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Abstract

Transplantation-based replacement of lost and/or dysfunctional astrocytes is a promising therapy 

for spinal cord injury (SCI) that has not been extensively explored, despite the integral roles 

played by astrocytes in the central nervous system (CNS). Induced pluripotent stem (iPS) cells are 

a clinically-relevant source of pluripotent cells that both avoid ethical issues of embryonic stem 

cells and allow for homogeneous derivation of mature cell types in large quantities, potentially in 

an autologous fashion. Despite their promise, the iPS cell field is in its infancy with respect to 

evaluating in vivo graft integration and therapeutic efficacy in SCI models. Astrocytes express the 

major glutamate transporter, GLT1, which is responsible for the vast majority of glutamate uptake 

in spinal cord. Following SCI, compromised GLT1 expression/function can increase susceptibility 

to excitotoxicity. We therefore evaluated intraspinal transplantation of human iPS cell-derived 

astrocytes (hIPSAs) following cervical contusion SCI as a novel strategy for reconstituting GLT1 

expression and for protecting diaphragmatic respiratory neural circuitry. Transplant-derived cells 

showed robust long-term survival post-injection and efficiently differentiated into astrocytes in 
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injured spinal cord of both immunesuppressed mice and rats. However, the majority of transplant-

derived astrocytes did not express high levels of GLT1, particularly at early times post-injection. 

To enhance their ability to modulate extracellular glutamate levels, we engineered hIPSAs with 

lentivirus to constitutively express GLT1. Overexpression significantly increased GLT1 protein 

and functional GLT1-mediated glutamate uptake levels in hIPSAs both in vitro and in vivo post-

transplantation. Compared to human fibroblast control and unmodified hIPSA transplantation, 

GLT1-overexpressing hIPSAs reduced (1) lesion size within the injured cervical spinal cord, (2) 

morphological denervation by respiratory phrenic motor neurons at the diaphragm neuromuscular 

junction, and (3) functional diaphragm denervation as measured by recording of spontaneous 

EMGs and evoked compound muscle action potentials. Our findings demonstrate that hiPSA 

transplantation is a therapeutically-powerful approach for SCI.
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Introduction

Transplantation of neural stem cells (NSCs) and neural progenitor cells (NPCs) is a 

promising therapeutic strategy for both neurodegenerative diseases of the central nervous 

system (CNS) and traumatic CNS injury, including spinal cord injury (SCI), because of the 

ability to replace lost and/or dysfunctional nervous system cell types, promote 

neuroprotection, deliver gene factors of interest and provide other benefits (Gage, 2000).

Initial trauma following SCI results in immediate cell death and axotomy of passing fibers. 

Contusion- and compression-type injuries, the predominant forms of traumatic SCI observed 

in the clinical population, are followed by an extended period of secondary cell death and 

consequent exacerbation of functional deficits (McDonald and Becker, 2003). One of the 

major causes of secondary degeneration following SCI is excitotoxic cell death due to 

dysregulation of extracellular glutamate homeostasis (Park et al., 2004; Stys, 2004). 

Exogenous parenchymal administration of glutamate to uninjured spinal cord results in 

tissue and function loss similar to SCI (Xu et al., 2005). While large increases in glutamate 

can occur shortly after SCI, elevation can also persist depending on injury severity (Liu et 

al., 1991; Panter et al., 1990; Xu et al., 2004). In addition to focal increases, levels can also 

rise in regions removed from the lesion site, possibly via a spreading mechanism involving 

activated glia (Hulsebosch, 2008). Early gray matter loss is likely mediated by NMDA 

receptors, while delayed loss of neurons and oligodendrocytes, as well as axonal and myelin 

injury, is thought to be predominantly mediated via AMPA over-activation (Stys, 2004). A 

valuable opportunity therefore exists after SCI for preventing cell injury and functional loss 

that occur during secondary degeneration. Importantly, secondary degeneration is a relevant 

therapeutic target given its relatively prolonged time window.

Glutamate is efficiently cleared from the synapse and other sites by transporters located on 

the plasma membrane (Maragakis and Rothstein, 2004). Astrocytes are supportive glial cells 

that play a host of crucial roles in CNS function (Pekny and Nilsson, 2005). Astrocytes 
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express the major CNS glutamate transporter, GLT1, which is responsible for the vast 

majority of functional glutamate uptake and plays a central role in regulation of extracellular 

glutamate homeostasis in the spinal cord (Maragakis and Rothstein, 2006). Following SCI, 

astrocyte loss and/or altered GLT1 expression, function and localization can result in further 

susceptibility to excitotoxicity. For example, we previously found that in rodent models of 

unilateral mid-cervical (C4) contusion SCI, numbers of GLT1-expressing astrocytes, total 

intraspinal GLT1 protein expression and GLT1-mediated functional glutamate uptake in 

ventral horn are reduced soon after injury and this reduction persists chronically (Li et al., 

2014b). Astrocytes have traditionally been viewed in a negative light following CNS trauma 

because of their association with disease mechanisms such as glial scarring and pro-

inflammatory cytokine release. However, their crucial neuroprotective/homeostatic roles, 

including GLT1-mediated glutamate uptake, have not been extensively targeted in SCI 

models using approaches such as NSC and NPC transplantation, despite obvious therapeutic 

implications (Maragakis and Rothstein, 2006).

Transplantation-based targeting of astrocytes provides a number of key benefits. Grafts can 

be anatomically delivered to precise locations for achieving neuroprotection of specific 

populations of cells (Lepore et al., 2008b). Alternative strategies such as gene therapy only 

target one/several specific genes (s), while astrocyte transplantation can participate in the 

restoration of a host of astrocyte functions. Transplantation also provides for long-term 

astrocyte integration and therapeutic replacement. For example, the lasting nature of 

dysregulation of extracellular glutamate homeostasis after SCI (Lepore et al., 2011a; Lepore 

et al., 2011c) calls for longer-term maintenance of therapeutic effects, both with respect to 

early cell loss occurring during secondary degeneration and outcomes of SCI associated 

with more persistent pathophysiology of glutamate signaling such as chronic neuropathic 

pain (Gwak et al., 2012; Hulsebosch, 2008).

To achieve translation of NSC/NPC-based interventions, clinically-relevant cell sources that 

address scientific, practical and ethical considerations must be extensively tested in relevant 

models of CNS disease. These cell types also need to be evaluated in the context of patient-

relevant functional outcomes such as respiratory function. Induced pluripotent stem (iPS) 

cells are pluripotent cells generated from adult somatic cell types via expression of 

combinations of pluripotency-related factors, avoiding ethical issues of embryonic stem cells 

(Takahashi et al., 2007b). This technology allows for homogeneous derivation of cell types 

in large quantities for applications such as transplantation, potentially in an autologous 

fashion from the eventual recipient or from allogeneic sources (Das and Pal, 2010; Kiskinis 

and Eggan, 2010). Despite the promise of this approach, the iPS cell transplantation field is 

still in the early stages of evaluating therapeutic usefulness in relevant SCI models (Salewski 

et al., 2010).

Respiratory compromise is a major problem following cervical spinal cord trauma. Cervical 

SCI represents greater than half of all human cases, in addition to often resulting in the most 

severe physical and psychological debilitation (Lane et al., 2008). Respiratory compromise 

is the leading cause of morbidity and mortality following SCI. While a growing literature 

exists on respiratory function in animal models of SCI (Lane et al., 2008; Lane et al., 2009), 

few studies have examined cellular mechanisms involved in protection of this vital neural 
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circuitry, and little work has been conducted to test therapies for targeting cervical spinal 

cord-related functional outcome measures such as breathing. Phrenic motor neuron (PhMN) 

loss plays a central role in respiratory compromise following cervical SCI. The diaphragm, a 

major inspiratory muscle, is innervated by PhMNs located at cervical levels 3–5 (Lane et al., 

2009). PhMN output is driven by descending pre-motor bulbospinal neurons in the 

medullary rostral ventral respiratory group (rVRG) (Zimmer et al., 2007). Cervical SCI 

results in diaphragmatic respiratory compromise due to PhMN loss and/or injury to 

descending bulbospinal respiratory axons. The majority of these injuries affect mid-cervical 

levels (Shanmuganathan et al., 2008) (the location of the PhMN pool), and respiratory 

function following mid-cervical SCI is significantly determined by PhMN loss/sparing 

(Strakowski et al., 2007). Although use of thoracic models has predominated, cervical SCI 

animal models have recently been developed (Aguilar and Steward, 2010; Awad et al., 

2013; Gensel et al., 2006; Lane et al., 2012; Lee et al., 2010; Sandrow-Feinberg et al., 2009; 

Sandrow-Feinberg et al., 2010; Sandrow et al., 2008; Stamegna et al., 2011), including our 

own (Nicaise et al., 2012). Because of the relevance of astrocyte and GLT1 dysfunction to 

PhMN loss/injury following cervical trauma, we targeted transplantation in the present study 

to cervical spinal cord ventral horn in a cervical contusion SCI model.

We previously investigated the therapeutic efficacy of transplanting rodent-derived glial-

restricted precursors (GRP), a class of lineage-restricted astrocyte progenitor cell (Li et al., 

2014a). We transplanted either undifferentiated GRPs or GRP-derived astrocytes (pre-

differentiated in vitro prior to injection) into our model of cervical contusion SCI, and found 

that both cell types survived, localized to the ventral horn and efficiently differentiated into 

mature astrocytes. However, animals injected with GRP-derived astrocytes had higher levels 

of intraspinal GLT1 expression than those injected with undifferentiated GRPs, suggesting 

that pre-differentiation enhanced the in vivo maturation of these cells. We also observed that 

modifying GRP-derived astrocytes to constitutively express GLT1 was more effective in 

achieving in vivo GLT1 expression and for protecting PhMNs.

Given the importance of astrocytes in SCI pathogenesis, the observations of GLT1 

dysfunction following SCI, and our previous success targeting astrocyte GLT1 using rodent-

derived glial progenitor cells, in the present study we evaluated intraspinal transplantation of 

hiPS cell-derived astrocytes (hIPSAs) into ventral horn following cervical contusion SCI as 

a novel therapeutic strategy for reconstituting GLT1 function. Specifically, we examined the 

in vivo fate of hIPSAs transplants in the injured spinal cord of both mouse and rat models of 

cervical contusion SCI, including long-term survival and integration, astrocyte 

differentiation, maturation into GLT1-expressing cells and safety. We also tested the 

therapeutic efficacy of hIPSA transplantation for protection of PhMNs and preservation of 

diaphragm function.

Derivation of cell types from iPS cells represents a relevant approach for clinical translation; 

therefore, it is critical to test both the safety and efficacy of these transplants in a patient-

relevant SCI model. Importantly, previous work has shown that human- and rodent-derived 

versions of a given stem/progenitor type do not necessarily show similar in vivo fate or 

therapeutic properties in the disease nervous system. For example, we previously 

demonstrated that, following transplantation into the SOD1G93A rodent model of ALS, 
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human glial progenitors cells show more persistent proliferation, greater migratory capacity, 

reduced efficiency of astrocyte differentiation, and decreased GLT1 expression compared to 

their rodent counterparts, which resulted in a lack of therapeutic efficacy only with the 

human cells (Lepore et al., 2011b; Lepore et al., 2008b). It is therefore important to extend 

our previous studies with rodent-derived glial progenitors in the cervical contusion SCI 

model to now test human iPS cells.

Materials and methods

Animals

Transplantation into rats and mice—Female Sprague-Dawley rats weighing 250–300 

grams were purchased from Taconic Farm (Rockville, MD). Female C57BL/6 wild-type 

mice weighing 20–30 grams were purchased from The Jackson Laboratory (Bar Harbor, 

ME). All animals were housed in a humidity-, temperature-, and light-controlled animal 

facility with ad libitum access to water and food. Experimental procedures were approved 

by the Thomas Jefferson University IACUC and conducted in compliance with ARRIVE 

(Animal Research: Reporting of In Vivo Experiments) guidelines.

Cervical contusion SCI

Rat SCI—Rats were anesthetized with ketamine (100 mg/kg), xylazine (5 mg/kg) and 

acepromazine (2 mg/kg). The cervical dorsal skin and underlying muscles were incised. The 

paravertebral muscles overlying C3–C5 were removed. Following unilateral laminectomy 

on the right side at C3, C4 and C5 levels, rats were subjected to a C4 spinal contusion injury 

with the Infinite Horizon impactor (Precision Systems and Instrumentation, Lexington, KY) 

using a 1.5mm tip at a force of 395 kDynes. This injury paradigm is based on our previously 

published rat model that results in robust PhMN degeneration and chronic diaphragm 

dysfunction (Nicaise et al., 2013; Nicaise et al., 2012). Rats were transplanted in all studies 

immediately following injury. After surgical procedures, overlying muscles were closed in 

layers with sterile 4-0 silk sutures, and the skin incision was closed using wound clips. 

Animals were allowed to recover on a circulating warm water heating pad until awake and 

then returned to their home cages. They were monitored daily until sacrifice, and measures 

were taken to avoid dehydration and to minimize any pain or discomfort.

Mouse SCI—Mice were anesthetized with a cocktail of ketamine (120 mg/kg) and 

xylazine (5 mg/kg). The surgical procedure and post-surgical monitoring used for mice were 

the same as described above for rats. For the contusion injury, the 1mm impactor tip was 

raised 1.25mm above the dura prior to impact, and a force of 50 kDynes (kD) was used for 

impact.

Virus production

Lentiviral vector carrying the green fluorescent protein (GFP) gene or GLT1 gene was 

packaged in 293FT cells. Briefly, To produce control lentiviral-GFP vector, 293FT cells 

were transfected with pCDH-MSCV-MCS-EF1-GFP plasmid (System Biosciences, 

Mountain View, CA) and three other helper plasmids, pLP-1, pLP-2, and pLP/VSVG with 

Polyfect (Qiagen, Valencia, CA). To produce lentiviral-GLT1 vector, GLT1 gene CDS 
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fragment was inserted into MCS of pCDH-MSCV-MCS-EF1-GFP plasmid, and the vector 

plasmid was then transfected into 293FT cells with three helper plasmids as described 

above. Supernatant was collected 72 hours later, and lentiviral vector was concentrated with 

PEG-it Virus Precipitation Solution (System Biosciences, Mountain View, CA) and re-

suspended with PBS to the final titer of 1×108 infectious units/ml.

Human induced pluripotent stem cell derived astrocytes

Human iPS cell derivation, culturing and astrocyte differentiation—iPS cells 

were derived from non-diseased healthy patient donors. Dermal fibroblasts were 

reprogrammed into iPS cells via retroviral transduction with KLF4, SOX2, OCT4, and c-

MYC (Takahashi et al., 2007a). By immunohistochemistry and qRT-PCR, these putative iPS 

cells expressed proteins and transcripts associated with pluripotency, including Sox 2, and 

stem cell-associated antigens, including SSEA4, Nanog, alkaline phosphatase, and TRA 1–

81, and capacity to differentiate into cells of three germ layers was established. Finally, the 

karyotype of these iPS cells was found to be normal. Once pluripotent iPS cells were 

generated, the stem cells were cultured in E8 medium (Life Technologies, Grand Island, 

NY). To maintain optimum pluripotency and limit spontaneous differentiation, the stem cell 

colonies were manually cleaned once every 6days just before passage using dispase (Stem 

Cell Technologies, Vancouver, BC). To differentiate the iPS cells into astrocytes, a protocol 

previously described by Haidet-Phillips and colleagues (Haidet-Phillips et al., 2014) was 

used. To summarize, iPS cells were lifted with dispase, gently separated into single cells and 

plated as a monolayer. Using the smad dual inhibition pathway method to direct 

differentiation toward a neural phenotype, the cells were incubated in DMEM/F12 (Life 

Technologies, Grand Island, NY) enriched with 0.2 µM LDN (Stemgent, Cambridge, MA) 

and 10µM SB431542 (Sigma, Saint Louis, MO). The cells were then exposed to 1µM 

retinoic acid (Sigma, Saint Louis MO) and N2 (Life Technologies, Grand Island, NY) 

starting at day 5 and Sonic HedgeHog (Life Technologies, Grand Island, NY) starting at day 

8. From day 15 to day 30 after starting the differentiation protocol, the medium was 

gradually changed to neurobasal medium. After day 30, to differentiate these iPS cell-

derived glial progenitors into astrocytes, cells were maintained and expanded in DMEM/F12 

supplemented with 1% Fetal Bovine Serum, B27, L-glutamine, non-essential amino acids, 

penicillin/streptomycin (all from Life Technologies, Grand Island, NY) and 2µg/ml Heparin 

(Sigma-Aldrich, St. Louis, MO) for an additional 60 days. Astrocytes derived from human 

iPS were identified with immunostaining using GFAP antibody. For feeding and passaging 

of astrocyte progenitor cultures, cells were rinsed with PBS and incubated with 4ml of 

0.05% trypsin for 5 minutes. Cells were collected in trypsin and rinsed with 7ml of culture 

medium and 1× trypsin inhibitor (Life Technologies, Grand Island, NY) to stop 

trypsinization. Cells were centrifuged at 1000 rpm for 5 minutes and re-suspended in fresh 

culture medium. Cells were counted and seeded onto poly-L-lysine coated dishes. Cells 

were fed twice a week and were passaged after they were 80%–90% confluent.

GLT1 overexpression—After differentiation for 90 days, hIPSAs (astrocytes derived 

from human iPS cells) were transduced with lentiviral-GFP vector or lentiviral-GLT1 

vector, at the concentration of 1×106 infectious units/ml, one week before transplantation. 
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On the second day of transduction, culture medium was changed and the cells were cultured 

for 5 more days.

Human dermal fibroblasts

Human dermal fibroblast cells (ATCC, Manassas, VA) were cultured with Fibroblast 

Growth Kit-low serum (ATCC, Manassas, VA). Fibroblasts were transduced with control 

lentiviral-GFP vector one week before transplantation. Transduced GFP was used to track 

transplanted cells in vivo.

Transplantation

Cell preparation for transplantation—On the day of transplantation, cells were rinsed 

with PBS and trypsinized with 0.05% trypsin, collected and rinsed with culture medium and 

1× trypsin inhibitor. The cells were washed with artificial cerebrospinal fluid twice. Cell 

viability was assessed using the trypan blue assay and was always found to be greater than 

80%. The final cell concentration was adjusted to 1×108 cells/ml.

Intraspinal transplantation—Transplantation was conducted on deeply anesthetized rats 

and mice immediately post-injury. Following unilateral right-sided contusion injury at C4, 

cells were injected into the spinal cord at two locations. Each site contained 2µL of cell 

suspension, which was administered into the spinal cord ventral horn using a Hamilton gas-

tight syringe mounted on an electronic UMP3 micropump (World Precision International, 

Sarasota, FL) (Lepore and Maragakis, 2011; Lepore et al., 2011a). The sites of injections 

were located at the rostral and caudal edges of the contusion site. Ventral horns were 

targeted by lowering the 33-gauge 45-degree beveled needle 1.5mm below the dorsal 

surface of the spinal cord. Each injection was delivered at a constant rate over 5 minutes. 

Upon completion of cell delivery, overlying muscles were then closed in layers with sterile 

4-0 silk sutures, and the skin incision was closed using sterile wound clips. Animals were 

allowed to recover and monitored daily.

Immune suppression—All animals were immune suppressed. Rats received 

subcutaneous administration of cyclosporine A (10mg/kg; Sandoz Pharmaceuticals, East 

Hanover, NJ) daily beginning three days before grafting and continuously until sacrifice. 

Mice were given both FK-506 and rapamycin (1 mg/kg each; LC Laboratories; Woburn, 

MA).

Tissue processing for histology

At the time of sacrifice, animals were anesthetized, and diaphragm muscle was freshly 

removed prior to perfusion and then further processed for neuromuscular junction (NMJ) 

labeling. Animals were transcardially perfused with 0.9% saline, followed by 4% 

paraformaldehyde infusion. Spinal cords were harvested, then cryoprotected in 30% sucrose 

for 3 days and embedded in freezing medium. Spinal cord tissue blocks were cut serially in 

the sagittal or transverse planes at a thickness of 30µm. Sections were collected on glass 

slides and stored at −20 °C until analysis. Spinal cord sections were thawed, allowed to dry 

for 1 hour at room temperature, and stained with 0.5% Cresyl violet acetate according to 

standard procedure (Nicaise et al., 2012).
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Immunohistochemistry

Frozen spinal cord sections were air-dried, washed with PBS, permeabilized with 0.4% 

Triton X-100 in PBS for 5 minutes at room temperature, and then incubated in blocking 

solution (PBS containing 10% normal goat serum and 0.4% Triton X-100) for 1 hour at 

room temperature. Sections were labeled overnight at 4°C with the primary antibodies in 

blocking solution. Sections were then washed three times with PBS (5 minutes per wash) 

and incubated with secondary antibodies in blocking solution for 1 hour at room 

temperature. After washing twice with PBS (10 minutes per wash), sections were cover-

slipped. A number of primary antibodies were used. Mouse anti-GFAP antibody (EMD 

Millipore Corporation, Billerica, MA; 1:200) and rabbit anti-GFAP antibody (Dako North 

America, Carpinteria, CA; 1:200) were used to label astrocytes (Lepore et al., 2008a). 

Mouse anti-human GFAP antibody (StemCells, Inc, Newark, CA; 1:200) was used to label 

astrocytes of human origin in mice and rats. Rabbit anti-GLT1 (1:800) and mouse anti-

GLT1 (1:200) were used to label GLT1 protein (both were provided by Jeffrey Rothstein’s 

laboratory) (Lepore et al., 2008b). Rabbit anti-Ki67 (Thermo Fisher Scientific, Rockford, 

IL; 1:200) labeled proliferating cells (Lepore et al., 2008a). Mouse anti-human cytoplasmic 

marker antibody (StemCells, Inc, Newark, CA; 1:200) and mouse anti-HuNu antibody 

(EMD Millipore Corporation, Billerica, MA; 1:200) were used to label human cytoplasm 

and human nuclear antigen, respectively, for selectively identifying human-derived cells. 

Secondary antibodies included: FITC goat-anti-mouse IgG, FITC goat-anti-rabbit IgG, 

TRITC goat-anti-mouse IgG, TRITC goat-anti-rabbit IgG, Alexa Fluor 647 goat-anti-mouse 

IgG, Alexa Fluor 647 goat-anti-rabbit IgG. All secondary antibodies (Jackson 

ImmunoResearch Laboratories, West Grove, PA) were diluted at 1:200 to recognize the 

matched primary antibody. For fluorescence analysis, sections were cover-slipped with 

fluorescent-compatible mounting medium (ProLong Gold, Life Technologies, Grand Island, 

NY).

Quantification of in vitro cultured cell differentiation, proliferation and GLT1 expression

The proportions of GFAP+ astrocytes and Ki67+ proliferating cells were expressed as a 

percentage of the total number of cultured cells (labeled by DAPI). In order to quantify 

double-labeling of DAPI with GFAP or Ki67, images were taken at 10× magnification and 

analyzed using ImageJ software. In each image, cells with a DAPI+ nucleus were assessed 

for expression of GFAP or Ki67.

Quantification of transplant differentiation

Rats and mice were sacrificed for quantification of astrocyte differentiation (GFAP+) and 

proliferation (Ki67+). The proportions GFAP+ astrocytes and Ki67+ proliferating cells were 

expressed as a percentage of the total number of transplanted human cells (labeled by anti-

hCytoplasm or HuNu antibody). In order to quantify double-labeling of hCytoplasm or 

HuNA with GFAP and Ki67, double-labeled transverse sections were imaged at 10× 

magnification using MetaMorph software and were then analyzed using ImageJ software. In 

each image, cells expressing hCytoplasm or HuNu were assessed for co-expression of GFAP 

or Ki67.
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Quantification of GLT1 expression by transplants

Rats and mice were sacrificed for quantification of GLT1 expression by hCyto-labeled cells 

in the ventral horn. GLT1+ and hCyto+ cells were identified in the ventral horn using ImageJ 

software, and the percentage of hCyto+ cells (representing any transplant-derived cell) that 

co-expressed GLT1 were quantified.

Lesion imaging and quantification

Images were acquired with a Zeiss Imager M2 upright microscope and analyzed with 

ImageJ software. Lesion size was quantified in Cresyl violet stained sections (Li et al., 

2014b). Specifically, lesion area was determined in every 10th section by tracing both the 

total area of the hemi-spinal cord ipsilateral to the contusion site and the actual lesion area. 

Lesion was defined as areas including both lost tissue (cystic cavity formation) and 

surrounding damaged tissue in which the normal anatomical structure of the spinal cord was 

lost. The lesion epicenter was defined as the section with the largest percent lesioned tissue 

(relative to total tissue area in the same section).

Neuromuscular junction (NMJ) analysis

Fresh hemi-diaphragm muscle was dissected from each animal for whole-mount 

immunohistochemistry, as described previously (Wright et al., 2007). Hemi-diaphragm 

muscle was dissected, stretched, pinned down to Sylgard medium (Fisher Scientific, 

Pittsburgh, PA), and extensively cleaned to remove any connective tissue to allow for 

antibody penetration. Motor axons and their terminals were labeled with SMI-312R 

(Covance, Princeton, NJ; 1:1000) and SV2-s (DSHB, Iowa City, IA; 1:10), respectively, and 

both primary antibodies were detected with FITC anti-mouse IgG secondary (Jackson 

ImmunoResearch Laboratories, West Grove, PA; 1:100). Post-synaptic acetylcholine 

receptors were labeled with rhodamine-conjugated alpha-bungarotoxin (Life Technologies, 

Grand Island, NY; 1:400). Labeled muscles were analyzed for total numbers of NMJs and 

intact, denervated and multiply-innervated NMJs. Whole-mounted diaphragms were imaged 

on a FluoView FV1000 confocal microscope (Olympus, Center Valley, PA). We only 

conducted NMJ analysis in ipsilateral hemi-diaphragm because in our previously published 

work we did not observe denervation or sprouting in contralateral hemi-diaphragm after 

cervical hemi-contusion SCI (Nicaise et al., 2012).

Functional glutamate uptake assay

After transduction with lentiviral-GFP vector or lentiviral-GLT1 vector, hIPSAs were 

cultured for 10 days. Human fibroblasts transduced with lentiviral-GFP vector were used as 

control. Glutamate uptake activity was measured as previously described (Dowd and 

Robinson, 1996), with slight modification. Briefly, cells were washed and pre-incubated 

with either a sodium- or choline-containing uptake buffer (in mM: Tris, 5; HEPES, 10; NaCl 

or choline chloride, 140; KCl, 2.5; CaCl2, 1.2; MgCl2, 1.2; K2HPO4, 1.2; glucose, 10) for 

20 min at 37°C; and in DHK treatment groups, 100µM of DHK was added to inhibit GLT1. 

The uptake buffer was then replaced with fresh uptake buffer containing 20nM 3H-

glutamate (49 Ci/mmol; PerkinElmer, CA) and 20µM unlabeled glutamate. The cells were 

incubated for 5 minutes at 37°C. The reaction was terminated by washing cells three times 
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with choline-containing uptake buffer containing 2mM unlabeled glutamate, followed by 

immediate lysis in ice-cold 0.1N NaOH. Cell extracts were then measured with a liquid 

scintillation counter (Beckman Instruments, Fullerton, CA). The protein content in each well 

was measured using the Bradford protein assay (Bio-Rad, Hercules, CA).

iaphragm Compound Muscle Action Potentials (CMAPs)

Rats were anesthetized in the same manner described above. Phrenic nerve conduction 

studies were performed with single stimulation (0.5 ms duration; 6 mV amplitude) at the 

neck via near nerve needle electrodes placed along the phrenic nerve (Li et al., 2014b; 

Nicaise et al., 2012). The ground needle electrode was placed in the tail, and the reference 

electrode was placed subcutaneously in the right abdominal region. Recording was obtained 

via a surface strip along the costal margin of the diaphragm, and CMAP amplitude was 

measured baseline to peak. Recordings were made using an ADI Powerlab 8/30 stimulator 

and BioAMP amplifier (ADInstruments, Colorado Springs, CO), followed by computer-

assisted data analysis (Scope 3.5.6, ADInstruments). For each animal, 10–20 tracings were 

averaged to ensure reproducibility.

Spontaneous EMG recordings

Prior to being euthanized, animals received a laparotomy. These EMG recordings were 

terminal experiments and were only conducted immediately prior to euthanasia. Bipolar 

electrodes spaced by 3 mm were inserted into specific subregions of the right hemi-

diaphragm (i.e. dorsal, medial or ventral regions) (Li et al., 2014b). Activity was recorded 

and averaged during spontaneous breathing at each of these 3 locations separately in each 

animal. The EMG signal was amplified, filtered through a band-pass filter (50–3000 Hz), 

and integrated using LabChart 7 software (ADInstruments). Parameters such as inspiratory 

bursts per minute, discharge duration and integrated peak amplitude were averaged over 2 

minute sample periods. No attempt was made to control or monitor the overall level of 

respiratory motor drive during the EMG recordings.

Statistics

Results were expressed as means ± standard error of the mean (SEM). A Kolmogorov–

Smirnov test was conducted for all variables to assess normality. Unpaired t test or Mann-

Whitney was used to assess statistical significance between two groups. With respect to 

multiple comparisons involving three groups or more, statistical significance was assessed 

by analysis of variance (one-way ANOVA) followed by post-hoc test (Bonferroni's method). 

Statistics were computed with Graphpad Prism 5 (GraphPad Software, Inc., La Jolla, CA). 

p<0.05 was considered as statistically significant.

Results

In vitro characterization of human iPS cell-derived astrocytes (hIPSAs)

We differentiated human iPS cells into astrocytes by culturing them in differentiating 

medium containing FBS. We transduced cells with lentivirus (LV)-GFP or LV-GLT1-GFP 

to generate control cells (GFP-hIPSAs) and GLT1-overexpressing hIPSAs (GLT1-hIPSAs), 

respectively. The GFP-hIPSAs expressed little-to-no GLT1 protein (Fig. 1A, C), consistent 
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with the limited expression of GLT1 by cultured astrocytes in the absence of neuronal co-

culture (Li et al., 2014a; Perego et al., 2000), while GLT1-hIPSAs expressed high levels of 

GLT1 protein in vitro (Fig. 1B, C). In addition, the vast majority of DAPI+ GLT1-hIPSAs 

expressed GLT1 (Fig. 1B), which is expected given the high efficiency of transduction with 

our lentivirus (not shown). GLT1 overexpression did not alter hiPSA differentiation (Fig. 

1D, E, H) or proliferation (Fig. 1F–H). In addition to significantly increased GLT1 protein 

expression levels, GLT1-hIPSAs showed a large increase in functional GLT1-mediated 

glutamate uptake compared to GFP-hIPSAs using an in vitro 3H-glutamate uptake assay 

(Fig. 1J). In this 3H-glutamate uptake assay and in the subsequent transplantation 

experiments, we used LV-GFP transduced human fibroblasts (GFP-hFibro) (Fig. 1I) as a 

non-glial cell control.

Human iPSA transplants robustly survived and differentiated into astrocytes following rat 
cervical contusion SCI

We characterized the fate of transplanted hIPSAs in both rats and mice following unilateral 

C4 contusion SCI, given the usefulness of both experimental models for studying nervous 

system diseases. Immediately following injury, we injected hIPSAs directly into the ventral 

horn at locations just rostral and caudal to the contusion site (Fig. 2A). We specifically 

delivered cells into the ventral horn to anatomically target the location of the PhMN pool 

(Fig. 2B).

We sacrificed rats at 2 days, 2 weeks and 4 weeks post-injury/transplantation. Double-

labeling with panGFAP antibody and a human-specific GFAP antibody demonstrated that 

transplanted human-derived cells differentiated into astrocytes (Fig. 2C). Both transplanted 

GFP-hIPSAs (Fig. 2D, F, H) and GLT1-hIPSAs (Fig. 2E, G, I) robustly survived out to W4, 

and nearly all hCytoplasm+ transplant-derived cells co-labeled with the astrocyte lineage 

marker, GFAP, at D2 (Fig. 2D–E), W2 (Fig. F–G) and W4 (Fig. 2H–I). There were no 

differences in the degree of astrocyte differentiation between GFP-hIPSAs and GLT1-

hIPSAs at any of these time points (quantification shown in Fig. 2J). LV-GFP transduced 

human fibroblasts (GFP-hFibro) also survived in the injured spinal cord to at least W4 post-

injury (Fig. 2K).

Despite efficient astrocyte differentiation, only a small percentage of GFP-hIPSA transplant-

derived cells expressed GLT1 protein in the injury site at D2 (Fig. 3A), W2 (Fig. 3C) and 

W4 (Fig. 3E). On the contrary, the majority of GLT1-hIPSAs robustly expressed GLT1 at 

all times (Fig. 3B, D, and F) (quantification: Fig. 3G).

Human iPSA transplants showed limited proliferation in vivo and did not form tumors

A major concern regarding NSC/NPC therapy (particularly with pluripotent cells such as 

iPS cells) is the potential for uncontrolled proliferation and even tumor formation. To 

address this concern, we immunostained for the proliferation marker, Ki67, and we 

examined transplant recipient rat spinal cords for overt tumor formation. With both GFP-

hIPSAs (Fig. 4A, C, E) and GLT1-hIPSAs (Fig. 4B, D, F), less than 10% of HuNu+ 

transplant-derived cells expressed Ki67 at D2 (Fig. 4A–B), W2 (Fig. 4C–D) and W4 (Fig. 

Li et al. Page 11

Exp Neurol. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4E–F) (quantification shown in Fig. 4G). In addition, we never observed tumor formation in 

any transplant-recipient animals.

Human iPSA transplants showed similar survival and differentiation in the injured mouse 
cervical spinal cord

Given the usefulness of the mouse model due to the availability of transgenic tools, we 

conducted similar characterization of hIPSA fate following transplantation into the mouse 

spinal cord immediately following unilateral cervical contusion SCI. Similar to 

transplantation into the rat SCI model, hIPSAs robustly survived and integrated for at least 4 

weeks post-injection. The majority of transplant-derived cells were differentiated GFAP+ 

astrocytes (Fig. 4H). Control GFP-hIPSAs expressed little GLT1, while overexpression 

resulted in the majority of transplant-derived astrocytes expressing GLT1 (Fig. 4I). Less 

than 10% of transplant-derived cells continued to proliferate at D2, W2 and W4 (Fig. 4J), 

and again we never observed tumor formation in any mice.

GLT1 overexpressing hIPSA transplants reduced lesion size following cervical contusion 
SCI

To test the therapeutic efficacy of hIPSA transplants in the rat unilateral cervical contusion 

model, we first assessed lesion size. At 4 weeks post-injury, we quantified Cresyl-violet 

stained transverse sections of the cervical spinal cord surrounding the injury site for the 

degree of ipsilesional tissue sparing by calculating the percentage of total ipsilateral hemi-

cord area comprised of damaged tissue (Fig. 5A). Lesion area (Fig. 5B) and total lesion 

volume (Fig. 5C) analysis (combined for both white and gray matter) revealed that GLT1-

hIPSA transplants significantly reduced lesion size at multiple locations surrounding the 

epicenter compared to both GFP-hFibro and GFP-hIPSA control transplant groups. We 

observed this protective effect specifically within 1mm rostral and caudal of the epicenter 

where the greatest tissue damage occurred.

GLT1 overexpressing hIPSA transplants preserved diaphragm innervation by phrenic 
motor neurons after SCI

We found that GLT1 overexpressing hIPSA transplants significantly preserved 

morphological innervation at the diaphragm neuromuscular junction (NMJ), the synapse 

which is critical for functional PMN-diaphragm connectivity. To examine pathological 

alterations at the diaphragm NMJ, we analyzed hemi-diaphragm muscle ipsilateral to the 

contusion in rats (Fig. 6A–B). We quantified the percentage of intact NMJs or partially 

denervated NMJs in the animals from the 3 injection groups at 4 weeks post-injury/

transplantation (Wright et al., 2007; Wright et al., 2009; Wright and Son, 2007). For 

analysis, we divided the hemi-diaphragm into three anatomical regions (ventral, medial and 

dorsal) (Fig. 6C), as the rostral-caudal axis of the PMN pool within the cervical spinal cord 

topographically maps onto the ventral-dorsal axis of the diaphragm (Laskowski and Sanes, 

1987). At the dorsal region of the hemi-diaphragm, the percentage of intact NMJs in the 

GLT1-hIPSA transplant group was significantly greater than both control groups, while at 

the ventral and medial regions of the diaphragm, there were no differences in the percentage 

of intact NMJs amongst the groups (Fig. 6D). GLT1-hIPSA transplants also significantly 

Li et al. Page 12

Exp Neurol. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reduced the percentage of partially denervated NMJs in the medial and dorsal hemi-

diaphragm regions compared to both control groups (Fig. 6E).

GLT1 overexpressing hIPSA transplants preserved diaphragm function following cervical 
contusion SCI

To determine the efficacy of preserving PMN-diaphragm innervation with respect to 

respiratory impairment, we characterized the in vivo functional effects of transplants on 

diaphragmatic function in cervical contusion rats. We recorded spontaneous EMG activity, 

which is indicative of PMN activation of diaphragm muscle due to central drive, at 4 weeks 

post-injury/transplantation (Fig. 7A). All groups showed reduced amplitude in rhythmic 

inspiratory EMG bursts associated with muscle contraction compared to uninjured animals 

(Nicaise et al., 2012). Integrated EMG analysis of this recording shows that the GLT1-

hIPSA transplants significantly increased EMG amplitude in the dorsal region of the hemi-

diaphragm compared to both control groups (Fig. 7B), again matching the anatomically-

specific spinal cord and NMJ histological results. However, we observed no protective 

effects of GLT1-hIPSA transplants at either the medial or ventral regions, and the control 

GFP-hIPSA transplants showed no significant effects compared to control hFibroblast 

injection at all hemi-diaphragm locations (Fig. 7B). There were no significant differences in 

EMG burst frequency (Fig. 7C) or burst duration (Fig. 7D) amongst the three groups.

Following supramaximal phrenic nerve stimulus, we obtained compound muscle action 

potentials (CMAP) recordings from the ipsilateral hemi-diaphragm using a surface electrode 

(Fig. 7E). In all treatment groups, peak CMAP amplitude was significantly reduced 

compared to uninjured laminectomy only rats, whose CMAP amplitudes are approximately 

7mV (Nicaise et al., 2013). However, CMAP amplitudes in the GLT1-hIPSAtransplant 

group were significantly increased compared to the two control transplantation groups at 

weeks 2–4 post-injury (Fig. 7F). With the use of the surface electrode, we are recording 

from the entire hemi-diaphragm (or at least a significant portion of the muscle), yet we still 

observed this significant protective effect on overall muscle function, despite the fact that 

transplants only reduced central degeneration very near to the injury site and 

correspondingly preserved morphological innervation only in the dorsal hemi-diaphragm.

Discussion

The use of iPS cells as a source of mature cell types for therapeutic transplantation in CNS 

diseases represents an exciting direction in regenerative medicine. However, to date only a 

small number of studies have assessed the long-term fate and therapeutic efficacy of iPS 

cell-derived transplants in animal models of SCI.

A number of these studies reported significant therapeutic benefit when NSCs/NPCs derived 

from either mouse (Tsuji et al., 2010) or human (Fujimoto et al., 2012; Nori et al., 2011; 

Romanyuk et al., 2014) iPS cells were transplanted into contusion or cavity-type models of 

rodent SCI, as well as in non-human primate models (Kobayashi et al., 2012). Unlike our 

current work, these studies did not focus on, or achieve, targeted replacement of astrocytes 

in the injured spinal cord. In many cases, the cells were delivered in a multipotent NSC-like 

state and resulted in mixed differentiation into glial phenotypes, including astrocytes, and 
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various neuronal subtypes. While these studies were able to achieve some functional benefit, 

future work may require more phenotypically targeted strategies, each of which depends on 

the nature of the SCI pathology (e.g. type of injury, anatomical locations affected, etc.) and 

the specific cell lineages being targeted for replacement. Nevertheless, these studies were 

able to nicely show promising properties of engrafted cells in the injured spinal cord 

environment, including synaptic integration into endogenous neuronal circuitry (Fujimoto et 

al., 2012; Nori et al., 2011). iPS cell-derived NSCs have also shown therapeutic promise in 

models of other spinal cord diseases such as spinal muscular atrophy (Simone et al., 2014).

A number of these studies with iPS cell transplantation reported a lack of beneficial 

outcomes in SCI models. Pomeshchik and colleagues (Pomeshchik et al., 2014) did not 

observe functional improvement after transplantation of hIPS cell-derived NPCs in a 

contusion SCI model. However, they also did not find long term survival of grafted cells in 

these mice receiving a tacrolimus immune suppression regimen, unlike the robust and 

persistent integration that we observed in the present study using an immune suppression 

protocol consisting of both tacrolimus and rapamycin in mice or cyclosporine in rats. In 

addition to our work, other groups have reported impressive survival and differentiation of 

hIPS cells into mature CNS cell types after injection into adult spinal cord of similarly 

immunosuppressed rodents (Haidet-Phillips et al., 2014; Sareen et al., 2014).

An interesting study from the Horner group (Nutt et al., 2013) reported a lack of therapeutic 

improvement with transplantation of hIPS cell-derived NPCs in a SCI model, despite 

impressive graft integration. However, cells were delivered at a chronic time point, which 

may represent an environment less amenable to transplant-induced plasticity, while we 

targeted early neuroprotection in this report.

A recent study from the Steward lab reported that transplantation of a mixed population of 

glial and neuronal progenitors into a transection model of SCI resulted in ectopic 

engraftment of large numbers of graft-derived cells in locations such as the central canal, 

ventricles and pial surface of the spinal cord (Steward et al., 2014), providing a note of 

caution when using transplantation of any class of NSC/NPC in SCI. This issue is 

particularly relevant to strategies employing cells derived from pluripotent sources such as 

ES and iPS cells given the possibility of incomplete and/or inefficient differentiation (Tsuji 

et al., 2010). In the current study and in our previous work (Lepore et al., 2005; Lepore and 

Fischer, 2005; Lepore et al., 2004; Lepore et al., 2006; Lepore et al., 2011b; Lepore et al., 

2008b; Li et al., 2014a), we never observed overt tumor formation or extensive migration 

away from injection sites beyond only a few spinal segments. In the current work, we did 

note the presence of a small residual population of proliferating transplant-derived cells even 

out to four weeks post-injection, though we never found any tumor formation. It will be 

important to assess very long-term time points post-transplantation in future experiments to 

establish the safety of these and similar types of cells before proceeding to the clinic. Unlike 

the Steward paper, we did not systematically assess distribution of transplant-derived cells 

throughout the neuraxis.

Mechanical allodynia (a form of neuropathic pain) was observed when mouse iPSAs were 

transplanted into a contusion SCI model (Hayashi et al., 2011). In addition to this work, 
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other published studies have similarly reported sensory hypersensitivity in SCI models 

accompanying transplantation of progenitor-derived astrocytes (Davies et al., 2008; 

Hofstetter et al., 2005), possibly due to increased neuronal plasticity that is induced by 

transplantation of immature astrocyte populations (Smith et al., 1986). However, in a large 

body of work, we and others (Haas et al., 2012; Mitsui et al., 2005; Nutt et al., 2013) have 

not found such increased sensitivity, including following hIPSA transplantation (Nutt et al., 

2013). The discrepancy amongst these studies may be due to heterogeneity in the subtypes 

of astrocytes being injected (Davies et al., 2008; Davies et al., 2011).

A number of practical issues that are beyond the scope of this discussion will need to be 

addressed before moving transplantation of iPS cells to the clinic in SCI and other diseases 

of the nervous system. Specifically with respect to targeting relative early events such as 

PhMN loss after cervical SCI, autologous derivation of cells will likely not be relevant given 

that PhMNs are lost within several days post-injury (Nicaise et al., 2013). Instead, cells to be 

used for transplantation will likely be obtained from banks of immune/HLA-matched cells 

(Zimmermann et al., 2012). Given the need to extensively test iPS cell lines prior to 

transplantation into a patient, as well as the costs and time that will be required for 

generating cells for each individual patient, this approach may actually be practically 

preferable to autologous derivation (Taylor et al., 2011). As human stem cell lines have 

shown donor variability in SCI models (Neuhuber et al., 2005), future studies will need to 

investigate in vivo properties and therapeutic efficacy of human iPS cells derived from 

multiple donors in an attempt to move this approach towards clinical translation.

Similar to our previous work using transplantation of astrocytes derived from rodent glial 

progenitors (Li et al., 2014a), we find that GLT1-overexpresing hIPSAs promote significant 

preservation of diaphragm function and diaphragm innervation by PhMNs. In both studies, 

control unmodified transplant-derived astrocytes expressed relatively lower levels of GLT1 

in the injured spinal cord, suggesting that the cells respond to the injured environment in a 

similar manner as host astrocytes that show extensive transporter downregulation. 

Interestingly, the unmodified hIPSA transplants, despite excellent survival and efficient 

differentiation, did not promote therapeutic benefit with respect to protection of 

diaphragmatic respiratory circuitry. These findings suggest that astrocyte replacement alone 

may insufficient when targeting certain pathological mechanisms (e.g. excitotoxocity) but 

that functional maturation of these astrocytes is necessary, which is not surprising given the 

diverse, complex and integral roles that astrocytes play in intact CNS function (Pekny and 

Nilsson, 2005).

We have made interesting observations over the course of a number of studies with respect 

to therapeutically targeting GLT1 following SCI. We have consistently observed significant 

GLT1 downregulation in endogenous reactive astrocyte populations in both contusion and 

crush, as well as both cervical and thoracic, models of SCI (Lepore et al., 2011a; Lepore et 

al., 2011c; Li et al., 2014b; Putatunda et al., 2014; Watson et al., 2014). When we selectively 

increased GLT1 expression in these endogenous astrocytes in the unilateral cervical 

contusion model using an AAV8 vector, we paradoxically found that secondary 

degeneration of PhMNs and diaphragm denervation were worsened (Li et al., 2014b). This 

effect was due to compromise in the protective glial scar-forming properties of endogenous 
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astrocytes, which resulted in unexpected expansion of the lesion. In the current study with 

hIPSAs and in our previous work with rodent-derived glial progenitors (Li et al., 2014a), we 

found that delivery of an exogenous source of astrocytes that expresses high levels of 

functional GLT1 via transplantation (in the exact same cervical contusion model) results in 

significant preservation of PhMNs and diaphragm function. These findings, as well as other 

studies that tested the effects of pharmacologically elevating (Olsen et al., 2010) or 

genetically reducing (Lepore et al., 2011c) GLT1 in SCI, demonstrate that targeting GLT1 is 

a promising and powerful therapeutic strategy in SCI for targeting neuroprotection and 

possibly other outcomes of SCI such as neuronal hyperexcitability.

Despite the impressive therapeutic effect achieved in the present study, the degree of PhMN 

protection and diaphragm function preservation was only partial. In future work, we will 

need to optimize neuroprotective strategies such as hIPSA transplantation to enhance 

therapeutic effects, as well as combine these neuroprotective approaches with interventions 

aimed at promoting plasticity, axonal regrowth and targeted reconnection of the rVRG-

PhMN-diaphragm circuit (Alilain et al., 2011). Preserving neural control of diaphragm 

function involves targeting a complex circuitry that extends beyond just protecting PhMNs 

(Lane et al., 2009). We focused on preservation of PhMNs centrally in the cervical spinal 

cord and NMJ innervation peripherally in the diaphragm. Nevertheless, our hIPSA 

intervention may have also exerted beneficial effects via protection of respiratory 

interneuron populations of the cervical spinal cord and/or descending bulbospinal input to 

PhMNs from the rVRG. hIPSA transplants may have also resulted in beneficial effects by 

promoting regrowth/regeneration and/or sprouting of rVRG axons and interneurons, which 

is possible given the growth-promoting properties of astrocyte transplants after SCI (Davies 

et al., 2006; Davies et al., 2008; Davies et al., 2011; Haas et al., 2012). However, we only 

observed therapeutic effects on diaphragm innervation and function with GLT1 

overexpressing hIPSAs (but not with control unmodified hIPSAs), suggesting that 

neuroprotection mediated by increased GLT1 levels and consequent reduction in 

excitotoxicity was the likely mechanism, even if transplants also promoted some regrowth of 

respiratory axon populations. We also did not observe differences amongst groups in 

plasticity at the diaphragm NMJ such as sprouting or reinnervation, further supporting 

central neuroprotection as the responsible mechanism of therapeutic action.

In conclusion, we report exciting and novel results showing that targeted replacement of 

astrocyte GLT1 following cervical SCI using hIPSA transplantation significantly preserves 

diaphragmatic respiratory function. These findings are important for a number of reasons. 

We demonstrate the therapeutic efficacy and safety of hiPS transplantation in SCI, as well as 

the benefit of specifically addressing astrocyte dysfunction using this clinically-relevant 

source of cells. We also show mechanistically that targeting GLT1 using an astrocyte 

transplant-based approach has profound effects on functional and histopatholoigcal 

outcomes after SCI. Furthermore, we conducted these studies in a clinically-relevant SCI 

paradigm that models a large proportion of human disease cases. Excitingly, we find that 

this intervention results in therapeutic benefit on respiratory function, which has important 

implications for SCI patients. Collectively, these studies lay the foundation for translating 

iPS cell transplantation to the treatment of SCI.
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Abbreviations

SCI spinal cord injury

iPS cells induced Pluripotent Stem cells

hIPSAs human induced Pluripotent Stem cell-derived astrocytes

GLT1 glutamate transporter 1

PhMN phrenic motor neuron

C3 (4, 5, etc.) cervical spinal cord level 3 (4, 5, etc.)

GRP glial-restricted precursor

CMAP compound muscle action potential

NMJ neuromuscular junction

GFP-hIPSA lentivirus-GFP transduced hIPSA

GLT1-hIPSA lentivirus-GLT1transduced hIPSA

GFP-hFibro lentivirus-GFP transduced human fibroblast

LV-GFP lentivirus-GFP

LV-GLT1 lentivirus-GLT1
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Highlights

• We transplanted human iPS cell-derived astrocytes (hIPSA) in cervical 

contusion SCI

• Transplants showed robust long-term survival and efficient astrocyte 

differentiation

• We engineered hIPSA transplants to overexpress astrocyte glutamate transporter 

GLT1

• GLT1-hIPSAs reduced lesion size, motor neuron loss and diaphragm 

denervation

• GLT1-hIPSA transplants also partially preserved diaphragmatic respiratory 

function
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Figure 1. In vitro characterization of human iPS cell-derived astrocytes (hIPSAs)
Cells were transduced with lentivirus (LV)-GFP or LV-GLT1-GFP to generate control GFP-

hIPSAs and GLT1-overexpressing hIPSAs (GLT1-hIPSAs), respectively. Human 

cytoplasm+ GFP-hIPSAs expressed little-to-no GLT1 protein (A), while GLT1-hIPSAs 

expressed high levels of GLT1 protein in vitro (B), which was further confirmed with 

immunoblotting analysis (C, lower: quantification result). Following infection with either 

virus, astrocyte differentiation was determined by the percentage of cells expressing the 

astrocyte lineage marker, GFAP (D–E). Proliferation was determined by the percentage of 
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cells expressing the proliferation marker, Ki67 (F–G). Quantification results of cell 

differentiation and proliferation are shown in (H). Human fibroblasts, which were 

transduced with LV-GFP vector (GFP-hFibro) (I), were used as non-glial control in the 

glutamate uptake assay and in vivo transplantation experiments. 3H-glutamate uptake assay 

was performed to detect GLT1 function. GLT1-hIPSAs showed a large increase in Na+ 

dependent glutamate uptake compared to GFP-hFibro and GFP-hIPSAs. This increased 

uptake was blocked with GLT1 specific inhibitor, DHK, at the concentration of 100umol/L 

(J). Results were expressed as means ± SEM. *p<0.05, **p<0.01. n = 4 per group for GLT1 

western blotting quantification analysis; n = 4 per group for cell differentiation and 

proliferation analysis; n = 4 per group for 3H-glutamate uptake assay.
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Figure 2. Human iPSA transplants robustly survived, differentiated into astrocytes and localized 
to the ventral horn following rat cervical contusion SCI
Immediately following unilateral C4 contusion SCI, we injected GFP-hIPSAs, GLT1-

hIPSAs or GFP-hFibro directly into the ventral horn (VH) at locations just rostral and caudal 

to the contusion site (A). GFP fluorescence indicated that the transplanted hIPSAs were 

delivered to the ventral horn (B). Double-labeling with pan-GFAP antibody and a human 

GFAP specific antibody confirmed that all human GFAP+ cells were also pan-GFAP+ (C). 

Double immunostaining for pan-GFAP and human cytoplasm marker was performed on 
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spinal cord sections from the GFP-hIPSA (D, F, H) and GLT1-hIPSA (E, G, I) groups at 

day 2 (D–E), week 2 (F–G) and week 4 (H–I) post-injury/transplantation to quantify 

astrocyte differentiation by transplanted cells (J). We used LV-GFP transduced human 

fibroblasts (GFP-hFibro) as a non-glial cell control (K, inset: high magnification). Results 

were expressed as means ± SEM. n = 3 per group per time point for transplanted cell 

differentiation analysis. Red outlines in panels B and K denote the ventral horn.
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Figure 3. GLT1-hIPSA transplants expresses GLT1 in the ventral horn following rat cervical 
contusion SCI
Double immunostaining for GLT1 and human cytoplasm was performed on spinal cord 

sections from the GFP-hIPSA (A, C, E) and GLT1-hIPSA (B, D, F) groups at day 2 (A–B), 

week 2 (C–D) and week 4 (E–F) post-injury/transplantation to assess GLT1 expression by 

transplanted cells in vivo (G). Results were expressed as means ± SEM. ***p<0.001. n = 3 

per group per time point for in vivo GLT1 expression analysis.
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Figure 4. Transplanted hiPSAs showed limited proliferation and did not form tumors
Double immunostaining for the proliferation marker Ki67 with human nuclei (HuNu) was 

performed on spinal cord sections from the GFP-hIPSA (A, C, E) and GLT1-hIPSA (B, D, 

F) groups at D2 (A–B), W2 (C–D) and W4 (E–F) post-transplantation, and quantification 

results are shown in (G). Tumor formation was never observed. We conducted similar in 

vivo characterization of hIPSA fate following transplantation into the mouse spinal cord 

immediately following unilateral cervical contusion SCI. The majority of transplant-derived 

cells were differentiated GFAP+ astrocytes (H). Control GFP-hIPSAs did not express GLT1, 

while overexpression resulted in the majority of transplant-derived astrocytes expressing 

GLT1 (I). Less than 10% of transplant-derived cells continued to proliferate at D2, W2 and 

W4 (J). Results were expressed as means ± SEM. ***p<0.001. n = 3 per group per time 

point in cell fate analysis.
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Figure 5. GLT1 overexpressing hIPSA transplants reduced lesion size following cervical 
contusion SCI
At 4 weeks post-injury, we quantified Cresyl-violet stained transverse sections of the 

cervical spinal cord for the degree of ipsilesional tissue sparing by calculating the percentage 

of total ipsilateral hemi-cord area comprised of damaged tissue (A). Lesion area (B) and 

total lesion volume (C) analysis (combined for both white and gray matter) revealed that 

GLT1-hIPSA transplants significantly reduced lesion size at multiple locations surrounding 

the epicenter compared to both human fibroblast and control GFP-hIPSA transplant groups. 

Results were expressed as means ± SEM. #p<0.05, GLT1-hIPSA group versus GFP-hIPSA 

group only; *p<0.05, GLT1-hIPSA group versus both control groups. n = 6 per group for 

lesion area and volume analysis.
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Figure 6. GLT1 overexpressing hIPSA astrocyte transplants preserved diaphragm innervation 
by phrenic motor neurons following cervical contusion SCI
To examine pathological alterations at the diaphragm NMJ, hemi-diaphragm muscle 

ipsilateral to the contusion from the GFP-hFibro (A), GFP-hIPSA and GLT1-hIPSA (B) 

groups was examined at 4 weeks post-injury/transplantation. Individual NMJs were 

characterized as: intact (I.) and partially denervated (P.D.). For analysis, the hemi-

diaphragm was divided into three anatomical regions (ventral, medial and dorsal) (C). At the 

dorsal region of the hemi-diaphragm, the percentage of intact NMJs in the GLT1-hIPSA 

group was significant greater than both control groups (D). GLT1-hIPSA transplants 

significantly reduced the percentage of partially denervated NMJs in the medial and dorsal 

hemi-diaphragm regions compared to both control groups (E). Results were expressed as 

means ± SEM. *p<0.05, GLT1-hIPSA group versus both control groups. n = 4–6 per group 

for NMJ analysis.
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Figure 7. GLT1 overexpressing hIPSA transplants preserved diaphragm function following 
cervical contusion SCI
Spontaneous EMG recordings from ipsilateral hemi-diaphram were obtained at 4 weeks 

post-injury/transplantation (A, upper: raw EMG; lower: integrated EMG). Integrated EMG 

amplitude (B), burst frequency (C), and burst duration (D) were analyzed. Following 

supramaximal phrenic nerve stimulation, we obtained compound muscle action potential 

(CMAP) recordings from the ipsilateral hemi-diaphragm using a surface electrode (E). 

CMAP amplitudes at different time points post-injury were analyzed (F). Results were 
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expressed as means ± SEM. *p<0.05, **p<0.01, GLT1-hIPSA group versus both control 

groups. n = 6 per group for EMG and CMAP analysis.
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