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Cells of the immune system communicate with their en-
vironment through immunoreceptors. These receptors of-
ten harbor intracellular tyrosine residues, which, when
phosphorylated upon receptor activation, serve as dock-
ing sites to recruit downstream signaling proteins con-
taining the Src Homology 2 (SH2) domain. A systematic
investigation of interactions between the SH2 domain and
the immunoreceptor tyrosine-based regulatory motifs
(ITRM), including inhibitory (ITIM), activating (ITAM), or
switching (ITSM) motifs, is critical for understanding cel-
lular signal transduction and immune function. Using the
B cell inhibitory receptor CD22 as an example, we devel-
oped an approach that combines reciprocal or bidirec-
tional phosphopeptide and SH2 domain array screens
with in-solution binding assays to identify a comprehen-
sive SH2-CD22 interaction network. Extending this ap-
proach to 194 human ITRM sequences and 78 SH2 do-
mains led to the identification of a high-confidence
immunoreceptor interactome containing 1137 binary in-
teractions. Besides recapitulating many previously re-
ported interactions, our study uncovered numerous novel
interactions. The resulting ITRM-SH2 interactome not
only helped to fill many gaps in the immune signaling
network, it also allowed us to associate different SH2
domains to distinct immune functions. Detailed analysis
of the NK cell ITRM-mediated interactions led to the iden-
tification of a network nucleated by the Vav3 and Fyn SH2
domains. We showed further that these SH2 domains
have distinct functions in cytotoxicity. The bidirectional
protein-peptide array approach described herein may be
applied to the numerous other peptide-binding modules
to identify potential protein–protein interactions in a sys-

tematic and reliable manner. Molecular & Cellular Pro-
teomics 14: 10.1074/mcp.M115.047951, 1846–1858, 2015.

Immune receptor signaling, critical for proper immune re-
sponse, involves signaling pathways mediated by specific
tyrosine residues that are phosphorylated upon receptor ac-
tivation (1). These tyrosine phosphorylation sites are fre-
quently found in one of the three types of immunoreceptor
tyrosine-based regulatory motifs (ITRMs)1. The immunore-
ceptor tyrosine-based activation motifs (ITAMs) with the con-
sensus sequence YxxI/Lx(6–12)YxxI/L, where x represents
any amino acid, are typically associated with positive or ac-
tivating immune response (2). In contrast, the immune system
elicits negative or inhibitory response through receptors bear-
ing the immunoreceptor tyrosine-based inhibition motifs
(ITIMs) with the degenerated sequence S/I/V/LxYxxI/V/L (3).
Interestingly, SLAM/CD150 and related receptors of the CD2
subfamily contain a third type of signaling motif called Immu-
noreceptor Tyrosine-based Switch Motif (ITSM) with the con-
sensus sequence TxYxx(V/I) (4). An ITSM can convey either an
activating or inhibitory signal, depending on the type of im-
mune cell, the receptor and the bound protein (5).

In general, phosphorylated ITIMs recruit the SH2 domain-
containing tyrosine phosphatase SHP-1 or SHP-2 (6), and
phosphorylated ITAMs are recognized by protein tyrosine ki-
nases such as ZAP70 in T cells and SYK in B cells (7).
Nevertheless, these distinctions are only relative and both
motifs may be involved in either positive or negative immune
functions. For example, ITIM-containing inhibitory receptors
found on phagocytes can suppress or enhance inflammatory
cytokine production depending on the downstream proteins
that they recruit (6). Similarly, ITAM sequences have been
found to mediate inhibitory signaling (8). Indeed, even within
the same cell type, an ITAM-containing receptor may mediate
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functions as diverse as microbial killing, antigen presentation,
cytokine production, T-Cell instruction, and tissue repair (2).
Moreover, exquisite binding specificities have been observed
for different ITRMs. For example, the CD31 ITIMs recruit
SHIP-1, SHP-1, and SHP-2 (9). In contrast, the archetypal
ITIM identified in the cytoplasmic domain of the inhibitory IgG
Fc receptor Fc�RIIB (10) recruits SHIP-1 and -2, but not
SHP-1 or -2. Although the Fc�RIIB ITIM has an affinity for the
SH2 domain of either SHP-1 or -2, it does not recruit these
tyrosine phosphatases as do other ITIM-bearing receptors
(11). Besides SHIP-1/2 and SHP-1/2, other SH2-containing
proteins have also been found associated with certain ITIMs.
For example, through their respective ITIM sequences, the
LAIR-1 receptor recruits tyrosine kinase CSK (12), Lax inter-
acts with GRB2, PIK3R1 and GRAP2 (13), and CD72 forms a
complex with SHP-1 and GRB2 (14). These findings indicate
that immunoreceptor signaling is context-dependent and that
the precise pairing of an ITRM sequence with an SH2-con-
taining protein plays a critical role in dictating the signaling
and biological outcome.

Given the critical importance of SH2 domain-phosphoty-
rosine (pY) interaction in immune signaling, we set to system-
atically identify SH2 domain-ITRM interactions. A variety of
different high-throughput methods have been developed for
the identification of protein–protein or protein-peptide inter-
actions to date. These include yeast two-hybrid (15), affinity
purification coupled to mass spectrometry (AP-MS) (16),
phage display (17), and protein (18) and peptide arrays (19).
We employed protein and peptide arrays in our study because
of their simplicity and amenability to post-translational mod-
ifications. Specifically, we combined SH2 domain array with
phosphotyrosine peptide array to decipher an SH2-ITRM in-
teractome for immunoreceptors. We showed that the peptide
and SH2 domain arrays were not simple mirror images of each
other, but rather, they exhibited distinct, but complementary
binding patterns. Although neither array platform alone was
sufficient to detect all authentic interactions, integration of
data from reciprocal peptide and protein array screens al-
lowed us to identify a high-confidence SH2-ITRM interac-
tome. The interactome has not only provided a systematic
view of immunoreceptor signaling network, but also gener-
ated unique insights into the signaling specificity for the dif-
ferent immune signaling motifs.

MATERIALS AND METHODS

Peptide Synthesis—Peptides were synthesized on Tentagel resin
on an Intavis-AG MultiPep peptide synthesizer using N-(9-fluorenyl)
methoxycarbonyl (Fmoc) chemistry. For a typical pY-containing pep-
tide, the pY site was flanked by three residues at the N terminus and
seven at the C terminus (19). All peptides were synthesized with biotin
at the N terminus followed by a Gly-Gly spacer. Identities of the
peptides were verified by mass spectrometry.

Peptide Array Preparation and Probing—Peptides were printed on
glass slides as neutravidin complexes (20). Specifically, the biotin-
peptide was incubated with neutravidin in 3:1 ratio in PBS, pH 7.5, to
form a complex. Unbound peptides were removed by ultrafiltration

through a 3 kDa-cutoff membrane (Millipore, Billerica, MA). SuperAB
glass slides (Fisher, Waltham, MA) were pre-activated in a buffer
containing 50 mM NaIO4, 0.1 M sodium acetate, pH 5.5, for 0.5h at RT
and used for printing immediately. The peptide-neutravidin conju-
gates were printed onto the slide using a Bio-Rad VersArray Chip-
writer-Pro system. After printing, the peptide array chips were
washed in 3% bovine serum albumin (BSA)/TBST (containing 0.1 M

Tris-HCl, pH 7.4, 150 mM NaCl, and 0.1% Tween 20) for three times.
GST-SH2 domains (1.0 �M) were added directly to the above buffer
and incubated with the peptide chips for 1h at RT. Following three
TBST washes, the peptide array chips were incubated with a rabbit
anti-GST antibody (Abcam #ab3416, Toronto, Canada) for 1h at RT.
DyLight 649-labeled goat anti-rabbit IgG antibody (Pierce #35565,
Rockford, IL) was used to visualize the bound SH2 protein. The
peptide chips were scanned on a microarray laser scanner (Tecan
Co., Morrisville, NC) and the binding signals quantified using the
embedded software of the scanner.

SH2 Domain Array Preparation and Probing—SH2 domains were
expressed as GST fusion proteins in E. coli as previously described
(19). Each SH2 domain was purified using glutathione (GSH) agarose
beads followed by FPLC on a Sephadex-75 column (AKTA, GE,
Mississauga, Canada). Purified proteins were buffer-exchanged into
the printing buffer (37 mM Bicine, pH 8.25, 150 mM NaCl, 0.37 mM

EDTA, 0.5 M sucrose) at a final protein concentration of 40 �M.
GST-SH2 proteins were printed at three concentrations (40, 10 and

2.5 �M) on Whatman Fast nitrocellulose slides using a VersArray
Chipwriter Pro (Bio-Rad, Mississauga, Canada) equipped with four
SMP15Xb quill pins (Telechem, Sunnyvale, CA). Spot-to-spot dis-
tance was 950 �m, with three reprints of the same protein and each
concentration printed in duplicate in the x dimension. A dwell time of
0.1 s was used for each spot with an approach speed of 12.5 mm/sec.
Samples were printed at RT with a controlled humidity of 65%.
Following printing, all slides were stored in sealed containers at 4 °C.

To screen the SH2 microarray for peptide binding, the microarray
slide was incubated for 1 h at 4 °C in a blocking buffer (3% BSA in
TBST) to prevent nonspecific binding. The slide was then washed in
TBST three times and incubated with 5 �M biotin-labeled peptide (1h,
4 °C). The bound biotin-peptide was detected using 2.5 �g/ml
streptavidin-Alexa Fluor 647 (Anaspec, Fremont, CA) in 3% BSA/
TBST (1h, 4 °C). The slide were washed another three times in TBST,
removed from the incubation tray, spun at 800g for 5 min, and
air-dried for 30 min in the dark. The slide was then imaged on a
microarray laser scanner (Tecan Co., Morrisville, NC). To validate
array quality, a slide was incubated with an anti-GST antibody (Ab-
cam #ab3416, Toronto, Canada; 1:5000 dilution in 3% BSA/TBST) in
a similar manner as described above and detected using DyLight 649
donkey anti-rabbit-IgG (Anaspec, Fremont, CA).

Fluorescence Polarization Measurements—Each SH2 pro-
tein was serially diluted in a 384-well plate, followed by the
addition of fluorescein-labeled peptide in PBS buffer. The
mixtures were incubated in the dark for 30 min prior to fluo-
rescent polarization measurements at RT on an EnVision Mul-
tilabel Plate Reader (PerkinElmer, Waltham, MA) with excita-
tion set at 480 nm and emission at 535 nm. Binding curves
were generated by fitting the isothermal titration data to a
hyperbolic nonlinear regression model using Prism 3.0
(GraphPad software, Inc., San Diego, CA), which also pro-
duced the corresponding dissociation constants (Kd).

Cell Culture, Immunoprecipitation, GST Pull Down, Western
Blot and ELISA—U937 and YT cells (kindly provided by Dr.
Christopher Mody, University of Calgary) were cultured in
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RPMI 1640 medium (ATCC) supplemented with 2 mM L-glu-
tamine, 10 mM HEPES, 1 mM sodium pyruvate, 4.5 g/L glu-
cose, 1.5 g/L sodium bicarbonate, 10% FBS, 100 IU/ml pen-
icillin and 100 �g/ml streptomycin. Cells were washed in PBS
and lysed in lysis buffer (1% Nonidet P-40, 50 mM sodium
fluoride, 150 mM sodium chloride, 2 mM EDTA and 50 mM

Tris-HCl, pH � 7.4) containing protease and phosphatase
inhibitors (i.e. 1 �M phenylmethylsulfoyl fluoride, 2 �M E64, 1
�M bestatin, 1 �M pepstatin A, 2 �g/ml aprotinin, 10 �M

leupeptin and 1 mM sodium orthovanadate) (Sigma-Aldrich,
St. Louis, MO). After centrifugation to remove cell debris, the
lysate was incubated with a desired antibody immobilized on
protein G or a peptide immobilized on streptavidin beads for
2 h at 4 °C with rocking. The precipitated proteins were sep-
arated on 10–15% SDS-PAGE and transferred under semidry
conditions to PVDF membrane (Bio-Rad, Mississauga, Can-
ada). The membranes were blocked in 5% BSA (Roche, Mis-
sissauga, Canada) for 1 h at RT. This was followed by incu-
bation with a primary antibody for 1 h at RT. After 3 washes in
TBST buffer, a goat anti-mouse or anti-rabbit IgG-HRP con-
jugate (Bio-Rad, Mississauga, Canada) was added to the
membrane and incubated for 40 min at RT. The membrane
was developed by enhanced chemiluminescence (ECL)
(PerkinElmer, Waltham, MA).

The IFN-� ELISA (Enzyme-Linked ImmunoSorbent Assay)
was carried out following the method described by Chuang et
al. (38). For delivery of SH2 domains into cells by nanopar-
ticles, FPLC purified proteins were used to saturate 10 nM

gold nanoparticles (AuNP) in 1%PBS. Cells (5 � 105) were
incubated with 10 nM AuNP-SH2 for 4h at 37 °C, followed by
stimulation with C1.7mAb (400 ng/ml) for 1h at 37 °C. Target
K562 cells (5 � 104) were then added. After incubation for
16 h at 37 °C, 300 �l of cell-free supernatant were collected.
IFN-� concentration was then quantitated with mouse anti
IFN-� (Santa Cruz sc-8423, Dallas, TX) or rabbit anti IFN-�

(Santa Cruz sc-8308, Dallas, TX).
Array Data Analysis—The binding signal for each peptide or

SH2 probe was normalized across the entire domain or pep-
tide array. In the case that multiple spots on an array repre-
sented a single peptide or protein, the average binding signal
was used in normalization. For example, the binding signal for
an SH2 domain on the peptide array in Fig. 1A was calculated
as the average of the binding signals of the quadruplets. For
the binding of a pTyr peptide to the SH2 domain array in Fig.
1B, we used binding data for the first two rows (corresponding
to 40 �M and 10 �M SH2 domains) to calculate the final
binding signal. Specifically, for each concentration, the bind-
ing signal is an average of the doublet. This signal was then
normalized across the entire array for each concentration. The
average of the normalized signals (from 0 to 1) for the two
concentrations was used as the final binding signal for that
pTyr peptide.

The following equation was used for normalizing binding
signals across a peptide array

XPiDi �
PpiDi � Min�Pp1Di,PpnDi�

Max�Pp1Di,PpnDi� � Min�Pp1Di,PpnDi�

Where XpiDi represents the normalized peptide array binding
score for the interaction between SH2 domain i (Di) and pep-
tide i (Pi) on the peptide array, and PpiDi represents the strength
of the original fluorescent signal for SH2 domain Di to peptide
Pi on the peptide array. Max denotes the strongest binding
signal produced by domain Di whereas Min the weakest sig-
nal for the domain on the peptide array that contains “n”
number of peptides. The value of XPiDi ranges from 0 (weakest
binding) to 1 (strongest binding).

Similarly, the fluorescent intensity of each spot on the SH2
domain array was normalized from 0 to 1 according the
equation:

YpiDi �
DpiDi � Min�DpiD1,DpiDn�

Max�DpiD1,DpiDn� � Min�DpiD1,DpiDn�

Where YpiDi represents the normalized domain array score
for the interaction between Pi and Di from the domain array,
and DpiDi represents the original fluorescent intensity corre-
sponding to the interaction between Pi and Di on the domain
array.

The bidirectional array score, BPiDi, for a given peptide-
domain pair is defined by the average of the corresponding
peptide array score XpiDi and domain array score YpiDi as in:

BpiDi � �XpiDi � YpiDi�/2

The consistence score between the peptide and protein
array binding signals for each SH2 domain-pY peptide inter-
action is defined as in:

CpiDi � 1 � �XpiDi � YpiDi�

Where CpiDi represents the array consistence value of the
interaction between peptide Pi and domain Di.

The selectivity score ZpiDi of an SH2 domain for an ITRM
peptide is defined according to the formula (22):

ZpiDi � �BpiDi �
1
n�

1

n

BpiDi�/�

Where � is the standard deviation of BpiDi

The binding free energy between peptide Pi and domain Di

was calculated using the equation:

�GpiDi � � 8.314 � 10�3 � 298 � ln�KdpiDi � 10�6�

Where �GpiDi represents the free energy of binding between
Pi and Di, KdpiDi the in-solution binding dissociation constant
between Pi and Di in �M.

RESULTS

Combining Peptide and Protein Arrays to Probe SH2-pTyr
Interactions—To establish a reliable method to map modular
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domain-peptide interactions, we used both peptide and pro-
tein arrays to identify binding partners for CD22, a coreceptor
for the B-cell receptor (BCR) (23). The intracellular portion of
human CD22 contains six potential tyrosine phosphorylation
(pTyr or pY) sites (supplemental Table S1), four of which
conform to the ITIM consensus (24). Although CD22 has been
shown to bind a number of SH2-containing proteins, including
SHP-1, LYN, SYK, GRB2, SHC1, SHIP, PI3K, and PLC�1 (25),
a comprehensive SH2-CD22_pY interaction network is not yet
available.

We employed 78 purified human SH2 domains to probe,
respectively, an array containing peptides representing the

CD22 pY sites (Fig. 1). Biotin-tagged peptides were printed on
glass slides in quadruplets as neutravidin conjugates (20). The
peptide array was subsequently probed for binding to SH2
domains (supplemental Fig. S1). The bound SH2 domains
were detected by a rabbit anti-GST antibody and visualized
by DyLight 649-labeled goat anti-rabbit IgG (Fig. 1A). This
analysis not only recapitulated many known interactions (25),
but also uncovered numerous novel candidate interactions.
Of note, the SHC4 SH2 domain was found to bind exclusively
to the peptide pY842 whereas the TNS2_SH2 domain inter-
acted only with the peptide pY807, a site recognized also by
the GRB2 SH2 domain (26) (Fig. 1A).

FIG. 1. Using the bidirectional SH2 domain-pY peptide array screening approach to identify interactions mediated by CD22. A, A
pY-containing peptide array representing the cytoplasmic Tyr phosphorylation sites in CD22 was probed for binding, respectively, to human
SH2 domains (in GST fusion). Shown are anti-GST Western blots for representative SH2 domains with the names of the corresponding proteins
given on the right. Spots framed by blue squares denote known interactions, the remaining novel candidates. Green squares denote interaction
candidates detected on both the peptide and domain arrays (B). B, Probing of an SH2 domain array by individual pY peptides. A panel of 78
purified human SH2 domains (in GST fusion), GST, and BSA were printed at three different concentrations (40, 10, 2.5 �M from top to bottom)
with duplication for each concentration. The quality of the protein array was verified by an anti-GST Western blot (top panel). Biotinylated
pY-peptides were used to probe the array and the bound peptides detected using fluorescein-labeled streptavidin. Spots framed by blue
rectangles denote known interactions, white novel interaction candidates, green candidates identified in both peptide and domain arrays.
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To confirm interactions identified from the peptide arrays,
we carried out reciprocal screens of protein arrays using the
pY peptides to probe an array of 78 SH2 domains (as GST
fusion, supplemental Table S2). To obtain semiquantitative
information on binding, we printed each SH2 domain in three
concentrations and in doublets for each concentration. An
anti-GST Western blot showed that the spots containing 40 or
10, but not 2.5 �M proteins, produced strong and uniform
signals (Fig. 1B, top panel). Thus, data points corresponding
to 2.5 �M SH2 domains were excluded from subsequent
analysis. Next, the SH2 domain arrays were incubated, re-
spectively, with biotin-labeled CD22_pY peptides. Alexa Fluor
647-labeled streptavidin was used to visualize the bound
peptides. As shown in Fig. 1B and supplemental Fig. S2, each
peptide produced a unique binding profile on the SH2 domain
array, indicating distinct functions for these pY sites. For
example, although the SHP-1 or -2 SH2 domain bound to the
CD22 ITIM peptides, the PIK3R family of SH2 domains rec-
ognized only the pY762 and pY842 peptides and the ABL1/2
SH2 domains interacted specifically with the pY796 and
pY822 peptides (Fig. 1B; supplemental Fig. S2).

Identification of Authentic Interactions by Integrating Pep-
tide and Protein Arrays—Although the peptide and protein
array data agreed with each other in some cases, they differed
significantly in others. For example, the SHP-1/2, MATK,
PIK3R1_C, PIK3R1_N, PIK3R2_N, PIK3R3_C and SHB_SH2
domains displayed robust binding to the pY842 peptide on
the peptide array (Fig. 1A); Conversely, the pY842 peptide
probe recognized the same set of SH2 domains on the protein
array (Fig. 1B, bottom panel; supplemental Fig. S2). In con-
trast, although numerous SH2 domains bound to the pY807
peptide on the peptide array (Fig. 1A), the same peptide
recognized only the GRB2_SH2 and GRB7_SH2 domains on
the protein array (Fig. 1B). Moreover, the strength of binding
signal for an SH2-pY pair varied markedly between the two
array formats. Whereas the pY752 peptide exhibited the
strongest binding to the FYN_SH2 domain on the protein
array (Fig. 1B), the latter only showed weak binding to the
former on the peptide array (Fig. 1A).

To find out if the array screening could identify authentic
SH2-pY interactions, we determined the in-solution affinities
(Kd) of the six pY peptides for a panel of 22 SH2 domains that
showed binding to the peptides on either the peptide or the
protein array (supplemental Table S3). The free energy (�G)
for an SH2-pY peptide interaction was then calculated based
on the corresponding Kd value. The �G value was then plotted
against the corresponding peptide or protein array signal
normalized to a scale of [0, 1] (22). As shown in Fig. 2A, the
binding free energy showed a poor correlation with either the
peptide (Xpidi) or the protein (Ypidi) array score. However, for
the interactions that showed consistent binding on the two
array formats (i.e. Xpidi-Ypidi � 0.5), a significantly improved
correlation (R2 � 0.74) was obtained when the �G was plotted
against the bidirectional array score (Bpidi) defined as the

average of the peptide and protein array scores, i.e. Bpidi �

(Xpidi 	Ypidi)/2 (Fig. 2A).
We sought next to use the integrated bidirectional array

data to distinguish true positive from negative interactions. To
this end, we introduced the term, array consistency or “Cpidi”,
as defined in Cpidi � 1 � ( Xpidi � Ypidi ), which measures the
degree of agreement between the peptide and protein array
binding scores (with Cpidi � 1 indicating 100% agreement)
(supplemental Table S4). We then plotted Bpidi against Cpidi

for all SH2 domain-pY peptide pairs for which the Kd values
had been determined. The graph was sectioned into four
squares, namely S1, S2, S3, and S4 (Fig. 2B), by perpendic-
ular lines drawn at Bpidi/Cpidi � 0.5. The SH2-pY peptide pairs
were divided into three groups according to the correspond-
ing Kd values. The pairs with Kd �5 �M were considered true
positive interactions whereas those with Kd
20 �M true neg-
atives. The pairs with 5 �M�Kd�20 �M, which could fall in
either category, would be assigned later after taking the array
binding signals into account. We found that square S1 con-
tained 13 interactions with Kd�5 �M (true positive), 1 with 5
�M�Kd�20 �M (potential binders), and none with Kd 
20 �M

(true negative). In contrast, S2, which is characterized with
Bpidi and Cpidi�0.5, is populated mainly with negative inter-
actions (Fig. 3A). Thus, the SH2-pY pairs with Bpidi and
Cpidi
0.5 represented true positive interactions with high
confidence.

The predictive accuracy fell drastically for SH2-pY pairs
with Cpidi �0.5. For example, square S3 contains eight pairs
with Kd�5 �M, 10 with 5 �M�Kd�20 �M, 10 with Kd
20 �M.
To rescue the true positive interactions from this latter pool,
interactions occupying square S1 were taken as the “gold
standards” for positive interactions. Moreover, if an SH2 do-
main or pY peptide produced an array score (Xpidi or Ypidi)
greater than the average value for the pool of gold-standard
interactions, the corresponding SH2-pY interaction was con-
sidered positive and thus “rescued”. Using this strategy, we
were able to rescue 10 out of the 16 SH2-pY pairs with Kd�5
�M and 6 out of the 26 pairs with 5 �M �Kd�20 �M from
squares S2, S3 and S4. Importantly, only 1 of the 40 pairs with
Kd
20 �M was falsely identified as a positive (Fig. 3B, left
panel). When the interactions with B and C values above the
cut-off (i.e. B
0.5; C
0.5) are combined with the “rescued”
ones, the bidirectional array screening predicted 31 positive
interactions of which 23 are true positives (Kd�5 �M), 7 with 5
�M �Kd�20 �M, and 1 with Kd
20 �M (corresponding to a
false identification rate of 3%). It also identified 39 true neg-
atives (Kd
20 �M) with a 10% (6/64) false identification rate
(Fig. 3B).

A High-confidence SH2-CD22_pY Interaction Network Ob-
tained from Bidirectional Peptide–protein Array Screening—
Combining the bidirectional array with in-solution binding as-
say, we were able to identify a high-confidence interaction
network for CD22. This network not only recapitulated a num-
ber of interactions reported in the literature, but also uncov-
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ered many novel ones (Fig. 4A; supplemental Table S4). No-
tably, all of the ITIM peptides, except for pY796, interacted
with the tyrosine phosphatases SHP-1 (PTPN6) and SHP-2
(PTPN11), suggesting that the corresponding pTyr sites me-
diate inhibitory signaling (6). The pY796 peptide, in contrast,
bound to the tyrosine kinases ABL2 and SYK, which are
associated with activating signaling in B-cells (27), and to
CSK, which inactivates SRC by phosphorylating a C-terminal
Tyr residue in the kinase (28). The variety of different binding
partners engaged by the ITIM peptides, including kinases (e.g.
FYN, SYK, LCK, SRC, and ABL1/2), lipid kinases and phos-
pholipases (e.g. PI3K and PLCG1), and adaptor proteins (e.g.
SAP/SH2D1A and SHF), suggests that the function of the ITIM
goes well beyond inhibitory signaling.

It is intriguing that CD22 was capable of binding to both
SRC and its negative regulator CSK (Fig. 4A). To find out
whether the CSK-CD22 interaction occur in vivo, we em-
ployed biotinylated CD22_pY peptides to pull down CSK from

the U937 macrophages. Indeed, CSK appeared to bind more
strongly to the pY796 peptide than to the pY762 peptide (Fig.
4B). This is in agreement with their corresponding Kd values
measured by fluorescence polarization (2.4 �M for CSK_SH2-
pY796 and 24 �M for CSK_SH2-pY762, supplemental Table
S3). Moreover, endogenous CSK co-immunoprecipitated with
CD22 from BJAB cells upon B cell receptor activation follow-
ing anti-IgM stimulation (Fig. 4B). Collectively, these data
indicate that pY796 is the major binding site in CD22 for CSK
binding. It is interesting to note that the ITIM-containing re-
ceptor PECAM-1 signals sequentially through both the SRC
family kinase and CSK (29). It is likely that a similar mecha-
nism regulates signal transduction by CD22.

Systematic Identification of SH2-ITRM Interactions—We
next applied the bidirectional array approach to identify a
comprehensive interaction network mediated by ITRMs. To
this end, we searched the UniProt database (30) and identified
194 ITIM, ITAM, or ITSM peptides from 129 immunoreceptors

FIG. 2. Integration of binding signals from reciprocal peptide–protein array screens produced a set of high-confidence interactions
for CD22. A, Correlation of pY peptide-SH2 in-solution binding free energy (�G) with the corresponding, normalized score on the peptide array
(Xpidi, left) or SH2 domain array (Ypidi, middle), or with the bidirectional array score (Bpidi, right). B, A plot of the corresponding bidirectional array
(Bpidi) and array consistence (Cpidi) scores for the SH2-CD22_pY peptide pairs. The graph is divided into four squares, namely S1-S4, when
intercepted by perpendicular lines drawn at Bpidi � 0.5and Cpidi � 0.5. The SH2-pY pairs are represented in gray dots. Pairs for which
in-solution binding data are available are identified by open circles: Kd�5 �M (green circle); 5 �M�Kd�20 �M (yellow circle) and Kd
20 �M (red
circle).
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(supplemental Table S5). Each peptide was synthesized as
an 11-mer with 3 residues N-terminal and 7 C-terminal to
the pY site. The peptides also contained an N-terminal
biotin to facilitate array printing and subsequent probing of
the SH2 domain array. The raw data of the reciprocal pep-
tide-domain array screens were shown in supplemental
Figs. S3 and S4, with normalized array scores reported in
supplemental Table S6.

To gauge the preference of different SH2 domains for a
given motif quantitatively, we calculated the corresponding Z
scores (22). The relative specificity of an SH2 domain for a
motif type was defined as the average Z score of that SH2
domain for the entire collection of peptides within that motif
category. For example, the relative specificity of the SAP/
SH2D1A SH2 domain for ITIM is calculated as its average Z
score for all ITIM peptides examined. The same approach was
taken to derive the relative specificity for ITAM or ITSM (sup-
plemental Table S7). This analysis led to a comprehensive
specificity map for the human SH2 domains in immunorecep-
tor signaling mediated by tyrosine phosphorylation (Fig. 5A).

We found that different SH2 domains have distinct speci-
ficity profiles. As expected, the SH2 domains of ZAP70 and
SYK, tyrosine kinases mediating positive signaling in T and B
cells respectively (7), exhibited the greatest relative specificity

for ITAM. In contrast, the SHP-1 and -2 SH2 domains exhib-
ited the strongest preference for ITIM-binding. Interestingly,
ITAM and ITSM sequences were excluded from binding the
latter SH2 domains. These results are in excellent agreement
with the literature demonstrating that SHP-1 and SHP-2 are
involved in inhibitory immune response (6). Intriguingly, the
MATK and PI3K SH2 domains showed the same preference
for ITIM as the SHP-1/2 SH2 domains, suggesting that these
proteins are associated with inhibitory signaling. Strong se-
lectivity for ITSM was observed for the SAP/SH2D1A and its
homolog SH2D1B, and to a lesser degree, for the Fyn and
SOCS4 SH2 domains. Although the former three have been
shown to play critical roles in signaling by the SLAM and
related receptors through ITSM (4), the function of SOCS4 in
immune signaling awaits further investigation.

It should be noted that the selectivity of an SH2 domain for
a given motif type is not absolute. But rather, most SH2
domains are capable of binding to more than one type of
motif. For example, although the ZAP70 and SYK SH2 do-
mains have a strong preference for ITAM, they can also bind
to ITIM and ITSM sequences, an observation consistent with
our data on CD22 (Fig. 1). Some SH2 domains, including
those from SRC and YES, are capable of binding to all three
types of ITRMs without a clear proclivity.

An SH2-ITRM Interaction Network Uncovered by Bidirec-
tional Array Screens—In order to predict authentic interac-
tions from the reciprocal peptide–protein array screens, we
calculated the bidirectional scores (B) for all SH2-ITRM pep-
tide pairs and plotted them against the corresponding array
consistency score (C). Although the majority of SH2-ITRM
pairs (80%) fell in square S2 (i.e. low probability binding
events), 4% fell in square S1 as high-confidence binding
events (supplemental Fig. S5A, supplemental Table S6). We
used the corresponding 116 pairs of interactions within S1
(supplemental Fig. S5B) as gold-standards to rescue potential
interactions that fell within squares S3, S4, and S2 using the
same approach as described for CD22. Combining the inter-
actions represented by square S1 with the rescue, the bidi-
rectional array screens identified 1137 interactions between
46 SH2 domains and 173 ITRM peptides (supplemental Fig.
S6). This interactome recapitulated 130 interactions that are
included in the STRING database for protein–protein interac-
tion (31) and uncovered 1007 novel interactions. As shown in
Fig. 5B, except for a few SH2 domains that have a clear
preference for a given motif type, such as the selective bind-
ing of the SHP1/2 SH2 domains to ITIM and SAP to ITSM
sequences, most SH2 domains are promiscuous in that they
were capable of binding to two or three types of motifs (Fig.
5B, supplemental Table S8).

Regulation of Immune Signaling by SH2-ITRM Interac-
tions—Inherent for any in vitro analysis, the interactions iden-
tified from the bidirectional array do not necessarily occur in
vivo. The physiological relevance of the resulting SH2-pY
interactome was analyzed in the context of known signaling

FIG. 3. Bidirectional array screens accurately differentiated
positive from negative interactions. A, Distribution of the SH2-
CD22_pY pairs in squares S1 to S4 based on in-solution Kd values.
Green indicates high affinity (Kd�5 �M, true positive); red low affinity
(Kd
20 �M, true negative), and yellow medium affinity (5 �M� Kd�20
�M). B, The bidirectional arrays reliably differentiated positive SH2-pY
interactions from negative ones when the Bpidi and Cpidi values were
combined with a “rescue” scheme described in the main text.
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databases such as the KEGG pathway database (32) that lists
34 immune signaling pathways, 15 of which involve ITRMs.
The analysis associated 70 SH2-ITRM pairs to 9 immune
signaling pathways (supplemental Table S9). In addition to
providing site-specific information for these previously re-
ported binding events, our systematic analysis identified
numerous novel interactions between a number of receptors
involved in NK cell signaling and SH2 domain-containing
proteins (Fig. 6A). Our pathway analysis placed FYN and
VAV3 at the center of a regulatory network in NK cell cyto-
toxicity (33) (Fig. 6A). The inhibitory receptor CD244 (34) is
capable of binding to both the VAV3 and FYN SH2 domains,
in addition to SAP/SH2D1A (4) and LCK (35). Because VAV3
and FYN shared the same binding partners, both proteins
might play an important role in NK cell-mediated cytotoxic-
ity (36).

To test this assumption, we first confirmed that both VAV3
and FYN were able to bind to CD244 by co-immunoprecipi-
tation from YT, a natural killer cell line (Fig. 6B). Because the
SH2 domain mediated the binding of VAV3 or FYN to CD244,
we predicted that an isolated SH2 domain would disengage
endogenous VAV3 or FYN with CD244, and thereby disabling
their normal functions in cytotoxicity. To test this, recombi-
nant VAV3 or FYN SH2 domain or the corresponding binding-

deficient mutant (i.e. Fyn_SH2 R176K or VAV3_SH2 R697K)
(37) was transduced into YT cells using gold nanoparticles
(AuNP) (38). The transduction efficiency of AuNP was verified
with fluorescein-labeled BSA (supplemental Fig. S7). The
wild-type (WT) SH2 domains, but not the binding-deficient
mutants, were capable of blocking interactions of CD244 with
VAV3 or FYN (Fig. 6C). The cytotoxicity of the YT cells trans-
duced with a WT or mutant SH2 domain was measured in the
presence of the K562 target cells following stimulation by an
anti-CD244 antibody (c1.7) (21). Compared with the corre-
sponding mutant, the VAV3_SH2 domain significantly inhib-
ited, whereas the FYN_SH2 domain significantly stimulated
IFN-� secretion (Fig. 6D). The stimulatory function of the
VAV3_SH2 domain may be attributed to the observation that
it blocked CD244 interaction not only with VAV3, but also with
FYN, thereby potentially disrupting the CD244-SAP-FYN
complex (39). However, the stimulatory effect of the FYN_SH2
domain on IFN-� secretion was intriguing as it also partially
blocked the endogenous VAV3-CD244 interaction (Fig. 6C).
Because numerous other proteins are capable of binding to
VAV3 and/or FYN (Fig. 6A), the outcome of NK cell signaling
is likely dependent on the particular SH2-ITRM sub-network
formed under a given condition.

FIG. 4. Bidirectional array screen produced a high-confidence CD22 interactome. A, A comprehensive SH2 domain-CD22_pY interac-
tome obtained by combining the bidirectional array data with predictions based on in-solution binding Kds. ITIM sequences in CD22 are shown
in red, whereas the remaining pY sites in gray. SH2 domains were identified by the corresponding protein names. Known interactions are
represented by blue edges, novel ones gray edges. B, Left panel: biotinylated CD22_pY peptides were used to pull down CSK from U937 cells.
Right panel: a Western blot to show that CSK and CD22 co-immunoprecipitated from BJAB cells.
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DISCUSSION

A Bidirectional Array Strategy for Systematic Identification
of Protein–Protein Interactions Mediated by Peptide-binding
Domains—Protein–protein interaction (PPI) plays a central
role in normal cell biology (40). However, interactions driven
by post-translational modifications such as phosphorylation,
which comprises a significant part of the PPI network, have
proven difficult to decipher systematically by high throughput
methods such as yeast two-hybrid (15) and AP-MS (16). Al-
though systematic yeast two-hybrid screen has been applied
to human open-reading frames (ORFs) (15), it is not suitable
for deciphering interactions mediated by phosphorylation.
AP-MS, a widely used method for PPI mapping involving
phosphorylation, is limited by the transient nature of most
phosphorylation events occurring in the cell. Moreover,
AP-MS analysis, in most cases, neither provides information
on direct physical interactions between the probe and the bait
proteins, nor does it identify the binding sites. In contrast,
peptide and protein arrays, which are not only amenable to
PTM-mediated interactions (41, 42), but also semiquantitative
and high throughput. Although either peptide or protein arrays
may be used in systematic PPI identification in vitro (42, 43),
the combined use has rarely been attempted. We found that
peptide and protein array screens produced inconsistent data
for the SH2 domain-ITRM peptide interactions. Although it is
difficult to pinpoint the exact cause of this intriguing observa-
tion, the immobilization of a short phosphopeptide onto a
solid support may restrict its freedom of motion or accessi-
bility to an SH2 domain. By the same token, the immobiliza-
tion of an SH2 domain by simple surface absorption may alter
its conformation and thereby binding activity. Because of the
sensitivity of the detection method (which was based on
fluorescence), subtle changes in the physiochemical proper-
ties of the phosphopeptide and/or SH2 domain could be
amplified as large differences in apparent binding signals.

To overcome this limitation, we combined the binding sig-
nals from the peptide and SH2 domain array screens and
used the average signal as a measurement for the corre-
sponding SH2-ITRM interaction. This simple manipulation
produced significantly improved correlation between the
peptide–protein bidirectional array data and in-solution bind-
ing affinity. Moreover, we developed an approach to “rescue”
interactions that are likely authentic but exhibited large vari-
ance between the peptide and the protein array screens. This
approach, when applied to the 120 human SH2 domains (of

which 78 were purified to homogeneity suitable for the array
analysis) and the majority of ITRM sequences contained in
immunoreceptors, yielded a comprehensive, high-confidence
network of immune signaling mediated by tyrosine phosphor-
ylation. It should be cautioned, however, that interactions
identified by our in vitro approach may or may not occur in
vivo. Although the physiological relevance of the majority of
interactions within this network awaits validation, our data
provides a framework on which to systematically explore
the functions of Tyr phosphorylation in immune signaling. It
can be envisioned that the same approach may be used to
identify protein–protein interactions mediated other pep-
tide-binding modules in a systematic and unbiased manner
(44).

Specificity and Promiscuity of Immune Signaling via the
SH2 Domain—Tyr-based regulatory motifs and the associ-
ated SH2 domains play a critical role in immune response. Of
the three types of ITRMs, ITIM is generally linked to inhibitory
whereas ITAM to stimulatory immune signaling. However, this
distinction is far from being absolute. For instance, some
ITAMs recruit SHP-1, a phosphatase found associated usually
with ITIMs in inhibitory immune response (45). Conversely,
certain ITIMs have been shown to propagate activation sig-
nals (46). Our work provides support to the notion that a given
ITRM can assume multiple roles during immunoreceptor sig-
nal transduction depending on the specific SH2 domain pro-
teins that it recruits. Apart from the strong motif-selectivity
exhibited by a limited number of SH2 domains, most SH2
domains bind to ITRM sequences with a high degree of de-
generacy. This latter group includes SH2 domains from TXK,
SRC, and ABL1/2 (supplemental Fig. S6).

Our interactome data suggests that it is likely that ITIMs
may mediate positive and ITAM negative immune signaling
under certain conditions. For instance, in addition to binding
SHP-1 (24), the CD22_pY762 ITIM peptide was found to
bind SH2 domains of the tyrosine kinases SRC, LCK, and
ABL2. In contrast, although most ITAMs were found to
associate with tyrosine kinases, some, including those from
CLC7A and FLT3, were capable of binding to tyrosine phos-
phatases SHP-1 or SHP-2 (supplemental Fig. S6, supple-
mental Table S8).

Because how cells respond to an immune stimulus is
dependent on the activation of specific receptors, which
may contain multiple ITRMs (47), the SH2-ITRM interactome
identified herein provides a valuable resource for under-

Fig. 5. A comprehensive SH2-ITRM interactome generated from bidirectional peptide–protein array screens. A, The specificity profiles
of individual SH2 domains for different motifs. The average Z scores of an SH2 domain for ITIM, ITAM or ITSM peptides obtained from
bidirectional array screens were used to measure the relative specificity of the SH2 domain. Green bars represent the relative specificity for
ITAM, red for ITIM, and yellow for ITSM. A larger relative specificity value corresponds to a greater preference for that ITRM. B, A predicted
human ITRM-SH2 domain interactome based on bidirectional array screens. ITIMs are shown in red, ITAMs in green and ITSMs in yellow. The
interactome contains 1137 binary interactions mediated by 46 SH2 domains and 173 pY peptides. Known interactions extracted from STRING
database (30) are identified by blue lines. Gray lines denote novel candidate interactions. Strength of binding was drawn proportionate to the
line thickness. The SAP and SHP-1/2 SH2 domains are identified in cyan squares.
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standing signal integration in immune regulation. Our data
suggests that the whether a specific ITRM convey an acti-
vating or inhibitory signal is not only dependent on the

residues flanking the pY site, but more importantly, it is
dictated by the downstream SH2 domain-containing effec-
tors recruited by the motif. Although the high degree of

FIG. 6. An SH2-ITRM signaling network associated with cytotoxicity. A, The SH2-ITRM interactome was mapped onto known NK cell-
mediated cytotoxicity pathways (KEGG: hsa04650) (31). ITIMs are shown in red dots, ITAMs in green, and ITSMs in yellow. Gray dots denote SH2
domains. Blue lines indicate known interactions, gray novel ones. B, CD244 bound to both VAV3 and FYN. CD244 was immunoprecipitated from
the lysate of YT cells and Western blotted for VAV3 and FYN, respectively. An anti-	-tubulin blot was included as a loading control. WCL, whole
cell lysate; IP, immunoprecipitation; IB, immunoblot. C, The SH2 domains disrupted endogenous interactions of VAV3 and FYN with CD244. YT
cells were treated with 10 �M AuNP loaded with the wild-type FYN or VAV3 SH2 domain or a binding-deficient (R/K) mutant. The cells were
subjected to anti-CD244 immunoprecipitation followed by Western blotting for associated VAV3 or FYN. An anti-(His)6 IB was used to show the
amount of transduced SH2 domains. D, The VAV3 SH2 domain significantly inhibited, whereas the FYN SH2 domain promoted, the secretion of
interferon gamma (IFN-�). The INF-� levels shown are normalized values against that in AuNP-BSA-treated YT cells, set as 1. *, p � 0.01, n � 3.
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degeneracy in the SH2-ITRM interaction network casts a
rather promiscuous view, specificity of immune signaling
may be enhanced by the activation of specific receptors in
different cells, the formation of specific protein complexes
facilitated by scaffolding proteins (48), or by spatial restrains
such as those found in immunological synapses or mem-
brane microdomains (49).

In summary, we have shown that integration of signals from
peptide and protein arrays greatly improve the quality of the
identified PPI network. Using the bidirectional array approach,
we identified the largest immunoreceptor signaling network
mediated by phosphotyrosine to date. Numerous novel inter-
actions have been identified, which would provide a valuable
resource for the cell signaling community. Moreover, our in-
teractome data could guide the design of experiments to
interrogate the mechanism of immune regulation and the de-
velopment of inhibitors for disease intervention. We expect
that the bidirectional array strategy to play an important part
in the identification of the functional human proteome, partic-
ularly protein–protein interactions mediated by peptide-bind-
ing domains.
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