9.8 25.3% 1.47 7.3

WS2 79.6% 2.56 18.25 55.1% 1.24 9.35

WSe2 80.2% 2.3 12 37.2% 0.99 7.2

Graphene 80.1% 0.64 – 79.7% 0.44 15.15

Table 1.   Linear transmittance (T0), optical limiting onsets (Fon) and optical limiting thresholds (Fth) of 
these nanosheet dispersions at 1064 and 532 nm.
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The Gaussian beam at the front face of this slab can be written as
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Therefore, the total photon number at the front face of an individual nanosheet located at (xj, yj) in 
this slab will be [see Fig. 5(b)]
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The photon number absorbed by the individual nanosheet is

= ⋅ ′ ( ), ,P P A 6z j z nanoi i

The absorbed photon number in the whole slab is
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The transmittance of this slab is Ti =  1 −  Ai. And then, the linear transmittance of the sample is

∏ ∏= = ( − ) ( )= =T T A1 9i
m

i i
m

i0 1 1

If we have the size and layer thickness information of these nanosheets which can be obtained through 
TEM and/or AFM characterizations, we can get the effective number density through the above analysis.

In addition, since the nanosheets are randomly oriented, the real nanosheet number density N is not 
equals to the effective number density Neff. Their relation can be deduced through the effective area of 
these nanosheets transmitted by the laser beam. As seen in Fig. 5(c), z is the laser transmitting direction, 
and a circular nanosheet with the radius r locates in the o-xyz coordinate system with angles of θ and ϕ. 
The projection of the circular nanosheet in the xy plane is a ellipse with the radii of rx and ry

θ= ( )r r cos 10x

Figure 5.  (a) A piece of slab and (b) a nanosheet as a model to explain the calculation process. (c) The 
schematic to calculate the projected area at xy plane of a nanosheet placed with angles of θ and ϕ in o-xyz 
coordinate system.
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θ ϕ= ( )r r sin cos 11y

and the area of the ellipse is

π π θ ϕ′ = = ( )S r r r1
2

sin 2 cos 12x y
2

And then the ratio of the projected areas in the xy plane and their real areas of the nanosheets per 
unit volume can be written as

π θ ϕ
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By calculating, we find k is ~0.2, and N ≈  5Neff.
In the above, we have mentioned that the sizes of the TMDC nanosheets are mostly less than 500 nm 

and graphene flakes are around several micrometers. Therefore, we suppose the areas of the TMDC and 
graphene nanosheets are 0.04 μ m2 and 1 μ m2, respectively, and the layer number equals to 5. Based on 
the assumptions, we can estimate the nanosheet number density of these dispersions. As we can see in 
Table 2, the calculated number densities at 1064 and 532 nm are not completely the same, but their ratio 
is as small as ~3 for the five kinds of dispersions. These acceptable difference implies the correctness and 
effectiveness of the proposed model. Furthermore, we can obtain the linear transmittance as a function 
of the nanosheet number density, area or layer number. As an example, we depict the simulation results 
of the MoS2 nanosheet dispersions at 1064 and 532 nm in Fig. 6. At a certain linear transmittance, the 

Number density MoS2 MoSe2 WS2 WSe2 Graphene

N1064 1.17 ×  1010 1.09 ×  1010 2.15 ×  1010 2.07 ×  1010 8.30 ×  107

N532 4.61 ×  109 8.05 ×  109 8.90 ×  109 1.11 ×  1010 7.10 ×  107

Table 2.   The calculated nanosheet number density (cm−3) at 1064 and 532 nm.

Figure 6.  Linear transmittance mapping of MoS2 dispersions in 10 × 10 mm quartz cuvette at 1064 and 
532 nm nanosecond laser pulses. (a,c) Variation in nanosheet number density and area with a constant 
layer number of 5. (b,d) Variation in nanosheet number density and layer number with a constant area of 
0.04 μ m2. The color bar represents the linear transmittance.
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larger the nanosheet area or the layer number is, the smaller number density required. With the model, 
one can estimate the nanosheet number density in a nanosheet dispersion from its linear transmittance 
and the nanosheet area/layer number.

Following the Beer-Lambert law, the decreased transmittance TNL of these dispersions can be expressed 
in the form of

δ= (− ) ( )T NLexp 14NL NL

where δNL is the nonlinear extinction cross section. According to the theoretical simulation32, the scat-
tering cross section increases significantly with the increasing size of micro-bubbles, meanwhile the 
absorption cross section decreases until it is negligible when the bubbles grow, effectively limiting the 
incident power. Therefore, we consider the micro-bubbles as non-absorbing dielectric spheres and the 
corresponding scattering cross section can be expressed by Mie theory as41

∑δ
π

=
′

( ′ + )( + )
( )′=

∞
′ ′

r
q

l a b2 2 1
15l l l

2

2 1
2 2

where al′ and bl′ are the coefficients defined with Bessel function and its differentiation, l′  is an integer, 
q is the corresponding size parameters, r′  is the radius of the micro-scatters. Substituting Equation  15 
into Equation 14 allows one to estimate TNL as a function of the radius of micro-bubbles based on the 
calculated nanosheet number density. Figure 7 depicts the normalized transmittance variation with the 
micro-bubble radius as well as with the input laser fluence of these dispersions at 1064 nm and 532 nm. 
As we can see, the two curves fit very well, from which we can obtain the bubble size at certain laser 
fluence. That is to say, there is a correspondence between the bubble sizes and laser fluencies at certain 
dispersion. Figure 8 gives the bubble radius variation with the laser fluence for these dispersions, and the 
bubble radius increases gradually with the input laser fluence increasing. At a very low input laser fluence 
< 1 J/cm2, the bubbles in graphene dispersion have become large and the dispersion begin to emerge 

Figure 7.  Normalized transmittance as a function of input laser fluence (solid dots) and the radius of 
micro-bubbles (solid line) for the nanosheet dispersions at 1064 (top row) and 532 nm (bottom row). 
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optical limiting response. That is why graphene possesses superior optical limiting responses at lower 
excitation fluence. Whereas TMDC own large advantages at higher excitation fluence mainly due to 
their huge concentration although the micro-bubble sizes are quite small in comparison with graphene.

In summary, we have investigated the NLO behavior of MoS2, MoSe2, WS2, WSe2 and graphene nano-
sheets at nanosecond laser pulses. Both TMDC and graphene exhibit strong optical limiting responses 
originated from NLS under the excitation of near infrared laser, while TMDC show a joint effect of SA 
and NLS at 532 nm. The fact that TMDC possess better optical limiting responses at higher pulse energies 
than graphene make these 2D nanomaterials to be promising candidates for broadband optical limiters. 
In addition, we promote a theory analysis of the nanosheets number density dependent transmittance, 
and the relationship between incident laser fluence and micro-bubbles radius, which is helpful for the 
understanding of the NLS process in the nanosheet dispersions.
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