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Abstract

Tinnitus and chronic pain are sensory-perceptual disorders associated with negative affect and 

high impact on well-being and behavior. It is now becoming increasingly clear that higher 

cognitive and affective brain systems are critically involved in the pathology of both disorders. 

Here, we propose that the ventromedial prefrontal cortex and the nucleus accumbens are part of a 

central “gatekeeping” system in both sensory modalities, which evaluates the relevance and 

affective value of sensory stimuli and controls information flow via descending pathways. If this 

frontostriatal system is compromised, long-lasting disturbances are the result. Parallels in both 

systems are striking and mutually informative, and progress in understanding central gating 

mechanisms might provide a new impetus to the therapy of tinnitus and chronic pain.
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Tinnitus and chronic pain are highly disabling medical conditions for millions of people. 

Between 20 and 30 % of the adult population suffer from chronic pain [1], and tinnitus 

prevalence can reach 30 % depending on age [2]. Both disorders are difficult to treat and the 

associated burden to the individual patient and the health care system are substantial [3,4].

The similarities between tinnitus and chronic pain have been discussed for some time [5-7]. 

Both are abnormal and variable subjective sensations often linked to but not sufficiently 

explained by an initial peripheral lesion. Due to the absence of an external physical stimulus, 

they are often referred to as “phantom sensations”, even though they are very real 

experiences. Tinnitus and chronic pain are frequently associated with hypersensitivity to 

sensory stimulation (hyperacusis/misophonia versus hyperalgesia/allodynia). Moreover, 
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patients suffering from these two conditions often share the same psychological profile with 

an increased tendency to anxiety, fatigue, and depression [8,9], which seems to vary in 

lockstep with the sensory disorder. In fact, depression is ranked as one of the strongest 

predictors for low back pain, and intensity of back pain correlates with severity of 

depression [10]. Similarly, patients identified with depression or anxiety disorder at the 

onset of tinnitus are more likely to develop severe incapacitating tinnitus [11]. Finally, some 

data suggest that there is a tendency for increased tinnitus prevalence in chronic pain 

patients [12].

However, there are also important differences between tinnitus and chronic pain. For 

example, in its acute and physiological form, pain signals a threat and thus fulfills vital 

protective functions. Pain has thus an inherently negative value. In contrast, auditory signals 

do not necessarily have a predefined value but may only become bothersome if perception 

persists over extended periods of time, as in the case of tinnitus. Moreover, different forms 

of tinnitus and chronic pain exist and their pathology may differ. Nevertheless, the striking 

similarities and associations indicate that tinnitus and chronic pain share common 

pathophysiological mechanisms.

The understanding of the pathophysiology of tinnitus and chronic pain has changed 

considerably with the advent of human brain imaging over the last decades. While it was 

long thought that mainly peripheral (or spinal) processes underlie these disorders, a major 

involvement of brain and cognitive processes has been recognized in recent years. In both 

disorders, the experienced discomfort often exceeds the extent expected from the underlying 

pathophysiological causes, and symptoms can persist well past the time of the original 

insult. Such observations have led to research focusing on processes beyond peripheral or 

spinal components and even beyond early sensory brain regions. Currently, the role of 

higher-order brain areas and associated cognitive and affective functions in the development 

and maintenance of tinnitus and chronic pain are the focus of much work. Here, we will 

outline how remarkably similar structures and functional systems are involved in both 

disorders and how findings converge onto a central role of frontostriatal circuits. We 

postulate that this system acts as a central “gatekeeper”, which evaluates the relevance and 

affective meaning of sensory stimuli and modulates information flow via descending (and 

corticocortical) pathways.

Brain structure and function in tinnitus and chronic pain

Neuroimaging and neurophysiological studies have revealed extensive changes of brain 

structure and function in tinnitus and chronic pain, as shown by altered measures of gray and 

white matter as well as local and network activity. Figure 1 illustrates how remarkably 

similar structures are involved in both disorders.

Structural changes: Gray matter

The advent of voxel-based techniques in structural MRI permitted the measurement of 

morphometric changes in the living brain. A number of studies have compared gray matter 

volume between tinnitus patients and normal controls. In tinnitus patients, a striking gray 

matter reduction was first detected in the subcallosal area of ventromedial prefrontal cortex 
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(vmPFC) using whole-brain analysis corrected at both voxel and cluster level [13]. This 

finding was reproduced in two independent samples [14,15] and has led to the “central 

gating hypothesis” of tinnitus [16]. Initial attempts by other groups to replicate the gray 

matter loss in vmPFC of tinnitus patients were unsuccessful (e.g. [17], see [18] for review), 

but new studies are currently under way.

One of the above studies [15] found a second subcallosal region with gray matter reductions 

near anterior cingulate cortex (scACC), which was distinct from the first region in vmPFC 

(Fig. 2A). Whereas gray matter decreases in vmPFC correlated with actual tinnitus loudness, 

decreases in scACC correlated with tinnitus distress, anxiety, and depression [15]. In 

addition, a positive correlation between tinnitus distress and cortical thickness was found in 

the anterior insula [15]. Other studies added a reduction of gray matter volume in the 

hippocampus and an increase in entorhinal regions to the list of morphometric changes in 

tinnitus [15,17,19,20]. Within the auditory system, moderate reductions of gray matter 

volume were observed in the auditory cortex [19-21], though one study suggested that this 

may be due to hearing loss [20]; other studies reported a gray matter increase in posterior 

thalamus of tinnitus patients compared to healthy controls [13,17]. Overall, there is clear 

evidence for volume loss in mPFC and specifically in the subcallosal region of tinnitus 

patients, as this has now been reproduced several times in independent studies. However, the 

variability of VBM results across different labs remains disconcerting, indicating the need 

for more standardized conditions and analysis techniques [18,22], but also for more attention 

to possible functional differences in distinct subregions of the mPFC.

A large number of studies have also shown gray matter changes in the brain of chronic pain 

patients. Recent meta-analyses revealed that gray matter decreases preferentially affect 

medial prefrontal, ventral striatal, and cingulate areas [23-25]. Some changes were also 

found in insular and thalamic regions [23-25]. Different forms of chronic pain syndromes 

differ in their patterns of gray matter changes as well as in the dynamics of brain 

reorganization [26]. However, although not identified in every single study (e.g. [27]), the 

changes show a substantial overlap in medial prefrontal cortex (mPFC) similar to those 

observed in tinnitus (Fig. 2B). Most interestingly, the observed gray matter changes in 

vmPFC co-vary interindividually with the intensity and duration of pain [23] and are at least 

partly reversible when pain resolves [28-30], indicating plasticity and adaptiveness of these 

changes (see Box 1).

Structural changes: White matter

The number of studies measuring structural connectivity changes in tinnitus patients with 

diffusion tensor imaging (DTI) is still quite limited. Results mostly involve reductions in 

white matter integrity (as measured by fractional anisotropy) within the auditory system, 

including auditory cortex, but these seem to relate to the patients’ hearing loss rather than 

their tinnitus [31-33]. Three other studies provide some evidence for changes of structural 

connectivity within auditory-limbic brain circuits specific for tinnitus: two of the studies 

report enhanced connectivity [34,35], while another reports deteriorated connections [19]. 

This seemingly contradictory pattern may partly be due to the intricacies of the DTI 

technique, but it may also be due to the presence of confounding factors that are not well 
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controlled. Further studies are needed to assess the consistency of these findings, which at 

present should be considered preliminary until several technical challenges have been 

overcome [35]. On the other hand, the study by Seydell-Greenwald et al. [35] shows quite 

convincingly that fractional anisotropy in the vmPFC region is significantly correlated with 

tinnitus loudness, but not with depression or anxiety, thus echoing the gray-matter 

morphometric data [15].

In individuals with chronic pain, the observed changes in white matter affect mostly 

connections between frontal and limbic brain areas [36-39]. A recent longitudinal study 

revealed that white-matter fractional anisotropy at onset of acute back pain predicts the later 

transition to chronic pain [39], indicating that structural connectivity reflects a causally 

relevant predisposition for the development of chronic pain. Interestingly, the relevant white 

matter changes included connections between prefrontal cortex and the nucleus accumbens 

(NAc), matching the gray matter changes in frontostriatal circuits.

Functional changes: Local brain activity

Most studies of functional brain changes in tinnitus have concentrated on the auditory 

system. Early positron emission tomography (PET) studies have demonstrated tinnitus-

related activity in primary and secondary auditory cortex [40-42] as well as auditory 

association cortex [41,43-47]. Correspondingly, numerous functional magnetic resonance 

imaging (fMRI) studies of tinnitus have revealed increases of sound-evoked activity for 

cortical [14,48,49] and subcortical stations along the auditory pathway [50-52]. Besides 

mere changes of activity levels within the auditory system, studies using 

magnetoelectroencephalography (MEG) report abnormal activity in different frequency 

bands [53], which has been embedded in the concept of abnormal thalamocortical 

oscillations as a mechanism underlying tinnitus and chronic pain [54]. Furthermore, 

tonotopic map reorganization in auditory cortex has been observed [55], consistent with 

lesion-induced plasticity after hearing loss [56]. Several studies demonstrate that functional 

plasticity in tinnitus also affects limbic brain regions [41,47,57]. In particular, one carefully 

controlled fMRI study has for the first time been able to identify highly significant stimulus-

evoked hyperactivity of the NAc in tinnitus patients independent of age and hearing loss 

[14]. Compared to other brain structures, such as auditory cortices, the NAc exhibited the 

greatest degree of hyperactivity, specifically to sounds frequency-matched to patients’ 

tinnitus. NAc hyperactivity in tinnitus patients was independent of age and hearing loss and 

appeared to be specific for the tinnitus frequency. NAc hyperactivity in tinnitus patients was 

present in the single-voxel analysis (Figure 1A of that paper), in which hearing loss was a 

“nuisance” covariate, as well as in a separate ROI analysis, in which age was a covariate. 

Additionally, NAc hyperactivity persisted in an ROI analysis restricted to the four youngest 

patients. The same study replicated a corresponding volume loss in vmPFC (see above).

In chronic pain, studies with PET [58-61] and arterial spin labeling MRI [62-65] show 

increases of blood flow and metabolism in prefrontal, cingulate, and insular cortices and in 

the striatum as well as decreases in the thalamus. Some of these blood flow changes 

positively relate to pain intensity (e.g. [61,65]) and are reversible with treatment [58]. More 

recent electroencephalography (EEG) and fMRI studies consistently indicate that mPFC 
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plays a central role in the encoding of ongoing experimental [66] and clinical pain 

[27,67,68]. Moreover, an fMRI study shows, as in tinnitus, activation of the NAc by noxious 

stimuli [69]. Finally, studies on chronic pain using MEG and EEG indicate activity increases 

in the theta frequency band [54,70,71], which can be localized to prefrontal, cingulate, 

insular and somatosensory cortices [71] and which are again at least partially reversible with 

treatment [70,71].

Functional changes: Network activity

Resting-state fMRI studies have shown changes of functional brain connectivity in tinnitus 

[72-76]. Specifically, increased interactions between auditory and limbic regions have been 

observed [72-74,77-79]. Among the limbic regions, the subgenual or subcallosal ACC 

(scACC)/vmPFC region can be considered an important dysfunctional node, consistent with 

the structural changes found with voxel-based morphometry (VBM) [13,15]. Indeed, a 

recent study performed a blind source separation of resting-state EEG activity in tinnitus 

subjects. The independent components obtained were organized into two fully independent 

network modules related to either tinnitus loudness or tinnitus-associated distress. Results 

showed that those two modules were linked through a pathological functional connection 

involving the scACC/vmPFC region in highly distressed tinnitus subjects [80]. Similarly, 

greater connectivity within the so-called “default-mode network” (DMN; [81]) and between 

DMN and scACC was related to focusing on negative aspects of tinnitus and on 

“catastrophizing” [82]. Modifications of brain connectivity within auditory cortex [78] as 

well as across a widely distributed network of brain regions have been observed with MEG 

[77]. The relative prominence of auditory-sensory areas decreases with longer duration of 

tinnitus, whereas the participation of non-auditory brain regions increases [83]. Moreover, 

when looking at effective connectivity measures, modification of activity in the auditory 

cortices seems to be driven by activity in the cingulate cortices and left insula in tinnitus 

subjects [78]. Overall, tinnitus is related to functional connectivity changes in multiple brain 

regions including, but not limited to, the fronto-limbic-striatal system.

Similarly, functional connectivity changes in chronic pain particularly affect the mPFC, 

which is part of the DMN [84-88]. Greater connectivity between DMN and insula was 

related to more spontaneous pain [88] and was reduced after successful pain treatment [87]. 

Interestingly, greater functional connectivity between NAc and prefrontal cortex predicted 

the development of chronic back pain [27,68], again indicating a causal role of frontostriatal 

circuits in the transition from acute to chronic pain. A further longitudinal study showed that 

brain activity associated with ongoing pain shifts from sensory pain processing regions to 

more emotion-related brain regions including mPFC with the transition from acute to 

chronic pain [68].

Mechanisms of frontostriatal gating

Converging lines of evidence, as outlined above, indicate that tinnitus and chronic pain are 

associated with structural and functional brain changes that overlap remarkably between 

both conditions (Fig. 1). The changes predominantly affect frontostriatal circuits including 

vmPFC and NAc, with possible additional roles for the thalamus and for medial temporal 

lobe structures, such as amygdala and hippocampus. Frontostriatal circuits with their closed-
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loop structure are anatomically well positioned to integrate sensory information for use in 

executive functions. MPFC in particular has been found to estimate subjective value [89,90] 

or affective meaning [91] across different stimuli, tasks, and modalities. The ventral striatum 

is considered the key component of the brain’s “reward value system” [92,93]. Changes of 

these circuits have not only been observed in tinnitus and chronic pain but appear to be a 

general feature of neuropsychiatric disorders associated with a negative emotional state such 

as depression [94,95].

Thus, we hypothesize that, together, NAc and vmPFC assign subjective value or affective 

meaning to sensory signals, whether generated externally or internally, and together act as a 

“gatekeeper” system, which triggers action to minimize signals with negative values. An 

internal signal corresponding to pain carries exclusively negative values; an internally 

generated tinnitus signal has at best a value of zero and neutral affective meaning 

(“irrelevant”), but could turn increasingly negative as time goes on. The frontostriatal 

system ultimately serves to nullify such disturbing signals: NAc and vmPFC are critically 

involved in the valuation of the signal and the initiation of appropriate modulation, as 

studies on both tinnitus and chronic pain suggest [10,14-16]. Other authors have couched 

this function of the frontostriatal system as “prediction error signaling” in a Bayesian sense 

[96]. According to this view, the frontostriatal system signals a deviance from the predicted 

state of the body and/or the environment, i.e. a prediction error, which serves to update 

predictions and to motivate appropriate behavioral responses. Tinnitus and chronic pain can 

thus be conceptualized as a continuous and persistent prediction error. This interpretation 

would also be consistent with a role for the cerebellum in both disorders, as postulated 

recently [97,98].

The modulatory role of the frontostriatal system is effected via lower levels of the neural 

hierarchy using descending pathways (“top-down modulation”). In the pain system, these 

levels range from the cerebral cortex and the thalamus down to the spinal cord dorsal horn, 

as proposed in the seminal gate control theory of pain [99]. For tinnitus, related gating 

theories have been proposed to explain tinnitus as the failure of a central “noise 

cancellation” process involving NAc and vmPFC, whose decisions may be effected via the 

thalamic reticular nucleus (TRN) [16]. The TRN has been singled out in this hypothetical 

gating process, as it controls information flow between thalamus and cortex [100,101] and 

can inhibit specific thalamic neurons in a highly selective, frequency-specific manner [102].

Compromised function of the frontostriatal gating system could thus affect perception of a 

sensory signal in two different ways, which are not mutually exclusive (Fig. 3). First, 

damage to the descending projection originating in vmPFC (Fig. 3, left loop) would result in 

a lack of suppression of irrelevant sensory signals [14-16]. Second, damage to the NAc/

vmPFC-scACC circuit or changes in its input systems could result in a dysfunctional 

valuation process and abnormal assignment of negative meaning to a neutral stimulus (Fig. 

3, right loop). This process has often been thought of as a learned “reaction” to the tinnitus 

or pain signal [103,104] and could be related to certain forms of aversive conditioning in 

rats, for which the circuits are well characterized and vmPFC and ventral striatum play a 

central role [105,106]. Dysfunctional valuation and gating mechanisms could initiate and 

maintain self-perpetuating processes, which in turn result in further dysbalances of 

Rauschecker et al. Page 6

Trends Cogn Sci. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



frontostriatal circuits and compromised gating processes at lower levels of the neural 

hierarchy. On the cognitive level, such self-perpetuation has, as well, been conceptualized as 

an abnormal learning process [107] which also depends on frontostriatal circuits [108-110].

Neurotransmitter systems involved in frontostriatal gating

Figure 3 demonstrates that the frontostriatal gating and valuation process is under the control 

of two major transmitter systems: dopamine and serotonin.

Decreasing dopamine activity seems to reduce tinnitus perception [111]. Furthermore, 

serotonin has long been hypothesized to play a role in tinnitus and its comorbidity with 

depression and insomnia [112,113]. In addition, the proposed loss of inhibition in tinnitus 

has been suggested to be due to lowered GABA levels along the auditory pathway 

[114,115]. However, none of these hypotheses are sufficiently elaborate to explain the 

neurochemical basis of tinnitus, let alone lead the way towards possible drug treatment.

Neurochemical changes and potential ensuing therapeutic interventions have been studied in 

greater detail for chronic pain than for tinnitus. Serotonergic modulation is an important and 

well-established therapeutic tool in chronic pain [116]. Some evidence for the therapeutic 

potential of dopamine is also available [117-119] but rarely recognized, even though 

dopamine has been shown to play an important role for the processing of pain [120]. 

Experimental studies in animals using microdialysis and microinjections as well as PET 

studies in humans have mostly concentrated on the dopaminergic [120] and opioidergic 

[121] systems, which closely interact [122]. These neurochemical changes show remarkable 

overlap with the structural and functional changes reviewed above. Reduced levels of 

dopamine and weakened dopamine responses to pain have been observed in ACC, thalamus, 

and striatum [123-125]. In the ventral striatum, dopaminergic activity has been linked to 

valuation, motivation, and learning [126-129]. It has therefore been claimed that dopamine 

and the ventral striatum particularly relate to the valuation of pain, which might influence 

the development of pain into a chronic condition [110]. In the opioidergic system, altered 

endogenous opioid activity has been reported in limbic brain areas, including prefrontal and 

insular cortices as well as striatum, amygdala, and hippocampus (for review see [121]). 

Interestingly, opioid-sensitive neural pathways from prefrontal and insular cortex, amygdala, 

and hypothalamus via the brainstem to the spinal cord dorsal horn play a key role in the 

descending modulation of pain [130]. A recent meta-analysis indicates that chronic pain is 

associated with considerable changes in these descending pain modulatory pathways [131], 

which might result in abnormal gating functions and thereby contribute to the development 

and maintenance of chronic pain [132-134]. Indeed, the efficiency of pain modulation has 

been shown to predict the development and treatment of chronic pain [134], which indicates 

a causal role of descending pain modulation and gating processes in chronic pain. It remains 

to be seen if equivalent effects can be demonstrated for tinnitus.

Concluding remarks and clinical implications

As discussed in this review, a central and causal role of frontostriatal circuits for the 

development and maintenance of tinnitus and chronic pain is emerging. We specifically 

propose that the ventromedial prefrontal cortex and the nucleus accumbens are part of a 
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central “gatekeeping” system, which evaluates the relevance and affective value of sensory 

stimuli and controls information flow via descending pathways.

Having identified the frontostriatal gating system as crucial for the development and 

maintenance of tinnitus and chronic pain, the problem now shifts to the next stage: Why do 

some individuals seem to have a predisposition for developing these disorders, whereas 

others show great resilience under the same circumstances? For instance, people with the 

same amount of loud-noise exposure and the same resulting level of hearing loss may or 

may not develop tinnitus. Presumably, genetic factors or gene-environment interactions 

produce both vulnerability and resilience, but at what level do they exert their effects? It 

appears likely that persons with tinnitus or chronic pain have a systemic vulnerability in one 

or more transmitter systems, such as dopamine or serotonin or their interaction, as described 

for other disorders [135]. The mechanisms are likely to be multifactorial, with genetic 

vulnerability, developmental insults, and environmental stressors considered synergistic 

contributors [136]. Resilience is a complex multidimensional construct and the study of its 

neurobiology is a relatively young area of scientific investigation [137]. Understanding the 

mechanisms of resilience in healthy individuals is one of the major challenges of both 

research fields. This could include, for instance, repair mechanisms protecting against 

damage done by stress to neurons in the mPFC (or reversing it). Deep-brain stimulation may 

also help restore lost function in frontostriatal disorders [138].

Although numerous open questions still need to be addressed (Outstanding Questions Box), 

the integration of these findings might give a new impetus to the prevention and treatment of 

these disorders. As prevention significantly depends on an individual’s predisposition, a 

standardized assessment of the individual susceptibility and resilience to tinnitus and chronic 

pain is desirable. Such an assessment could include psychophysical, psychological, genetic, 

and brain-based (neuroimaging) measures. For example, psychophysical assessment of 

susceptibility to chronic pain could comprise standardized sensory testing [139], including 

testing for the efficacy of pain modulation [134]. Brain-based measures could include the 

structure and function of frontostriatal circuits during rest and/or pain challenges [27,39]. If 

increased vulnerability is found, and considering that self-perpetuating learning processes 

may play a role, treatment should be initiated early to prevent or reverse these abnormal 

processes. Such strategies might include cognitive-behavioral therapy and physiotherapy as 

well as pharmacotherapy. Dopaminergic neurotransmission might represent a promising 

pharmacological target.
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Glossary

Tinnitus Perception of sound in the absence of an external auditory stimulus. 

Sometimes referred to as ‘phantom’ auditory sensation

Chronic pain Pain that persists past healing time, lasts or recurs for more than 3-6 

months and lacks the warning function of acute pain

Hyperacusis Decreased tolerance or heightened sensitivity to certain sound 

frequencies beyond a particular volume. Can lead to a painful or 

troublesome sensation with sounds that would not trouble a normal 

individual

Misophonia Intense aversion to sound. Condition in which an individual shows an 

extreme reaction to selective everyday sounds

Hyperalgesia Increased pain from a stimulus that normally provokes pain

Allodynia Pain due to a stimulus that does not normally provoke pain

Tonotopic map Topographic organization according to sound frequency observed in the 

auditory system
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Box 1

Volume loss in ventromedial prefrontal cortex (vmPFC): morphological 
bases and ultimate causes

One of the overarching findings in structural imaging studies of patients with tinnitus and 

chronic pain is a loss of gray matter in ventromedial prefrontal cortex (vmPFC), as 

determined by voxel-based morphology (VBM) (see main text and Fig. 2). Most authors 

tacitly assume that a volume loss corresponds to cell death or atrophy of neurons, 

occasionally even prompting calls to count age-dependent tinnitus and chronic pain 

among the rubric of neurodegenerative disease [140]. However, this interpretation is 

anything but certain. VBM-related volume changes can be related to functional-

behavioral changes, such as learning a new motor skill [141], and volume losses can be 

reversible [142]. Indeed, some studies report that a volume loss can recede as individuals 

recover from chronic pain [28-30]. This suggests that volume losses are at least not 

wholly related to atrophy, but should be seen more appropriately as plastic changes in the 

morphology of neurons, dendrites and axonal arbors, or may even include changes in 

neuronglia interactions. Ultimately, the validation of VBM methods and the identification 

of their morphological basis await parallel studies with histological-anatomical means, 

either in post-mortem human tissue or in animal models.

What drives the morphological changes that underlie the volume loss in tinnitus and 

chronic pain is a different question. Some models, e.g. [16], discuss the possibility that 

hyperactivity in NAc (or in sensory regions of the brain, such as auditory cortex in 

tinnitus), is relayed to vmPFC and exerts an excitotoxic effect on neurons there. The 

problem with this explanation is that neurons in NAc or auditory cortex do not seem to 

die at the same rate or not at all. A more likely interpretation is, therefore, that 

morphological changes in vmPFC, including any atrophy or cell death, are caused by 

factors that are independent of the process leading to hyperactivity in sensory areas. One 

such factor could be stress, which is known to modulate both tinnitus and chronic pain 

[5] and can even lead to the their onset. Indeed, extensive studies in animal models have 

demonstrated that specifically vmPFC undergoes dramatic structural modification when 

the animals are exposed to long-lasting stress [143]. Interestingly, dopamine release upon 

stress is increased in the PFC and inhibited in the NAc [144].

Prolonged sleep deprivation and insomnia are also inversely correlated with gray-matter 

volume of the brain in humans, specifically orbitofrontal cortex and hippocampus [145]. 

These effects may have to do with a dysregulation in cortisol levels [143], which could, 

in tinnitus subjects, reflect a disturbance of the neuroendocrine reaction to stress [146]. 

There is indeed a high prevalence of organic sleep disorders in tinnitus patients [147,148] 

and restoration of normal sleep patterns may be helpful for the treatment of tinnitus and 

chronic pain.
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Outstanding Questions Box

• Frontostriatal circuits are thought to play a major role in a variety of processes, 

e.g. valuation, reward learning, motivation, and decision making, which may all 

be relevant for tinnitus and chronic pain. What are the similarities and 

differences of frontostriatal conceptual models? How do they differ from a 

computational, mechanistic point of view, how do they precisely map onto 

frontostriatal circuits, and how can they be applied to tinnitus and chronic pain?

• What factors influence the resilience of some individuals against adverse 

circumstances, e.g. long-lasting stress, which can promote tinnitus and chronic 

pain in others?

• How can we assess individual susceptibility to tinnitus and chronic pain as well 

as treatment responses early and non-invasively? Early intervention may be 

critical, and the integration of genetic, psychological, clinical, and brain-based 

measures would facilitate this endeavor.

• How do sensory processes differ between tinnitus and chronic pain and across 

chronic pain syndromes? Their role needs further clarification.

• Can the involvement of dopaminergic and opioidergic neurotransmission, as 

demonstrated for the development and maintenance of chronic pain, be extended 

to tinnitus? Which processes are precisely subserved by which neurotransmitter 

system? Integration of preclinical information from animal models and clinical 

studies would be highly desirable.

• Can brain stimulation techniques be optimized to target frontostriatal circuits 

and to thereby improve their efficacy? Various invasive and non-invasive forms 

of brain stimulation show promise for the treatment of tinnitus and chronic pain.
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Trends Box

• Ventromedial prefrontal cortex (vmPFC) and nucleus accumbens (NAc) in the 

ventral striatum form a frontostriatal gating system for the valuation and top-

down modulation of sensory signals.

• A reduction in gray matter volume of medial prefrontal cortex, as determined 

with voxel-based morphometry, is one of the signature biomarkers of both 

tinnitus and chronic pain, although the exact location varies.

• Different subregions of the subcallosal region control tinnitus intensity and 

tinnitus distress: vmPFC is part of a gain control circuit, the subcallosal anterior 

cingulate cortex is responsible for negative valuation.

• Dopamine and serotonin act as neuromodulators of frontostriatal activity in 

chronic pain, which may provide avenues for future treatment of both disorders.
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Figure 1. Schematic of brain structures involved in tinnitus and chronic pain
Block diagrams of relevant brain structures are shown for tinnitus (left) and chronic pain 

(right). Please note that the diagrams primarily show the structures and connections most 

relevant in the context of the proposed concept, but are not exhaustive.

Abbreviations: A1, Anp: primary and nonprimary auditory cortex; S1, S2: primary and 

secondary somatosensory cortex; PFC: prefrontal cortex; vmPFC: ventromedial prefrontal 

cortex; NAc: nucleus accumbens; Amyg: amygdala; M/ACC: mid/anterior cingulate cortex; 

Hc: hippocampus.
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Figure 2. Reductions in gray matter found in tinnitus and chronic pain
The location of peak voxels and local maxima of gray-matter reduction found in tinnitus and 

chronic pain studies are represented on the medial surface of a T1-normalized brain 

template. Peak voxels that are situated on the lateral surface of the brain are not displayed.

Left: Locations of reduction in gray-matter volume in tinnitus. Green: Mühlau et al. [13]; 

orange: Leaver et al. [15]; pink: Husain et al. [49]; brown: Landgrebe et al. [17].

Right: Locations of reduction in gray-matter volume in chronic pain. Red: Smallwood et al. 

[24]; light blue: Cauda et al. [25]; yellow: May et al. [23] (migraine/headache); purple: May 

et al. [23]; dark blue: Baliki et al. [26] (chronic back pain and knee osteoarthritis).

Note that in the meta-analysis of May et al. [23], all available stereotactic coordinates were 

aggregated using GingerALE 2.0 (http://www.brainmap.org/index.html), and exact 

coordinates could therefore not be retrieved. As a result, one symbol falls on the genu of the 

corpus callosum, and an enlarged symbol was used in another instance.
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Figure 3. (Key Figure): Frontostriatal circuit with its main inputs and outputs (exemplified here 
for tinnitus)
The nucleus accumbens (NAc) receives excitatory input from the neocortex, which ends on 

GABAergic spiny projection neurons (filled symbol) directly and via inhibitory interneurons 

[149]. In addition, the NAc receives modulatory input from (among others) dopaminergic 

[150] and serotonergic [151] structures and forms a processing loop for the valuation of 

sensory stimuli with the subcallosal anterior cingulate cortex (scACC) and, via the ventral 

pallidum (VP), with thalamic nuclei in the limbic system, such as the mediodorsal nucleus 

(see also [14]). The amygdala (shown here without subdivisions and intrinsic circuitry) can 

bias this valuation system by providing emotional information [106]. The result of this 

valuation is used by the ventromedial prefrontal cortex (vmPFC) to send a descending signal 

to subcortical structures with mostly inhibitory effects. These can be achieved via inhibitory 

interneurons in the amygdala or NAc or via the thalamic reticular nucleus (TRN). The latter 

can attenuate thalamo-cortical transmission in sensory thalamic nuclei in a highly selective 

manner, thus exerting powerful gain control [16,100-102]. See [152] for more details on 

corticostriatal connectivity.

Abbreviations as in Fig. 1; in addition: TRN: thalamic reticular nucleus; VTA: ventral 

tegmental area; GABA: gamma-aminobutyric acid; vol: volume. Lines in green (with 

pointed endings) represent excitatory connections (glutamate); lines in red (with flat 

endings) refer to inhibitory connections (GABA). A direct GABAergic projection from the 

basal ganglia back to frontal cortex is currently hotly debated [153] and is shown as a 

dashed line.
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