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Abstract

Sarcopenia and cachexia are muscle wasting syndromes associated with aging and with many 

chronic diseases such as congestive heart failure (CHF), diabetes, cancer, chronic obstructive 

pulmonary disease and chronic kidney disease (CKD). While mechanisms are complex these 

conditions are often accompanied by elevated angiotensin II (Ang II). Patients with advanced CHF 

or CKD often have increased Ang II levels and cachexia, and angiotensin-converting enzyme 

(ACE) inhibitor treatment improves weight loss. We found that Ang II infusion in rodents leads to 

skeletal muscle wasting. Ang II increases cytokines and circulating hormones such as tumor 

necrosis factor-α, interleukin-6, serum amyloid-A and glucocorticoids, which regulate muscle 

protein synthesis and degradation. Ang II-induced muscle wasting is caused by alterations in 

insulin-like growth factor-1 signaling, enhanced muscle protein breakdown via the ubiquitin-

proteasome system, and decreased appetite resulting from downregulation of hypothalamic 

orexigenic neuropeptides such as Npy and orexin. Ang II also inhibits 5′ AMP-activated protein 

kinase (AMPK) activity and disrupts normal energy balance via activation of AMPK phosphatase 

PP2Cα. Furthermore, Ang II inhibits skeletal muscle stem (satellite) cell proliferation, leading to 

lowered muscle regenerative capacity. Distinct satellite cell angiotensin receptor subtypes have 

different effects on different stages of differentiation and are critical for regulation of muscle 

regeneration. These data suggest that the renin-angiotensin system (RAS) plays a critical role in 

mechanisms underlying cachexia in chronic disease states, and is a promising target for the 

treatment of muscle atrophy in patients with diseases such as CHF and CKD.

Introduction

Patients with cachexia, or wasting syndrome, develop weight loss, muscle atrophy, fatigue, 

weakness, and often loss of appetite without actively trying to lose weight. Cachexia patients 

are defined as those that lose more than 5% of body weight over 12 months or less in the 

presence of a chronic disease such as congestive heart failure (CHF), chronic kidney disease 

(CKD), chronic obstructive pulmonary disease (COPD) and cancer. 10–30% of the patients 

with these diseases develop cachexia, and it affects more than 5 million people in the United 

States 1. Cachexia is a multifactorial disease and, importantly, nutritional support cannot 

fully reverse the syndrome. In cachexia conditions, the degradation of myofibrillar proteins 

is increased and protein synthesis is decreased, leading to the rapid loss of muscle mass. 
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Weight loss and reduced muscle mass are associated with a reduction in quality of life and 

increased mortality. Thus cachexia is a major public health issue, and the development of 

interventions to block or attenuate this process would have significant therapeutic benefits in 

a wide array of chronic diseases.

Mechanisms and potential therapies for cachexia

Among the candidate mediators of cachexia that have been investigated, proinflammatory 

cytokine tumor necrosis factor-α (TNF-α) is the most prominent and well characterized 

factor. TNF-α has been shown to induce cachexia in mice,2 and to cause myotube atrophy in 

vitro via activation of E3 ubiquitin ligases.3 Although many rodent tumor models of cancer 

cachexia showed increased TNF-α,4 the relevance of TNF-α to human cancer cachexia is 

unclear. Maltoni et al found that circulating levels of TNF-α in cancer cachexia patients had 

no correlation with weight loss and anorexia.5 Furthermore, a clinical trial designed to block 

TNF-α signaling using anti-TNF-α antibody (infliximab) in cancer cachexia patients closed 

early because the treatment prevent or palliate cancer-associated weight loss, and patients 

developed greater fatigue and worse global quality of life scores.6

Another candidate mediator of cachexia is interleukin-6 (IL-6). It has been shown that 

different kinds of cancer cells secrete IL-6 and that circulating levels of IL-6 correlate with 

weight loss in cancer patients in some, 7,8 but not all,5 studies. Strassmann et al showed that 

increasing levels of IL-6 in tumor bearing mice correlated with the development of cachexia, 

and that an antibody against IL-6, but not against TNF-α, suppressed cachexia 

development.9 However, a clinical trial of IL-6 antibody in weight-losing lung cancer 

patients did not have significant effect on loss of lean body mass, although anorexia, fatigue 

and anemia were prevented.10

Myostatin and Activin A are the most recent and promising target molecules related to 

cancer cachexia. Myostatin and Activin A are members of the transforming growth factor-β 

(TGF-β) family, and are both upregulated in patients with various kinds of wasting 

diseases.11 Animals and humans with null mutations of myostatin show dramatic muscle 

hypertrophy12,13 and blockade of Activin-A restored regenerative capacity of human 

myoblasts in the presence of high cytokines (TNF-α or IL-1β)14. Myostatin and Activin-A 

signal through the common receptor, Activin type II receptor B (ActRIIB). To inhibit both 

myostatin and Activin A signaling at the same time, soluble ActRIIB-Fc decoy protein 

(sActRIIB) was developed. Treatment of tumor-bearing mice with sActRIIB prevented 

cachexia development without affecting the tumor growth, and prolonged survival.15 Thus 

blockade of ActRIIB signaling seems to be a very promising treatment of cancer cachexia 

and clinical trials are ongoing to treat patients with sarcopenia and cachexia.16

Cachectic patients with CHF showed increased growth hormone (GH) levels with lower 

insulin-like growth factor-1 (IGF-1), suggesting GH resistance.17 Also, it has been shown 

that CHF patients had higher glucose and insulin levels, an indication of insulin resistance.18 

Since CHF patients have higher Ang II levels and Ang II causes insulin resistance in skeletal 

muscle by inhibiting insulin-stimulated GLUT4 translocation,19,20 it was postulated that 

blockade of Ang II could benefit skeletal muscle function in chronic diseases with high 
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levels of Ang II. There are 2 main pharmacological approaches to target the effects of Ang 

II: inhibiting the formation of Ang II by angiotensin converting enzyme inhibitor (ACEi) 

and blocking the AT1R by angiotensin receptor blocker (ARB). Because alternative ACE-

independent pathways of Ang II formation exist, the use of ARB could be more specific in 

targeting Ang II-mediated muscle wasting. The ACEi enalapril was shown to reduce the risk 

of weight loss in CHF patients 21 and ACEi helped maintain body weight but not muscle 

strength in patients with CHF or hypertension.22 Elderly patients without heart failure on 

antihypertensive treatment with ACEi had higher muscle mass than patients receiving other 

anti-hypertensive therapy.23 In addition, insulin sensitivity was improved by losartan and 

lisinopril in hypertensive patients.24 There have been a few clinical trials designed to protect 

muscle wasting by blocking Ang II. Ark Therapeutics has completed a phase III clinical trial 

treating cancer cachexia patients with the ACE inhibitor imidapril. Imidapril prevented 

weight loss in non-small cell lung cancer and colorectal cancer, but not in pancreatic cancer, 

but its effect to prevent weight loss did not reach statistical significance when the data were 

combined. The company discontinued development of the product after the failed clinical 

trial, although it remains convinced of the value of this approach.25,26 Blockade of AT1R 

signaling could be another approach to prevent weight loss in cachexia patients, but Merck 

& Co. Inc., which marketed losartan as Cozaar, has no plans to develop it for new 

indications in the U.S., since it went off patent.26

One of the potential reasons why clinical trials of Ang II blockade have so far been 

unsuccessful is that the underlying mechanisms of renin-angiotensin system-mediated 

muscle wasting is not fully understood. For instance, Ang II and other angiotensins act on 

different subtypes of receptors such as AT1R, AT2R, Mas and IRAP.27 Because ACEi 

blocks conversion of Ang I to Ang II, ACEi treatment results in a decrease of Ang II, 

whereas Ang I level is inceased. On the other hand, blockade of AT1R by ARB results in a 

compensatory increase of Ang II, which may activate AT2R-mediated signaling. Thus, it is 

critical to understand the multiple signaling pathways that mediate the effect of the RAS. 

Current progress in understanding the role of the RAS in muscle wasting is summarized and 

discussed below.

Ang II and muscle wasting

It was first demonstrated that Ang II infusion in the rat caused a significant loss of body 

weight through 2 independent mechanisms, a reduction of food intake and increased 

proteolysis in skeletal muscle.28 Both of these effects were completely prevented by 

losartan, but not by the vasodilator hydralazine, showing that Ang II causes wasting through 

the AT1R and that its effect is independent of blood pressure regulation. It was found that 

Ang II caused an increase of muscle protein breakdown via the ubiquitin-proteasome system 

(UPS). Accelerated proteolysis via the UPS plays a major role in muscle atrophy in several 

different types of cachexia.29 The muscle specific E3 ubiquitin ligases atrogin-1 and muscle 

RING finger-1 (MuRF-1) were identified as genes strongly upregulated in different muscle 

atrophy conditions, and knockout mice for either of these genes partially prevented muscle 

wasting.30 In Ang II-induced muscle wasting, expression of atrogin-1 and MuRF-1, levels of 

ubiquitin-conjugated proteins and 20S proteasome activity were robustly increased.31–33
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In the Ang II-induced wasting condition, it was also found a decrease of skeletal muscle 

IGF-1 signaling which is the main anabolic pathway in skeletal muscle.28,34 IGF-1 

modulates muscle size via autocrine and paracrine signals, by directly stimulating protein 

anabolism in myofibers and by activation of satellite cell proliferation.35 IGF-1 signals 

through PI3K/Akt and induces muscle hypertrophy by stimulating GSK and mTOR kinases, 

which regulate protein translation.36 Multiple studies have shown the involvement of IGF-1/

PI3K/Akt signaling in muscle cell size regulation and atrophy. For instance, inhibition of 

PI3K and expression of dominant-negative Akt reduce the size of myotubes in vitro,37 in 

mice deficient for Akt1 and Akt2 have smaller muscle size 38 and activation of Akt in rat 

muscle prevents denervation-induced atrophy.36,39 The authors utilized a transgenic mouse 

strain in which IGF-1 is overexpressed under the control of a skeletal muscle specific 

promoter 40 and showed that the local increase of IGF-1 could prevent Ang II-induced 

muscle wasting.31 Interestingly, although Ang II rapidly increased both atrogin-1 and 

MuRF-1 expression, IGF-1 prevented only the increase in atrogin-1.32 These data may be 

consistent with the current evidence suggesting the distinct roles of atrogin-1 and MuRF-1 in 

muscle wasting.41 Myofibrillar proteins have been identified as the target of MuRF-142,43 

and it is suggested that MuRF-1 is likely involved in skeletal muscle proteolysis. On the 

other hand, atrogin-1 has been shown to target MyoD, the regulator of myogenesis, and eIF-

e, the eukaryotic initiation factor of protein synthesis, suggesting that its main role is the 

regulation of protein synthesis.44,45 Although precise signaling pathways whereby Ang II 

and IGF-1 regulate Atrogin-1 and MuRF-1 remain to be elucidated, it is of note that 

atrogin-1 and MuRF-1 are regulated by distinct mechanisms.46,47 In summary, Ang II and 

IGF-1 have opposing roles in regulating muscle protein synthesis and degradation. 

Disruption of IGF-1 signaling by Ang II plays a critical role in Ang II-induced atrophy, and 

local activation of IGF-1 signaling can prevent Ang II-induced muscle wasting.

There have been studies reporting that the effect of Ang II to cause muscle wasting is via the 

direct action of Ang II on skeletal muscle cells and is indirectly mediated by other 

circulating factors. It has been shown that Ang II directly acts on cultured muscle cells and 

induces proteolysis via the UPS pathway.48,49 On the other hand, it has been demonstrated 

that multiple circulating hormones and cytokines mediate Ang II’s action on skeletal muscle. 

Glucocorticoids are required for activation of the UPS in acidosis and diabetes, and 

glucocorticoid inhibition restored Ang II-induced loss of muscle mass.31 After Ang II 

infusion, there is an increase of circulating IL-6 and serum amyloid-A (SAA), and blockade 

of IL-6/SAA prevented Ang II-induced wasting.50 These studies suggest that the catabolic 

effect of Ang II on skeletal muscle in vivo is, at least in part, mediated via intermediate 

molecules activated by Ang II.

Ang II and oxidative stress

Reactive oxygen species (ROS) play an important role in Ang II-induced signaling in 

different cell types, contributing to cardiac myocyte and vascular smooth muscle cell 

hypertrophy, endothelial dysfunction, hypertension, and insulin resistance.51,52 Ang II has 

been shown to induce ROS generation in skeletal muscle, 53,54 and ROS contributes to 

disuse muscle atrophy.55 NAPDH oxidase and mitochondria are major sources of ROS in 

atrophied skeletal muscles.56,57 Oxidative stress induces proteolysis and atrophy via several 
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different mechanisms: (1) calcium overload and activation of calcium-activated proteases 

such as calpain; (2) stimulation of the 20S proteasome system via activation of caspase-3; 

(3) activation of E3 ubiquitin ligases atrogin-1 and MuRF-1. Ang II-induced proteolysis is 

prevented by antioxidants in myotubes 49, and genetic or pharmacological inhibition of 

NADPH oxidase blocked Ang II-induced 20S proteasome activity and muscle wasting.33 

Ang II also increases mitochondrial ROS formation58,59 and it has been speculated that 

NADPH oxidase-induced ROS could directly stimulate the mitochondria.59 However, the 

mitochondrial-targeted antioxidant Mito-TEMPO failed to prevent Ang II-induced muscle 

wasting, suggesting that mitochondrial ROS are not directly involved.60 These data suggest 

that specific targeting of ROS and NADPH oxidase could be a beneficial, novel therapy to 

treat Ang II-induced wasting.

Ang II and energy balance

It has been proposed that a common set of molecular mechanisms underlie muscle wasting 

in different chronic diseases. DNA microarray analysis in different atrophying conditions 

revealed that the group of genes required for ATP production and late steps in glycolysis is 

commonly downregulated.61 These changes would suppress muscle’s capacity to utilize 

glucose and reduce muscle energy production. Reduced glucose utilization has been 

observed in the setting of cancer and renal failure, and thus disruption of metabolic 

homeostasis could be one of the mechanisms involved in development of cachexia.

Yoshida and Delafontaine analyzed metabolic changes in the Ang II-induced wasting 

condition and found that Ang II depletes skeletal muscle ATP content and causes muscle 

wasting likely via induction of mitochondrial dysfunction.60 This reduction of ATP is 

caused by decreased activity of AMPK, a cellular sensor of energy status. When the cellular 

energy status is low (high AMP:ATP ratio) AMPK activates ATP synthesis, and data 

indicate that Ang II causes muscle wasting in part by preventing skeletal muscle homeostatic 

capacity to maintain energy balance. The AMPK activator 5-Aminoimidazole-4-

carboxamide ribonucleotide (AICAR) reversed Ang II-induced inhibition of AMPK, leading 

to restoration of ATP levels and inhibition of the Ang II-induced muscle wasting. AICAR 

also blocked Ang II-induced E3 ubiquitin ligases atrogin-1 and MuRF-1 expression. 

Contrary to these authors’ findings, in S6 kinase-1 deficient mice there was increased AMP 

levels, AMPK upregulation and muscle atrophy. 62 In these mice, AMPK inhibition restores 

muscle cell growth and sensitivity to nutrient signals. Also, it has been reported that AMPK-

mediated phosphorylation of FoxO activates E3 ubiquitin ligase expression in muscle cell 

culture in vitro.63 However, in Ang II infused animals the net effect of AMPK activation by 

AICAR is Akt activation and inhibitory phosphorylation of FoxO1, which could explain the 

ability of AICAR to abrogate Ang II-mediated E3 ubiquitin ligase induction. Importantly, 

the authors found that the Ang II-induced reduction of AMPK activity is mediated by 

upregulation of the upstream phosphatase PP2Cα, and PP2Cα knockdown restored 

mitochondrial function and muscle wasting in Ang II infused animals.64 Although the 

precise mechanism whereby Ang II inhibits AMPK via upregulation of PP2Cα remains to 

be elucidated, these data suggest a therapeutic potential of targeting PP2Cα in chronic 

wasting conditions with increased Ang II levels.
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Ang II reduces appetite

In 2008, Evans et al65 proposed the diagnosis of cachexia to be based on at least 5% weight 

loss in 12 months or less in the presence of underlying illness, plus 3 of the 5 following 

criteria: 1) Decreased muscle strength, 2) Fatigue, 3) Anorexia, 4) Low-fat free mass index 

and 5) Abnormal biochemistry (increased inflammatory markers (CRP, IL-6), anemia and 

low serum albumin). As can be seen in this definition, anorexia is frequently, if not always, 

associated with wasting, and anorexia and loss of body fat is a powerful predictor of 

mortality in cancer cachexia patients.66 Food intake is regulated by complex mechanisms 

that involve the actions of hypothalamic orexigenic/anorexigenic neuropeptides and 

circulating factors secreted from peripheral organs (e.g. adipose tissues and gastrointestinal 

tract). These authors found that Ang II causes wasting through 2 different mechanisms: 

increased protein catabolism in skeletal muscle and loss of food intake.28 Pair-feeding 

experiments were performed, in which a group of animals received an identical amount of 

food as Ang II-infused animals, and found that approximately 80% loss of body weight in 

Ang II-infused animals is due to reduced food intake. Consistent with these data, AT1R 

deficient mice are hyperphagic and obese. Furthermore, multiple studies have shown that 

intracerebroventricular (icv) infusion of Ang II caused reduced food intake and changes in 

orexigenic/anorexigenic neuropeptides such as agouti-related protein (AgRP), 

proopiomelanocortin (POMC), thyrotropin-releasing hormone (TRH), CRH, neuropeptide-Y 

(Npy) and orexin,67–70 suggesting that systemically increased Ang II in chronic diseases 

could directly act on hypothalamic neurons to regulate food intake by modulating 

orexigenic/anorexigenic neuropeptide expressions. Indeed, it has been shown that the AT1R 

is expressed in multiple hypothalamic neurons, including the lateral hypothalamic area, 

paraventricular nucleus, retrochiasmatic area and perifornical nucleus.71

RAS and muscle regeneration

Skeletal muscle has a remarkable ability to maintain its homeostasis against injury or 

wasting by activating a well orchestrated regenerative response to repair damaged 

myofibers. Injury leads to activation and proliferation of mitotically quiescent mononuclear 

cells, satellite cells, which form myoblasts, terminally differentiate and fuse to form 

multinucleated myotubes 72. Muscle atrophy occurs in a variety of pathophysiological 

conditions, including disuse, denervation, starvation, sarcopenia and cachexia, but the 

response of satellite cells in these conditions is not well characterized. In cancer cachexia 

animal models, it has been suggested that there is less regeneration and possibly a reduction 

of satellite cell function.73–75 The most well characterized atrophy-associated regeneration 

condition is sarcopenia. It has been shown that aged satellite cells display reduced 

proliferative response and regenerative capacity 76,77. Satellite cell proliferation is regulated 

by Notch signaling and lowered Notch activity is responsible for the reduced proliferative 

capacity of aged satellite cells.76,78 In the aged skeletal muscle, there is an increase of TGF-

β expression and activated p-Smad3 counteracts Notch and inhibits cell cycle progression, 

thus causing lower satellite cell proliferative capacity.79 Also, fibroblast growth factor-2 

(FGF2) expression is increased in aged skeletal muscle and increased FGF2 disrupts satellite 

cell quiescence and self-renewing activity,77 which leads to lower satellite cell regenerative 

capacity. Importantly, impaired regeneration in aged mice is reversible by exposure to a 
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young circulation,80 and growth differentiation factor-11 (GDF11) has recently been 

identified as a factor that maintains satellite cells in a “young” state.81 Although it is not 

clear whether the same mechanisms could lead to lower satellite cell function in chronic 

disease states, studies in aged muscle clearly indicate that systemic changes strongly affect 

satellite cell regenerative capacity. Therefore, identifying mechanisms whereby chronic 

diseases lead to lower satellite cell function would have the therapeutic potential to reverse 

the reduction in muscle regeneration seen in cachexia conditions.

Multiple studies have suggested a role of Ang II in regulating satellite cell function, and 

considering the potential involvement of Ang II in muscle wasting in many chronic 

diseases, 48,82–85 Ang II could be a systemic factor that affects satellite cell function in 

disease states. However, the consequence of an increase in Ang II on satellite cell function is 

controversial. Cohn et al86 first reported that the effect of AT1R blockade by losartan 

improved muscle regeneration in mouse models of myopathy through suppression of TGF-β. 

Consistent with this study, it is reported that losartan improved muscle regeneration and 

decreased fibrosis after laceration-induced injury.87 Burks et al showed that losartan 

treatment blocked TGF-β signaling and losartan-treated mice developed significantly less 

fibrosis and exhibited improved muscle function after cardiotoxin-induced injury. In 

addition, immobilized mice treated with losartan were protected against loss of muscle mass. 

Interestingly, however, this muscle wasting-protective effect of losartan was not mediated 

by TGF-β, but by increased IGF-1/Akt/mTOR signaling, suggesting AT1R signaling 

modulates different signaling cascades in regeneration and atrophy.88 On the other hand, 

ACE inhibition or genetic ablation of AT1R have been reported to impair skeletal muscle 

regeneration.89 Murphy et al also reported that muscle regenerative capacity was impaired in 

AT1R knockout mice, although they found muscle strength and locomoter activity were 

paradoxically enhanced.90 Since none of these studies directly analyzed the effect of Ang II 

on satellite cells in vivo, animals were infused with Ang II in the setting of muscle injury-

induced regeneration.91 It was found that Ang II infusion suppressed Notch signaling in 

satellite cells, leading to impaired satellite cell proliferation and reduced regeneration. 

Importantly, quiescent and proliferating satellite cells highly express AT1R, whereas it 

declines after cells are differentiated into myotubes. These data are consistent with a 

suppressive role for Ang II on satellite cell function and muscle regeneration. The 

conflicting data reported for the function of Ang II on satellite cells could be because of the 

different experimental settings utilizing pharmacological inhibitors or genetic deletion of the 

AT1R. Caution should be exercised when analyzing RAS effects resulting from inhibition of 

1 part of the entire system. The RAS includes multiple angiotensins and receptors, and it is 

not fully understood how different angiotensin ligands and receptors act in orchestration. For 

instance, inhibition of Ang II production by ACEi would result in an increase of its 

precursor Ang I, whereas blockade of Ang II signaling by AT1R blocker would increase 

Ang II through a compensatory mechanism. Indeed, the authors recently found that another 

Ang II receptor AT2R positively regulates satellite cell differentiation and fusion process.92 

Considering the antagonistic action of AT1R and AT2R,93 these data indicate that AT1R 

and AT2R counteract each other and regulate different stages of satellite cell differentiation 

processes. Furthermore, Acuña et al reported that another angiotensin ligand Ang (1–7) 

restored muscle strength through inhibition of TGF-β.94 Although complete mechanisms 
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underlying RAS-mediated regulation of satellite cell function are complex and remain to be 

elucidated, these studies suggest that the RAS, via the actions of multiple angiotensin 

ligands and their receptors, regulates satellite cell function in physiological conditions, and 

that alterations in RAS effects in pathophysiological states may lead to impaired satellite cell 

function.

Future prospects

There have been a growing number of studies related to cachexia and our understanding of 

underlying mechanisms of loss of muscle mass in chronic disease conditions has made 

substantial progress in recent years. Approaches to prevent or attenuate cachexia are 

urgently needed and several promising therapies are under investigation in clinical trials. A 

major challenge underlying the development of cachexia treatment is the complex and 

multifactorial nature of the disease. It is unlikely that 1 therapeutic intervention could be 

effective in all the cachexia conditions associated with different chronic diseases. The RAS 

is activated in many chronic diseases such as CHF, CKD, COPD and cancer and in this 

manuscript the authors have summarized and discussed the involvement of the RAS in the 

development of muscle wasting. Studies have shown that Ang II induces muscle wasting 

through multiple mechanisms: (1) Increased protein breakdown via reduced IGF-1 and 

increased cytokine signaling such as glucocorticoid and IL-6; (2) Increased oxidative stress 

via activation of NADPH oxidase; (3) Impaired energy balance via inhibition of AMPK; (4) 

Reduced appetite via alteration of orexigenic/anorexigenic neuropeptide expression in the 

hypothalamus; (5) Inhibition of satellite cell function and muscle regeneration. It is likely 

that Ang II causes muscle wasting via a combination of these effects (Fig. 1), and recent 

evidence suggests that other RAS components play important roles in skeletal muscle 

physiology. Future studies are required to elucidate the RAS-mediated regulation of skeletal 

muscle and satellite cell function to connect these findings to the development of effective 

therapies for cachexia.
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Fig. 1. 
Ang II-induced muscle wasting: potential mechanisms of cardiac cachexia.

In CHF patients, there is an increase of Ang II. Increased Ang II causes a reduction of IGF-1 

and increased glucocorticoids and IL-6/SAA, which result in muscle wasting. In skeletal 

muscle, there is a increase of ROS, reduction of AMPK and increased UPS, all of which 

result in muscle proteolysis. Ang II also acts on hypothalamic neurons to reduce appetite via 

alterations of orexigenic/anorexigenic neuropeptide expression. Reduced appetite leads to 

muscle wasting due to insufficient energy intake to maintain muscle mass. Ang II prevents 

satellite cell proliferation and skeletal muscle regeneration via inhibition of Notch signaling. 

The combination of Ang II-induced muscle wasting, reduced food intake and lower muscle 

regeneration lead to the development of cachexia.
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