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Summary
Objectives: Controlled terminologies and their dependent 
artefacts provide a consensual understanding of a domain 
while reducing ambiguities and enabling reasoning. However, 
the evolution of a domain’s knowledge directly impacts these 
terminologies and generates inconsistencies in the underlying 
biomedical information systems. In this article, we review existing 
work addressing the dynamic aspect of terminologies as well as 
their effects on mappings and semantic annotations. 
Methods: We investigate approaches related to the identifica-
tion, characterization and propagation of changes in terminolo-
gies, mappings and semantic annotations including techniques to 
update their content. 
Results and conclusion: Based on the explored issues and 
existing methods, we outline open research challenges requiring 
investigation in the near future.
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1   Introduction
Biomedical terminologies are the foundation 
for several applications necessary to over-
come semantic interoperability issues [1]. To 
this end, the use of standard vocabularies is 
key to harmonizing biomedical information 
and facilitating its exploitation. Well known 
examples include the National Library of 
Medicine, which uses MeSH [2] to index sci-
entific publications, or the adoption of ICD 
[3] terms for encoding medical diagnosis. 
However, the increasing quantity and size of 
biomedical controlled terminologies forces 
ICT (Information and Communication Tech-
nologies) systems and domain experts to use 
a combination of controlled terminologies 
in order to enable the better sharing and 
exchange of biomedical information. For 
example, information encoded with MeSH 
and information encoded with ICD can only 
be properly used if the relationships between 
these terminologies are explicitly defined. 
This is the role of semantic correspondences 
(or mappings) which are established between 
concepts of different terminologies in order 
to specify their relationship [4]. 

The biomedical domain is highly dynam-
ic by nature. For instance, 50% of the body of 
(documented) medical knowledge has been 
reviewed in the last decade [5] and this has 
led to frequent publication releases of termi-
nologies [6]. This evolution directly impacts 
the precision of existing mappings [7] and 
semantic annotations, and indirectly impacts 
the performance of ICT systems which rely 
on these mappings to retrieve information 
and support decisions with accuracy. In a 

digital era where more and more knowledge 
is modelled, linked and shared via comput-
ers, there is a real need to provide ways of 
managing domain knowledge evolution 
which should: (1) detect the evolution; (2) 
evaluate the consequences of the evolution 
on dependent terminologies and mappings; 
and (3) (semi-) automatically update them 
to reflect the evolution. 

Current evolution approaches for the 
maintenance of biomedical terminologies 
are essentially based on manual interventions 
[8]. This is a labour-intensive task (e.g., 
SNOMED CT [9] is revised twice a year 
by hundreds of members), which is both 
expensive (e.g., SNOMED CT managers 
spend ~9 million USD per year for mainte-
nance and improvement1) and error-prone 
(e.g., between 2002 and 2008, SNOMED CT 
was “cleaned” in more than 20000 concepts 
because they were duplicated, outdated, or 
ambiguous2). In order to assist the work of 
domain experts, more automatic methods 
and tools to support management tasks in 
highly dynamic domains (like biomedicine) 
are required. Limited research presenting 
solutions to part of this management problem 
has been published and, to the best of our 
knowledge, no published work addresses 
the complete evolution process taking into 
account the impact of terminology evolution 
on dependent artefacts.

1	 http://ihtsdo.org/about-ihtsdo/faq (What would 
it cost to develop and maintain a new Clinical 
Terminology based on a global uptake?)

2	 http://ihtsdo.org/about-ihtsdo/faq (How can I help 
to improve SNOMED CT?)

http://ihtsdo.org/about-ihtsdo/faq
http://ihtsdo.org/about-ihtsdo/faq
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In this article, we thoroughly review exist-
ing techniques concerned with maintaining 
the validity, from a semantic point of view, 
of mappings and annotations affected by 
changes in their associated controlled ter-
minologies. We devote particular attention 
to the identification and characterization of 
changes that occur when one version of the 
terminology evolves to the next. This article 
also addresses the selection of the appropri-
ate implementation strategy to propagate the 
terminology changes. 

This research presents relevant and re-
cently published approaches that deal with 
controlled terminology evolution (section 
2), mapping maintenance (section 3), and 
semantic annotation maintenance (section 
4). We summarize the analysis of trends and 
open challenges in section 5 followed by the 
conclusion in section 6.

2   Controlled Terminologies 
Evolution
The complexity and size of current bio-
medical knowledge is reflected in the huge 
variety of controlled terminologies available 
today. Repositories such as Bioportal [10] 
OBO foundry [11] HeTop [12] or UMLS 
offer controlled vocabularies with services 
to exploit them. If the number of terminol-
ogies is constantly growing within these 
repositories, then the number of versions 
for each of these resources will follow the 
same trajectory. This fact highlights that 
knowledge engineers and domain experts 
in charge of the design and maintenance 
of these terminologies are aware that their 
content must faithfully follow the progress 
of domain knowledge over time. As a conse-
quence, ontological elements, like concepts, 
are added, removed or revised from one 
version to another in order to reflect new 
findings in the domain. 

To reveal the dynamic aspect of biomedi-
cal terminologies, Dos Reis et al. have quan-
tified the number of concepts of SNOMED 
CT (SCT) that are modified from one version 
to the next [13]. About 10% (on average) of 
the total number of concepts present some 
changes in their description. This represents 

about 30000 concepts. Other relevant exam-
ples are the Gene Ontology [14] (GO) and 
NCI thesaurus [15] (NCIt), which have more 
than doubled over the past decade. By virtue 
of the size of existing terminologies and the 
fast evolution of the biomedical domain, 
modifications of their content can be heavily 
variable in terms of nature and complexity. 
The work of Hartung et al. [16] pointed out 
the stability of regions in evolving ontolo-
gies. This showed that some components of 
ontologies are more “stable” than others, 
i.e., stable parts change very little and these 
changes do not impact the underlying se-
mantic-based applications. In this general 
context, it is hard to deny the importance of 
the terminology evolution problem where the 
management of dynamic domain knowledge 
provides a real challenge for semantic-en-
abled biomedical applications. 

We need to consider two major issues 
during the evolution process: (1) the iden-
tification and characterization of changes 
that occur as one version of the terminology 
evolves to the next; and (2) the evaluation of 
the impact of these changes. Ontologies then 
refer to formal terminologies.

As a huge majority of ICT systems simply 
use biomedical terminologies rather than 
designing and constructing new ones, they 
need to react when new releases of the select-
ed terminologies are published. To this end, 
theoretical approaches that define changes by 
analysing the underlying knowledge model 
used to represent the resource (OWL, OBO, 
database schemas, etc.) collide with a more 
pragmatic approach of the problem which 
focuses on changes that are observed in 
practice and that lead to an abstraction of the 
knowledge model (e.g., exploiting linguistic 
or syntactic aspects). 

One traditional (but efficient) method for 
change identification in ontologies consists 
of analysing the logs [17] describing the 
implemented changes. However, this source 
of information remains rarely available for 
several reasons which include: (1) the ab-
sence of standards to express changes; (2) 
the complexity of classifying changes; and 
(3) sometimes the huge amount of changes 
to report. Taking this fact into account, a 
family of approaches can be used to detect 
the evolution of ontologies by automati-
cally comparing their successive versions; 

a process known as Diff problem identifi-
cation. State-of-the-art software tools like 
PROMPTDIFF [18] or COnto-Diff [19] can 
be used to recognize the differences that exist 
between two successive versions of the same 
ontologies resulting from a set of ontology 
changes. They mostly differ in the complex-
ity of the implemented Diff algorithm and, 
more interestingly, in the way they define and 
describe detectable changes (i.e., different 
classification approaches). 

Changes are classified into a set of types 
of change that can then transform a termi-
nology from one version to another. They 
range from very simple ones (atomic types), 
such as the addition or removal of concepts 
[20], to more complex change types such 
as the concepts of “merging” or “splitting” 
[19] which can be seen as a composition of 
atomic change types (e.g., we can interpret 
splitting as the removal of a concept and the 
addition of several others). The empirical 
observations revealed by Dos Reis et al. 
[13] have shown that, except for duplicated 
concepts, concept merging rarely happens 
in standard biomedical terminologies 
(knowledge rarely becomes more general). 
On the contrary, domain knowledge is be-
coming more and more precise, therefore 
accelerating concept splitting. 

Changes can also affect the structure 
of a terminology (e.g., the taxonomical 
hierarchy) without affecting a concept’s de-
scription. For this purpose, change patterns 
have been explored to characterize complex 
change types and evolution scenarios to 
minimize the impact of the evolution, and 
to ensure consistency in the evolution of 
ontologies [21]. Change patterns can vary 
according to several elements: (1) the knowl-
edge representation model used to express 
the ontology [22] (e.g., the addition of OWL 
classes or Object properties), (2) the struc-
tural aspects induced by its semantics [19] 
e.g., moving part of the ontology), and (3) the 
formalization [23] (e.g., completion of the 
ontology by inferring implicitly expressed 
relationships between concepts). Some 
change patterns also rely on model-indepen-
dent features like linguistics [24] (e.g., the 
way concept terms or labels are expressed), 
or on specific constraints of the domain [25]
(e.g., a naming convention to express genes 
and proteins in GO). 
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Another problematic task refers to the 
evaluation of the impact of changes. If ne-
glected, it can jeopardize the consistencies 
of the underlying information systems and, 
in turn, affect medical decisions. As shown 
in the work of Abgaz et al. [26] the various 
change types express a different impact on 
terminology evolution. The approach con-
ducted by Shaban-Nejad & Haarslev [27] 
addressed this issue using learning agents 
to reduce the intervention of human experts 
in the evolution process. Pesquita & Couto 
[28] exploited machine learning techniques 
on a significant number of ontology versions 
in an effort to predict which part of the on-
tology would evolve in the future in order to 
better understand it and foresee the potential 
effects of changes. 

Restricting changes to sub-ontologies in 
order to further control the impact of evolu-
tion has also been investigated by Sari et al. 
[29]. Although logic-based approaches have 
provided interesting properties to simulate 
the impact of ontology changes, the lack of 
formalization in biomedical terminologies 
precludes applying such techniques. The 
reference methodology provided by Sto-
janovic [30] for ontology evolution points 
out the necessity to have a broader vision 
of the problem. This research not only 
advocated an analysis of the impacts to the 
ontology itself, but also considered prop-
agating them to dependent artefacts. With 
respect to the biomedical domain, two major 
artefacts predominate: mappings established 
between different controlled terminologies 
and semantic annotations usually associated 
with documents. Because of the critical role 
played by them in biomedical information 
systems, their maintenance over time de-
serves particular attention.

 3   Mapping Maintenance
Mapping provides links between elements 
from different controlled terminologies, 
making it possible to use them consistently 
in a combined way. Based on mappings and 
inference mechanisms, documents seman-
tically annotated with a given terminology 
can be queried using the vocabulary of a 
different one [31]. However, when one of 

these terminologies evolves, mappings can 
be affected and even invalidated. Figure 1 il-
lustrates the evolution of the concept 560.39 
(ICD) where after the evolution of one 
concept attribute, which becomes the label 
of a new concept (560.32), two mappings 
follow this attribute as a consequence. In 
2013, Salvadores et al. [32] counted about 
9.8 million cross-ontology and mappings 
accessible via the BioPortal application, 
and determined that this number was con-
stantly increasing. However, despite the 
importance of the problem, the maintenance 
of mappings has not been thoroughly inves-
tigated during the past few years. 

From our research, we highlight three 
distinct families of approaches for the 
(semi-automatic) maintenance of mappings 
currently found in the literature [33]: 

The first family (recalculation) relies 
on an unsophisticated way to maintain 
mappings that consist in deleting existing 
ones and realigning terminologies that have 
evolved over time (cf. Figure 2 part A). This 
is what has been proposed by Gal et al. [34] 
where database schemas are realigned once 
they have been modified. Nevertheless, the 
size of biomedical controlled terminologies 
and the necessity of manual validation of all 
new mappings (if a certain degree of quality 
has to be ensured) make this type of tech-
nique difficult to apply. For instance, there 
are around 100.000 mappings between SCT 
and ICD. Therefore, an optimization of the 
above approach involves considering only 
part of the mapping set (i.e., only those that 
are potentially invalid due to terminology 
changes) and not the whole set [35]. This 
reduces the maintenance time, but still 
requires significant validation efforts. For 
example, approximately 10.000 mappings 
between the SCT and ICD were affected by 
the evolution of the involved concepts (from 
2009 to 2011). 

The second family (revision) refers to 
logic-based approaches (cf. Figure 2 part 
B). This is a two-step process for detect-
ing invalid mappings and repairing (or 
debugging) them. The former step can be 
performed using various techniques bor-
rowed from different paradigms: database 
techniques aiming at periodically comparing 
the results of queries [36, 37] and deducing 
invalid mappings when the queries produce 

erroneous results. For deduction, software 
engineering techniques and fault-tolerance 
[38] or logic-based reasoning approaches 
[39] have been investigated. Although 
detecting broken mappings is useful to 
prepare the phase of modifying mappings 
during maintenance, it is still insufficient 
to repair mappings and then keep them up-
to-date. This is the goal of the second step 
where ontologies and reasoners with formal 
approaches are frequently used in order to 
detect and correct inconsistencies [40-42]. 

The third family (adaptation) refers 
to types of approaches that aim to exploit 
information gained from the analysis of 
terminology evolution in order to adapt the 
mappings (cf. Figure 2 part C). To this end, 
various methods have been investigated such 
as mapping composition, synchronization of 
ontologies, change impact minimization, and 
change propagation. 

The mapping composition principle 
suggests composing various mappings to 
generate new ones. This technique requires 
a composition function to combine exist-
ing mappings with information coming 
from the terminology evolution [43]. The 
techniques of synchronizations [44] were 
proposed to cope with the heterogeneity 
of models like databases and ontologies. 
These methods require strong collaboration 
between managers of different ontologies to 
propagate changes from one ontology to the 
other. Complementary to the previous ap-
proaches, the change impact minimization 
is usually implemented exploiting the logic 
aspect in ontology [45] (e.g., ontological 
statements), but it can hardly be applied to 
the biomedical domain because of the lack 
of formalization in existing biomedical 
terminologies. 

Change propagation approaches em-
phasize the way of adapting mappings 
and the techniques to which information 
from an evolved ontology can be used to 
facilitate the maintenance effort [46]. For 
instance, Martins & Silva [47] studied the 
consequences (for mappings) of deleting 
concepts in ontologies, while Dos Reis 
et al. [48] considered a wider range of 
defined mapping adaptation actions based 
on empirical observations to preserve the 
completeness of the mapping set. The latter 
approach either aims at determining appro-
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Fig. 1   Example of a split of a concept from ICD and the evolution of the associated mappings between ICD and SCT

Fig. 2   Families of mapping maintenance approaches
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priate concepts or at modifying the semantic 
relationship of mappings instead of deleting 
invalid mappings. However, the lack of 
information documenting the evolution of 
ontologies (see previous section) limits the 
use of this approach. 

An alternative is to rely on the outcome 
of Diff tools [48, 49] to detect change pat-
terns and use them to adapt the mappings. 
For example, an approach implemented by 
Gross et al. [49] utilizes the COnto-Diff 
tool to identify ontology changes and then 
applies mapping adaptation handlers to 
adapt the mappings. The work presented 
by Dos Reis et al. [13] analyses the impact 
of the evolution of SCT on mappings. This 
shows that correlations between changes 
affecting concepts and modifications in 
their associated mappings can exist. These 
correlations are nontrivial because the 
same change type may or may not affect 
associated mappings. 

Regarding these correlations, deeper 
analyses were conducted involving two 
levels of granularity: (1) the whole con-
cept [7, 13] and (2) its attributes [48]. 
In the former, the authors characterized 
changes in an ontology concepts’ descrip-
tions that led to changes in mapping. In 
the latter, the authors relied on two ele-
ments: (a) the identification of specific 
conceptual information (i.e., subset of 
the concept’s attributes that change) with 
changes in the mappings; and (b) the 

characterization of the changes. Lessons 
learned from the investigation of Dos 
Reis et al. [50] highlights that even if 
biomedical controlled terminologies are 
mapped in their entirety, mappings are 
usually defined based on partial concep-
tual information (attributes’ values).

The findings of the analysis of these 
diThe findings of the analysis of these di-
mensions resulted in a method to identify 
relevant attributes used to support mapping 
maintenance [24]. The authors observed the 
changes in these relevant attributes and their 
impact on the mapping evolution. Thus, with 
the perspective of mapping maintenance in 
mind, only changes affecting such relevant 
concept attributes play a role in adapting 
affected mappings. However, statements 
regarding relevant attributes are never kept 
during the alignment process (when creating 
mappings), and therefore prevents its reuse 
for maintenance purposes. In other words, 
the ontological elements that justify a map-
ping are not documented when concepts are 
matched. This is why novel techniques are 
required to analyse established mappings to 
detect the relevant attributes [24]. Finally, 
as pointed out by Hussain et al. [51], it is 
of utmost relevance to clearly document the 
alignment process outcome and associate 
them with mappings as metadata [52] to 
enhance the quality and usability of the 
available mappings. This can further support 
the maintenance of mappings.

4    Semantic Annotation 
Maintenance 
In this section, we explore the impact of the 
evolution of controlled terminologies and 
mappings on artefacts that rely on modelled 
knowledge. Semantic annotation is a typical 
case. Usually, semantic annotations denote 
termino-ontological elements including 
concept labels, attributes, comments, de-
scriptions and relationship symbols that are 
associated with or attached to a document 
(texts, multimedia, webpages, etc.). They 
provide additional information (meta-da-
ta) about its content meaning, in order to 
make its semantics explicit for humans 
and software applications. The goal is to 
convert syntactic structures into knowledge 
structures. Figure 3 shows an example of 
text annotation, where elements from the text 
(light blue) are linked to concepts (dark blue) 
from the Gene Regulation Ontology. In this 
example, we can observe the identification 
and annotation of events (green) relating to 
the elements of the text.

These annotations facilitate the au-
tomatic retrieval and exploitation of 
relevant information by representing the 
relationships between real-world entities 
(Electronic health record - EHRs, genes, 
publications, etc.) and concepts. However, 
the dynamic nature of biomedical knowl-
edge leads to frequent revisions of the 

Fig. 3   Example from GREC showing a single event annotated based on Gene Regulation Ontology [53].
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content of terminologies and, sometimes, 
to the modification in the content of anno-
tated documents. There is a risk that these 
changes invalidate existing annotations. 
To reduce this risk, those responsible for 
the maintenance of the documents need 
to address the annotation maintenance 
problem. Considering the huge quantity 
of documents produced in the biomedical 
domain, their maintenance is a labour-inten-
sive task requiring the support of ICT tools. 
Automatic or semi-automatic annotation 
maintenance methods have not been deeply 
studied. For instance, the evolution of an-
notation in biomedical documents based on 
biomedical terminologies (e.g., SCT, NCIt, 
etc.) has rarely been analysed [54, 55]. 

The most relevant research is focused on 
the biological domain, in particular on GO 
annotated documents. Gross et al. [56], an-
alysed the way that GO annotations evolved 
in the two protein databases Ensembl [57] 
and Swiss-Prot [58]. The obtained results 
indicated that a huge number of annotations 
changed over time, and they may potential-
ly result from the propagation of changes in 
the underlying ontology, or in the protein 
descriptions themselves. Similarly, Gillis 
& Pavlidis [59] and Skunca et al. [60] 
observed a limited stability of GO-related 
annotations without explaining why this 
happens. Gross et al. [61] analysed changes 
in GO, and statistically evaluated these 
changes to determine potential influences 
on the established annotations. Despite 
these results, what exactly influenced the 
evolution of annotations or how to repair 
inconsistencies needs further research. 
Park et al. [62] analysed existing GO an-
notations based on the most recent version 
of GO. These authors identified semantic 
inconsistencies in the annotations, and 
they propose a correction method based 
on the hierarchical structure of the GO 
graph as well as on the tree structure from 
the NCBI taxonomy [63]. 

Outside of the biomedical domain (e.g., 
XML data management and linked data), the 
problem of annotation maintenance remains 
understudied. In the context of XML data 
management, Köpke & Eder [64] proposed 
the use of ontology change logs for the de-
tection of out-dated semantic annotations 
attached to XML schemas. Their approach 

can identify structural and semantic invali-
dations, but do not provide mechanisms to 
correct the annotations. 

Maynard et al. [65] considered two 
different aspects for semantic annotation 
evolution: (1) propagating meta-data chang-
es to dependent annotations (annotation 
migration); and (2) analysing changes in 
the annotations to adapt ontologies. These 
authors proposed automatic actions only for 
simple change types, such as the addition or 
deletion of classes. Volz et al. [66] proposed 
a protocol to periodically verify whether 
linked open data sources have changed and 
if existing links have become invalid. This 
study only considered addition and deletion 
of concepts, but not complex changes. The 
DSNotify framework [67] aims to identify 
broken links and then notify users to man-
ually correct them, but change detection is 
limited to additions and deletions of con-
cepts, e.g., to delete broken links between 
entities. Similarly, Rogozan [68] developed a 
framework for maintaining semantic annota-
tions while the underlying ontology evolves. 

Annotations are classified into non-im-
pacted ones and those that need automatic or 
manual modifications. Existing approaches 
rely on a change tracker by logging all 
performed ontology changes in a specific 
workbench, which is not feasible for large 
biomedical terminologies. Furthermore, 
this requires a significant amount of human 
intervention for complex changes. In the 
Semantic Web context, Luong et al. [69, 
70] investigated annotation evolution and 
explored a rule-based approach to detect 
and correct annotation inconsistencies. This 
approach converts ontologies to RDF(S) 
files and detects annotations affected by 
their evolution, as well as potentially in-
consistent annotations using CORESE [71]. 
Afterwards, inconsistent annotations are de-
tected and corrected. This work focuses on 
expressive and small-sized ontologies and 
can hardly be applied to large biomedical 
ones, because the implemented reasoning 
techniques require the power of descrip-
tion logics (not always used in biomedical 
controlled terminologies) to decide on the 
validity of the annotations. 

In summary, existing approaches to 
annotation evolution mostly handle sim-
ple changes (like concept addition and 

deletion), and only consider small domain 
ontologies assuming that the annotations 
are modifiable, which is not always the case, 
e.g., for EHRs. Therefore, they do not suffi-
ciently address the problem of maintaining 
semantic annotations in biomedical and 
clinical use cases

5   Trends and Open 
Challenges 
The efficiency of software applications 
exploring biomedical data depends on the 
ability of ICT systems to interpret and 
transform this data into knowledge. How-
ever, systems can quickly be overwhelmed 
by the ever-increasing amount of data 
regularly produced. Dealing with large 
volumes of data raises several challeng-
es: access time, accuracy, completeness, 
heterogeneity, interpretation, dependency, 
and data handling methodologies. These 
challenges become even more complicated 
with the tendency of using Big Data anal-
yses to support decision makers, pushing 
towards the redefinition of classical meth-
ods for sharing, retrieving, and reasoning 
over large and heterogeneous data and 
knowledge sources. It includes a new level 
of complexity by considering the evolution 
of existing knowledge-based systems and 
their maintenance tasks.

To cope with these challenges, we 
define four complementary trends based 
on our research observations: (1) Model 
enrichment, where relevant meta-data is 
added to explain how/when/why the el-
ements of knowledge exist; (2) Analysis 
improvement, where novel methods exploit 
the available data to produce improved 
knowledge; (3) Knowledge modularization, 
where existing knowledge is extracted and/
or composed to focus on specific end-us-
ers’ needs; and (4) Interfaces for model 
transcription, which transforms informa-
tion described in formal languages into 
information described in human friendly 
languages (like texts, images, etc.). 

Several of these challenges can be ob-
served in the development and evolution of 
standard biomedical terminologies. Indeed, 
huge sums of money and human effort have 
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been invested in it; the size of the terminol-
ogies is continuously increasing as well as 
the complexity of their representation. This 
directly impacts the work of thousands of 
people responsible for generating biomedical 
data. Typically, the first trend (model enrich-
ment) is observed when designers consider 
that terminologies are dynamic rather than 
static objects, and then they enrich the ter-
minology accordingly to include relevant 
elements for the evolution process, reducing 
time and maintenance costs. For example, 
in the definition of ICD-11, designers are 
considering the work performed by the 
Semantic Web community about evolution 
[72]. In fact, the new ICD-11 model will 
allow a better integration with SCT and will 
include information that can potentially be 
used for mapping maintenance tasks [73].

The second trend (analysis improve-
ment) refers to the most advanced one. The 
focus is on the design and implementation 
of automatic data analysis tools. This has 
been developed to cope with missing rele-
vant conceptual information (addressed by 
trend 1) and the necessity of automatically 
identifying this information. Rule-based 
techniques are frequently applied, but the 
difficulty in harmonizing the rules (defined 
by experts) or maintaining those rules [74] 
leads to an increasing use of other tech-
niques. Huge quantities of data favours 
machine-learning techniques [28]; but the 
heterogeneity of this data restrains their 
applicability. New approaches combining 
these two methods are possible alternatives. 
For instance, rule-based techniques can 
be used to select documents on which the 
learning will be applied.

The third trend (knowledge modulariza-
tion) consists of implementing modulariza-
tion techniques for achieving at least one of 
two objectives: (1) reducing the size of the 
terminologies, facilitating thus their main-
tenance and reuse [75], and (2) expressing 
different points of view about the same 
knowledge (each point of view can be one 
module). The former is usually applied to 
systems that have a limited (low) processing 
capacity, whereas large controlled terminol-
ogies can result in long processing times or 
create memory overflow issues (e.g., em-
bedded and mobile applications). The latter 
addresses problems of completeness, depen-

dencies or interpretation of knowledge. For 
instance, blood can be defined according to 
a biological, chemical, or clinical point of 
view. When an overall view is necessary, we 
need to integrate these “different” meanings. 
Modularization techniques have been studied 
to allow this integration or to provide for 
downsizing. A new potential application of 
modularization techniques stands for the 
management of terminology evolution. In 
this scenario, stable and unstable parts of the 
ontology can be described in different mod-
ules. Hence, the maintenance impact might 
be limited to specific (unstable) modules.

Finally, the involvement of domain ex-
perts in the terminology evolution process 
creates its own set of issues since domain 
experts are usually health professionals who 
are generally unfamiliar with logic-based 
knowledge representation and technical 
aspects. We propose the fourth trend to 
cope with this limitation. For example, this 
trend requires methods of verbalisation 
(transformation into natural language text) or 
illustration (transformation into images) of 
controlled terminologies [76, 77]. Adequate 
software applications are needed to further 
support domain experts in their analyses 
and to properly interpret their feedback by 
modifying the out-dated terminologies in an 
automatic and safe manner.

Despite the limited quantity of published 
literature regarding the maintenance of map-
pings and semantic annotations, we strongly 
suggest that the previously presented trends 
might provide a means to support and ad-
dress these problems. We note the additional 
necessity of defining standard ways of doc-
umenting their creation and modification. 
This limitation has been highlighted in the 
survey described in section 3 and 4, forc-
ing existing methods to make (sometimes 
strong) assumptions on the way mappings 
and annotations have been defined in order to 
propose analyses and adaptation approaches. 

The validation of changes also remains a 
real problem for Standard Development Or-
ganisations. As for ontology evolution, a new 
generation of intelligent tools is required to 
improve the interaction between ICT systems 
and domain experts with the goal of limiting 
human efforts without compromising the 
quality of the overall validation and evolu-
tion processes. 

6   Conclusion 
The effective evolution of biomedical ter-
minologies remains a complex problem that 
involves the identification and characteriza-
tion of changes, including their impact on 
existing dependent artefacts (e.g., semantic 
mappings and annotations), as well as on 
software applications and other ontology 
consumers. In this article, we introduced 
the major problems associated with the 
management of dynamic, knowledge-based 
systems. We also provided a systematic liter-
ature research on the current state-of-the-art 
regarding the evolution process of controlled 
terminologies, including ontologies, as well 
as mappings and semantic annotations. An 
analysis of more than 25 distinct approaches 
covering the three topics discussed here has 
resulted in the identification of requirements 
for addressing the management of knowl-
edge evolution, both from an ICT point 
of view as well as from the perspective of 
research trends and challenges. From this 
aspect, we described four trends: Model 
enrichment (meta-data to improve the ex-
planation of described knowledge); Analysis 
improvement (combination of machine learn-
ing and rule-based techniques); Knowledge 
modularization (regrouping specific parts 
of the knowledge); and Interfaces for the 
transcription of models (verbalisation or 
illustration of formalisms for end-users).
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