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An intricate network of antagonistically acting transcription factors mediates the formation of a flat leaf lamina of Arabidopsis
(Arabidopsis thaliana) plants. In this context, members of the class III homeodomain leucine zipper (HD-ZIPIII) transcription
factor family specify the adaxial domain (future upper side) of the leaf, while antagonistically acting KANADI transcription
factors determine the abaxial domain (future lower side). Here, we used a messenger RNA sequencing approach to identify
genes regulated by KANADI1 (KANT1) and subsequently performed a meta-analysis combining our data sets with published
genome-wide data sets. Our analysis revealed that KAN1 acts upstream of several genes encoding auxin biosynthetic enzymes.
When exposed to shade, we found three YUCCA genes, YUC2, YUC5, and YUCS, to be transcriptionally up-regulated, which
correlates with an increase in the levels of free auxin. When ectopically expressed, KAN1 is able to transcriptionally repress these
three YUC genes and thereby block shade-induced auxin biosynthesis. Consequently, KANT1 is able to strongly suppress shade-
avoidance responses. Taken together, we hypothesize that HD-ZIPIII/KAN form the basis of a basic growth-promoting module.
Hypocotyl extension in the shade and outgrowth of new leaves both involve auxin synthesis and signaling, which are under the

direct control of HD-ZIPIII/KAN.

A fundamental question in plant developmental bi-
ology is how plant organs achieve their final form.
Leaves of flowering plants are so-called lateral organs
that initiate from small populations of founder cells in
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the periphery of the shoot apical meristem. The initia-
tion and proper spacing of leaves around the shoot apex
are mediated by polar auxin transport (Reinhardt et al.,
2000, 2003). Once initiated, polarity axes (proximodistal,
dorsoventral, and mediolateral) are established, guid-
ing the fast-dividing primordia cells in order for the leaf
to attain its final shape (Hudson, 2000). A complex
network of transcription factors and small RNAs acts to
divide the leaf primordium along the dorsoventral axis
into distinct zones: (1) the adaxial zone producing cells
and tissues that will form the upper part of the leaf
blade; (2) the abaxial zone that will form the lower side
of the leaf blade (Byrne, 2006); and (3) the middle do-
main required for blade outgrowth (Nakata et al., 2012).
It is important to note that, besides the molecular
framework that is required for proper leaf initiation
and development, the environment strongly influences
organ shape and physiology. The latter is exemplified
in shade, where the petiole elongates to allow bet-
ter spacing between the light-capturing leaf blades
(Kozuka et al., 2005); increased stomata density in re-
sponse to elevated CO, levels (Woodward, 1987); and
decreased leaf size in response to cold temperature
(Gurevitch, 1992).
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Members of the plant-specific class III homeodomain
leucine zipper (HD-ZIPIII) transcription factor family
act as major regulators of adaxial leaf development
(McConnell et al.,, 2001; Emery et al., 2003). HD-ZIPIII
mRNAs are highly expressed in the adaxial domain and
absent in the abaxial domain. This expression pattern is
achieved by a gradient of microRNAs, miR165/6, func-
tioning in opposite directions (Emery et al., 2003; Juarez
et al., 2004; Mallory et al., 2004). KANADI (KAN), tran-
scription factors of the GARP family, literally mirror HD-
ZIPIII expression and are most abundant in abaxial tissue
(Kerstetter et al., 2001; Emery et al., 2003). HD-ZIPIII and
KAN act antagonistically, thus maintaining a stable
dorsoventral axis that allows proper outgrowth of the
leaf blade. Besides their complementary patterns of ex-
pression, HD-ZIPIII and KAN also exhibit opposite bio-
logical activities; whereas HD-ZIPIIIs mostly function as
transcriptional activators, KAN proteins seem to pre-
dominantly act as transcriptional repressors. Recently,
direct target genes of HD-ZIPIII protein, REVOLUTA
(REV) and KANT1, have been identified (Brandt et al.,
2012; Merelo et al., 2013; Reinhart et al., 2013; Huang
et al., 2014). These genome-wide screens revealed that,
besides their opposite expression patterns and biological
activities, the HD-ZIPIII/KAN antagonism is also man-
ifested in the opposite regulation of a set of shared target
genes (Brandt et al., 2012; Merelo et al., 2013; Reinhart
et al.,, 2013).

In addition to the determination of polarity in the early
leaf, KAN1 plays additional roles in other polarity setup
processes in the ovule, vasculature, and root (Hawker
and Bowman, 2004; Ilegems et al., 2010; Kelley et al,,
2012). We recently discovered that, in addition to the
basic patterning function of the HD-ZIPIII/KAN mod-
ule, both gene families seem to be also required for
adaptive developmental processes. Both REV and KAN1
impinge on a set of genes known to be required for
shade-dependent growth initiation. These genes com-
prise components of the auxin biosynthesis machinery
and transcription factors of the class II HD-ZIP (HD-
ZIPII) family (Bou-Torrent et al., 2012; Brandt et al,
2012). Furthermore, HD-ZIPIIs are also expressed in the
adaxial domain and, together with HD-ZIPIIIs, promote
adaxial cell fate (Brandt et al., 2012; Turchi et al., 2013).

Auxin is required for both the initiation and po-
larization of leaf primordia. Our previous studies
revealed that two genes encoding auxin biosynthetic
enzymes, TRYPTOPHAN AMINO TRANSFERASE OF
ARABIDOPSIST (TAA1) and YUCCAS5 (YUCS), are
direct and negative KAN1 targets (Brandt et al., 2012;
Merelo et al., 2013). Moreover, in kan mutant plants,
members of the PINFORMED (PIN) family of proteins
that encode auxin efflux carrier show a disturbed locali-
zation pattern, indicating that one of the functions of KAN
proteins is to regulate auxin transport (Eshed et al., 2001,
2004). These findings indicate that both auxin synthesis
and transport are regulated by KAN1. Recently published
genome-wide approaches to isolate KANI target genes
confirmed the regulation of genes encoding components
of auxin biosynthesis and transport and further revealed
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that a number of factors involved in transducing auxin
signals, such as members of the INDOLE-3-ACETIC
ACID INDUCIBLE (IAA), AUXIN RESPONSE FACTOR,
and NONPHOTOTROPIC HYPOCOTYL (NPH)-like
families of proteins, also are potentially under the di-
rect regulation by KAN1 (Merelo et al., 2013; Reinhart
et al., 2013; Huang et al., 2014).

Here, we used an additional messenger RINA se-
quencing (mRNA-Seq) approach to characterize genes
regulated by KANT1 in Arabidopsis (Arabidopsis thaliana).
Transgenic plants expressing 355::FLAG-GR-KAN1 were
exposed to either mock treatment or dexamethasone
(DEX) to induce KAN1 release from its cytoplasmic
blockage. Illumina sequencing of mRNAs isolated
from these plants in comparison with wild-type plants
revealed approximately 1,000 transcripts that change
significantly in expression in response to KAN1 induc-
tion. We employed a meta-analysis comparing this new
data set of KAN1-regulated genes with three recently
published data sets that used chromatin immunopre-
cipitation sequencing (ChIP-Seq), DNA-tiling arrays,
or DNA microarrays and identified a set of 72 high-
confidence KANT1 targets. Because our previous work
suggested that KAN1 has an additional role in the shade-
avoidance response, we also performed RNA-Seq in
simulated shade conditions. Here, we determined
shade-regulated transcripts in Columbia-0 (Col-0) wild-
type plants and discovered that KAN1 antagonizes
shade growth by repressing a large number of genes
encoding auxin biosynthesis and signaling components.
Determination of free auxin levels in shade revealed that
KANT1 represses auxin production, which strongly in-
hibits shade-avoidance responses in transgenic plants
misexpressing KANT1 at high levels. We conclude that
the module of HD-ZIPIII/KAN transcription factors
that inter alia patterns young leaf primordia forms the
basis of a basic growth-promoting module.

RESULTS

Comparative Analysis of Gene Expression Profiling Data
Sets Using an Inducible Version of the KAN1 Protein

Constitutive overexpression of the KANI1 protein
causes severe developmental defects and has led to the
development of inducible systems of KAN1 induction
using the rat glucocorticoid receptor (GR; Brandt et al.,
2012; Merelo et al., 2013; Reinhart et al., 2013; Huang
et al.,, 2014). Plants that constitutively overexpress the
GR-KANT1 fusion protein accumulate high levels of
protein in the cytoplasm, which, upon DEX exposure,
translocates to the nucleus and induces KANT1 target
genes. Using this inducible system, microarray-based
expression profiling experiments have been carried
out with the goal to identify genes regulated by KAN1
(Merelo et al., 2013; Reinhart et al., 2013; Huang et al.,
2014). Complementary to these approaches, we gener-
ated transgenic plants overexpressing GR-KAN1 with
an additional N-terminal FLAG epitope (355:FLAG-
GR-KAN1) and performed ChIP-Seq studies to identify

1241



Xie et al.

genomic regions bound by the KAN1 transcription fac-
tor (Merelo et al., 2013). These approaches resulted in the
identification of approximately 500 genes that change in
expression in response to KAN1 induction and approx-
imately 3,000 genes for which a significant enrichment of
KANT1-bound chromatin was identified in the proximal
promoter region.

To enhance our understanding of the function of
KAN1, it is important to better define its direct targets.
Knowing the nature of these direct targets will allow us
to predict how KAN1 functions in patterning and
adaptive growth processes. So far, all expression pro-
filing approaches relied on microarray-based systems.
In order to identify transcription units not repre-
sented on these expression arrays or genes expressed at
low levels precluding previous identification, we per-
formed KAN1 induction experiments followed by
Illumina mRNA sequencing. Wild-type and transgenic
355:FLAG-GR-KANT1 plants were grown for 10 d in
white-light conditions. The two genotypes were then
treated with either a mock solution (0.5% [v/v] ethanol)
or with a 50 um DEX solution for 90 min. Altogether, we
collected two biological replicates for each genotype
and treatment, isolated RNA, constructed sequencing
libraries, and sequenced these on the Illumina HiSeq
platform. In total, approximately 550 million paired-
end reads were produced, and each sample contained
above 90% correctly aligned read pairs. Comparative
mRNA-Seq analysis of genes whose expression sig-
nificantly decreases in response to KAN1 induction
resulted in the identification of 969 transcripts (Fig. 1A;
Supplemental Data Set 51). When compared with the
ChIP-Seq data set, we can identify 661 genes (corre-
sponding to 66%) being potentially directly regulated
(Fig. 1B; Supplemental Data Set S1). When compared
with the tiling array gene expression profiling data
(Merelo et al., 2013) and the microarray data (Reinhart
et al., 2013), 75 genes can be identified that are down-
regulated in all three data sets (Fig. 1A; Supplemental
Data Set S1). A further focus on only the genes that are
also bound by KANT1 in the ChIP-Seq data set reveals a

A B
RNA-Seq Tiling array RNA-Seq Tiling array
969 genes 495 genes 661 genes { 324 genes
182 186
Microarray Microarray
249 genes 217 genes

1312 genes total also in ChiP-Seq (5811 genes)

Figure 1. Comparison of available genome-wide data sets aiming at
the identification of genes down-regulated by KAN1. A, Venn diagram
showing genes regulated by RNA-Seq from this study, DNA tiling array
(Merelo et al., 2013), and DNA microarray (Reinhart et al., 2013). B,
Venn diagram showing the numbers of genes that are potentially di-
rectly regulated by KANT.
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total of 72 genes that are bound and down-regulated
by KANT1 (Fig. 1B; Table I). It is reasonable to assume
that many of these 661 genes that were identified in our
combinatory analysis can be directly regulated by
KANT1 and, thus, may perform functions downstream
of KANT1.

We also performed a comparative analysis of our
RNA-Seq data and the published microarray and tiling
array data with a recently published study where the
authors treated wild-type and transgenic 355::GR-KAN1
plants with cycloheximide (CHX) prior to DEX treat-
ment and RNA isolation (Huang et al., 2014). This latter
analysis resulted in the identification of 231 differentially
expressed transcripts in response to GR-KAN1 induc-
tion. CHX was used to block protein synthesis, with the
aim of enriching for transcripts under the direct regula-
tion of GR-KAN1. Comparative analysis of the CHX
data set with our RNA-Seq data sets and the recently
published tiling array data set eliminated approximately
90% of all regulated genes. Of the 72 potential directly
regulated genes identified in this study, only 24 genes
are regulated in the presence of CHX (Supplemental Fig.
S1). We suspect that the addition of CHX and the com-
bination of CHX and DEX did not aid in the identifica-
tion of KANT direct targets but rather produced artifacts
that hampered the identification of real direct targets.
This is especially apparent in the case of the best-known
direct KANT1 target gene, ASYMMETRIC LEAVES2 (AS2;
Wu et al.,, 2008), which we can identify in our ChIP-Seq
and RNA-Seq data sets but is absent from the CHX data
set (Huang et al., 2014).

Classification of Genes Underlying Potential Direct
KANT1 Regulation

As reported previously, KANI1 induction causes
profound changes in genes encoding components of the
auxin signaling machinery from synthesis and trans-
port to signal dissipation. We used the agriGO tool (Du
et al., 2010) to search for enriched Gene Ontology (GO)
terms in the set comprising the 72 potential high-
confidence direct targets. This analysis revealed that
the response to stimulus term is significantly enriched,
and besides the PIN4 auxin transporter, many genes
encoding auxin-related SMALL AUXIN UP-REGULATED
(SAUR) and NPHB3-type proteins are potential direct
KANT1 targets (Fig. 2A). In addition, the second-
strongest enriched term is DNA-binding/transcriptional
regulation, because several of the downstream target
genes encode for transcriptional regulators (Fig. 2B).
Besides these two obvious GO terms, we also found
enrichment for the term transport processes and several
genes encoding ion transporter, which seem to underlie
direct KAN1 regulation (Fig. 2C; Table I). It might be
important to note that sugar transport also seems to be
negatively regulated by KAN1. Taken together, KAN1
might act by regulating not only transcription factors
and hormone biosynthesis but also ion and sugar
homeostasis, thus strongly influencing the cellular
environment.
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Table I. The 72 high-confidence KANT targets identified through meta-analysis

Microarray data were retrieved from Reinhart et al. (2013).

Arabidopsis Genome

Initiative Code Annotation ChIP-Seq Binding Site RNA-Seq Microarray
kb to gene fold change
At1g01120 KCS1 -2.3 | -0.1 0.14 0.36
At1g01140 CIPK9 -0.9]|-04 0.42 0.37
At1g01490 HMT superfamily -1.0| -0.3 0.0 0.5 0.24 0.26
At1g21590 Protein kinase -0.5 0.19 0.37
At1g23090 ASTI1 —4.6 | —3.1 0.15 0.33
At1g25550 Myb-like transcription factor family -0.31]0.5 0.25 0.19
At1g25560 TEMPRANILLOT (TEMT) -3.1]-21]-09]3.0 0.32 0.23
At1g28660 GDSL-like superfamily -1.0] -0.2 0.47 0.39
At1g33240 AT-GTL1 0.2 0.54 0.48
At1g35350 PHO1-H8 -1.8] —0.2 0.43 0.23
At1g51805 LRR kinase family -0.4 0.07 0.08
At1g52290 PERK15 —0.1 0.16 0.14
At1g61660 BHLH112 -10.7 | =32 | —1.4 0.43 0.46
At1g66840 PMI2 —0.2 0.13 0.26
At1g69760 Unknown protein —-6.1] -3.0] -24 0.13 0.29
At1g71880 SUC1 -10.1| =59 | =5.5| —4.6 0.09 0.46
At1g72450 JAZ6 -2.1]-13 0.27 0.22
At1g76990 ACR3 -3.6|—-13 0.33 0.50
At2g01420 PIN4 —0.410.9 0.16 0.21
At2g02950 PKS1 -0.3 0.29 0.21
At2g16400 BLH7 -0.4 0.34 0.33
At2g17820 ATHK1 —0.2 0.18 0.31
At2g21210 SAUR6 -0.2 0.58 0.45
At2g27050 EIL1 0.4 0.50 0.61
At2g30520 RPT2 -3.2]-1.0 0.61 0.44
At2g30990 Unknown protein -0.9] —0.2 0.44 0.39
At2g31070 TCP10 —0.1 0.55 0.23
At2g38310 PYL4 0.6]1.2 0.40 0.46
At2g39360 Protein kinase superfamily -0.312.2 0.44 0.29
At2g40270 Protein kinase superfamily -0.8|-0.2]0.9 0.38 0.37
At2g41940 ZFP8 -3.9]-29]1.6 0.16 0.23
At2g42690 a/B-Hydrolase superfamily -0.2 0.29 0.51
At2g43820 GT -1.0 0.56 0.34
At3g05120 ATGID1A ~1.7] -0.6 | —0.1 0.30 0.42
At3g06750 Hyp-rich glycoprotein family -1.8]-0.710.0]0.9 0.26 0.30
At3g13110 ATSERAT2 —3.1 0.44 0.43
At3g15570 NPH3 family protein -1.1 0.11 0.07
At3g19850 NPH3 family protein -1.0 0.04 0.03
At3g19930 STP4 -1.71-09 0.40 0.50
At3g23820 GAE6 —9.4|-80|-39|-25]|-13 0.38 0.48
At3g49220 PME34 -0.2]0.0]0.0 0.15 0.26
At3g55560 AGF2 -1.1 0.32 0.46
At3g58120 ATBZIP61 -1.2 0.46 0.42
At3g61460 BRASSINOSTEROID-RESPONSIVE -2.3|-04 0.40 0.29
RING-H2 (BRHT)
At4g16980 Arabinogalactan protein family -0.41]0.3 0.34 0.41
At4g16990 RLM3 —-2.0 0.19 0.26
At4g18010 IPSPII —9.0| =73 | —=6.1| =3.5| =2.20.0 0.36 0.14
At4g18340 Glycosyl hydrolase superfamily =15 0.30 0.27
At4g22190 Unknown protein -3.0]-1.8 0.30 0.32
At4g24060 Zinc finger family protein -0.1]1.5 0.31 0.50
At4g24660 ATHB22 -1.5]-09 0.22 0.20
At4g25620 Hyp-rich glycoprotein family -3.5|-17]0.0 0.25 0.24
At4g25990 CIL -3.0]-19 0.12 0.18
At4g27300 SD11 —3.41]-03 0.20 0.19
At4g33050 EDA39 00128 0.08 0.22
At4g34220 LRR protein kinase family -1.5|-1.0 0.05 0.12
At4g37590 NPY5 -2.0|—-15]0.38 0.50 0.62

(Table continues on following page.)
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Table 1. (Continued from previous page.)

Arabidopsis Genome

Initiative Code Annotation ChIP-Seq Binding Site RNA-Seq Microarray
At4g38840 SAUR14 -0.3 0.48 0.32
At5g03150 JACKDAW (JKD) —3.1 0.22 0.28
At5g09850 MED26C 0.0 0.46 0.59
At5g11090 Ser-rich protein-related 16123143 0.41 0.35
At5g17860 CAX7 -1.1]-02]0.0]0.7 0.17 0.08
At5g28300 GT2L -0.310.7 0.44 0.36
At5g40450 Unknown protein -5.1|-36|-27]-15|-0.2 0.24 0.41
At5g47370 HAT2 —0.7 | —0.1 0.35 0.44
At5g47560 ATTDT -2.0|-09]0.0 0.64 0.29
At5g52900 MAKR6 -0.8123|44 0.07 0.21
At5g54250 ATCNGC4 -1.5]0.4 0.27 0.18
At5g59780 MYB59 —-6.0| —2.6 | —1.3 0.36 0.32
At5g61590 ERF107 -0.7 | —0.2 0.08 0.03
At5g63410 LRR protein kinase family -1.31]-0.2 0.22 0.30
At5g67440 NPY3 —0.50.0 0.1 0.36 0.48

Identification of cis-Elements Responsible for KAN1
DNA Binding

The analysis of ChIP-Seq data yielded the identifica-
tion of a possible KAN1-binding site (Merelo et al., 2013).
Using MEME-ChIP (Machanick and Bailey, 2011), high-
confidence ChIP-Seq peaks were analyzed and the
(A/G/C)GAATA(T/A) motif was found to be enriched
in those peaks. Using the purified KAN1 DNA-binding
domain as bait in PCR-assisted in vitro DNA-binding site
selection experiments (Huang et al., 2014), the slightly
different but similar GNATA(A /T) motif was discovered
as a potential KANT1 cis-element. However, since only the
DNA-binding domain of KAN1 was used in these ex-
periments, it cannot be excluded that the full-length
KANT1 protein interacts with motifs that are different
from this in vitro-identified element.

To identify the in vivo DNA-binding motif bound
by KAN1, we exploited the power of high-throughput
sequencing and compared our KAN1 ChIP-Seq and
mRNA-Seq data sets. First, we selected peaks identified
by ChIP-Seq that show at least 3-fold enrichment over the
control sample. This analysis resulted in the identification
of 4,183 peaks corresponding to 5,811 genes potentially
regulated by KAN1 (Merelo et al., 2013). Analysis of the
peak position relative to the potentially regulated tran-
scription units using the combination of ChIP-Seq and
RNA-Seq revealed that the majority of peaks (about 20%)
are located in the first 500 bp upstream of the respective
transcription starts (Fig. 3A). Our RNA-Seq analysis
resulted in the identification of 661 genes that are tran-
scriptionally responsive to KAN1 induction and also
showed binding of KAN1 to chromatin regions that are
in close proximity to these genes (Fig. 1B). In total, this
analysis yielded the identification of 1,160 chromatin re-
gions that are in close proximity to the 661 genes that are
regulated by KAN1. We subjected these 1,160 sequences
to MEME-ChIP (Machanick and Bailey, 2011) and iden-
tified three motifs that are significantly enriched in this
data set: E1, GAATA(A/T); E2, (A/C)CAAAA; and E3,
CAAGT(T/G)G (Fig. 3B). The finding that KAN1
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interacts with chromatin regions containing the GAATA
(A/T) motif is consistent with previous findings in which
we found the (A/G/C)GAATA(T/A) element to be
enriched in the ChIP-Seq data set (Merelo et al., 2013).
The second element, E2, (A/C)CAAAA, is currently
unknown. The third enriched element, E3, CAAGT(T/G)
G, strongly resembles an E-box (CANNTG) and therefore
might represent an enhancer element for KAN1 or an
element recognized by a KANT1-interacting protein.
Having identified these elements, we analyzed how
many of the 661 potential direct KAN1 target genes
contain one of these elements in the DNA region identi-
fied by ChIP-Seq. For several of the 661 target genes,
binding to multiple genomic regions was observed, and
in total, we could identify 1,160 genomic regions bound
by KAN1. We found 522 of the 1,160 genomic regions to
contain element E1, GAATA(A /T), in the central position
of the peak, 520 peaks have element E2, (A/C)CAAAA,
in the central position, and 129 have element E3, CAAGT
(T/G)G, in the central position (Fig. 3C). We also realized
that several peaks have combinations of the three iden-
tified elements in the central position of the peak, and the
combination of GAATA(A/T) and (A/C)CAAAA is
found in approximately one-half of all peaks having ei-
ther GAATA(A/T) or (A/C)CAAAA. It is interesting
that the KAN1-binding site identified in the AS2 pro-
moter (Wu et al., 2008) is composed of an (A/C)CAAAA
motif followed by two GAATA(A/T) motifs. This find-
ing implies that both motifs might have relevance for the
association of KAN1 with DNA. Therefore, we decided
to experimentally test (1) whether KAN1 interacts with
chromatin regions containing these motifs and (2)
whether genes harboring such motifs in their respective
promoters are transcriptionally regulated by KANT.

Experimental Validation of Potential KAN1 Target Genes

Previous studies have shown that KAN1 interacts
with the GAATA(A/T) E1 cis-element, which is the
most enriched element in our previous ChIP-Seq study

Plant Physiol. Vol. 169, 2015
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17/72 genes
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32172 genes
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16/72 genes
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Figure 2. GO analysis of KAN1 targets. Analysis of the 72 potentially direct KANT targets reveals a strong enrichment for genes
involved in response to stimuli (A), transcription factors (B), and localization and transport processes (C). FDR, False discovery

rate.

(Merelo et al., 2013). In order to test in vivo that KAN1
associates with the newly identified elements in this
study, we filtered the list of potential direct targets to
identify those genes having only one of the three ele-
ments (E1, E2, or E3) in the central region of the ChIP-
Seq peak in proximity to the gene. For each of those
cases, we selected three potential target genes and
performed individual chromatin immunoprecipitation-
quantitative PCR (ChIP-qPCR) experiments to detect
the binding of KANT1 to regions containing only the
respective element. Candidate target genes having an
E1l, GAATA(A/T), element in their proximal promoter
are At4¢34220 (Leu-rich repeat protein kinase family pro-
tein), At4¢19420 (pectinacetylesterase family protein), and
At3¢55560 (HOOK PROTEIN OF GA FEEDBACK?2 and
HOOK MOTIF NUCLEAR-LOCALIZED PROTEIN15).
Target genes with E2 element, (A/C)CAAAA, are
At2¢31070 (TCP DOMAIN PROTEIN10), At4g18340
(glycosyl hydrolase superfamily protein), and At5¢67190
(DREB AND EAR MOTIF PROTEIN2). E3, CAAGT(T/G)G,
elements are found in promoters of the following can-
didate targets: At1g52290 (protein kinase superfamily
protein), At1g60870 (MATERNAL EFFECT EMBRYO
ARREST9), and At3¢08660 (phototropic-responsive NPH3
family protein). For each of these genes, we selected three

A B 2 2
i 2AATA: 23TATTC
5o 2 2
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E‘: 0 — N M S 1N O 0 L <+ u1n O
@
g 2 2 2
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5' region 3' region

positions (I, II, and III) at which either strong or no
enrichment was observed and tested by individual
ChIP-qPCR whether KANT1 associates with the regions
containing the respective elements (Fig. 4). For all the
genes we analyzed, we detected significant binding of
KANT1 to regions containing E1, E2, or E3 elements in
their respective promoters, which supports the validity
of our ChIP-Seq data set. These findings suggest that
KANT1 associates with the chromatin of these target
genes by interacting with the identified elements.

We next tested whether these potential KAN1 target
genes are also transcriptionally regulated by KAN1, so
we performed quantitative reverse transcription (RT)-
PCR experiments with Col-0 wild-type and 35S5::FLAG-
GR-KANT transgenic plants treated with either a mock
or a DEX solution (Fig. 5). All selected genes harboring
El, E2, or E3 elements in their proximal promoters
were strongly down-regulated in 355:FLAG-GR-KAN1
transgenic plants in response to DEX application. Our
results demonstrate that KANT1 is able to actively re-
press these genes. To understand whether these genes
are also controlled by KAN1 in wild-type plants, we
compared their levels of expression between the wild
type and kanl kan2 double mutant plants. We found
diverging levels of expression in only four (At4g19420,

Positives: 522/1160
E-value: 2.4e-27

Positives: 518/1160
E-value: 2.8e-16

Positives: 129/1160
E-value: 7.2e-19

Figure 3. Identification of cis-sequences identified by ChIP-Seq. A, Locations of KAN1-binding peaks identified by ChIP-Seq/
RNA-Seq. B, Sequence logos of three potential KANT-binding sites identified by MEME-ChIP analysis. C, Venn diagram showing
the occurrence of three potential cis-elements in the promoters of the 661 RNA-Seq/ChIP-Seq KANT target genes.
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Figure 4. Validation of KAN1 interacting with the E1, E2, and E3 elements of selected target genes. ChIP-qPCR analysis is shown
for three KANT targets with the E1 element (GAATAW) in the promoter (A), three KANT1 targets with the E2-binding site (MCAAAA)
in the proximal promoter (B), and three KAN1 targets with the E3 element (CAAGTKG) in the proximal promoter (C). Top rows
depict the read coverage of the respective transcription units obtained from ChIP-Seq of Col-0 (gray) and 355::FLAG-GR-KANT
(green) plants. Gene models are shown under the ChIP-Seq tracks, and respective genes have a yellow background. Shaded peaks
harbor the respective elements. Bottom rows show ChIP-qPCR experiments with two biological replicates for 355::FLAG-GR-
KANT plants that were mock treated (black bars) and 355::FLAG-GR-KANT plants treated with DEX (green bars). Each genomic
region was tested with three primer pairs (I-111). Primer pairs not present in the read coverage plots are located outside the depicted
region. The y axis shows the fold enrichment normalized to the mock-treated immunoprecipitates.

At4g18340, At5g67190, and At1g52290) out of the nine of these target genes in kan1 kan2 double mutants relative

genes that we analyzed. KANI1 acts as a strong tran- to wild-type plants. This, however, is the case for only
scriptional repressor of these nine candidate genes; At5¢67190 encoding for the DEAR2 transcriptional reg-
therefore, we expected to find elevated levels of expression ulator (Fig. 5B). Three more genes have slightly elevated
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levels of expression in kanl kan2 double mutants relative
to wild-type plants, but these differences are not statis-
tically significant. In summary, we can conclude that
KANT1 associates with the chromatin of these target
genes via different cis-elements and, when ectopically
expressed, is able to strongly repress the expression of
these genes.

KANT1 Activity Suppresses Auxin Synthesis and Signaling

Many of the potential direct target genes we identify
here are involved in auxin-mediated signaling pro-
cesses. Auxin levels have been shown to increase when
Arabidopsis plants experience shade (Tao et al., 2008;
Won et al., 2011). This increase in auxin and the shut-
tling via PIN auxin carriers (Keuskamp et al., 2010) are
both essential for a full shade-avoidance response. To
investigate the effect of KAN1 on the regulation of
auxin-related genes in a situation where these genes are
actively turned on, we compared the transcriptomes of
plants grown in white-light and shade conditions. For
this reason, we germinated and cultivated Arabidopsis
seedlings for 10 d in white-light conditions and trans-
ferred one part to a true shade environment for 45 min.
To identify KAN1 targets in shade conditions, we also
cultivated transgenic 355:FLAG-GR-KANT1 plants like
the wild-type control plants but induced the translo-
cation of GR-KAN1 by DEX application 45 min prior to

Plant Physiol. Vol. 169, 2015

transfer to shade. In order to exclude light/DEX effects,
all plant material was treated with DEX or a mock so-
lution in white-light and shade conditions employing
the same protocol. After these treatments, we isolated
mRNA followed by RT and Illumina short-read se-
quencing. Our analysis revealed that 400 genes change
significantly in wild-type plants in response to shade
(Supplemental Table S1). Of these 400 genes, 241 genes
are transcriptionally down-regulated while 159 genes
are transcriptionally up-regulated. Among the shade-
induced genes are several known players, such as
members of the HD-ZIPII gene family (HOMEOBOX
FROM ARABIDOPSIS1 [HAT1], HAT2, HAT3, HAT4/
ARABIDOPSIS HOMEOBOX PROTEIN-2 [ATHB-2],
and ATHB4), the auxin efflux transporter gene PIN3,
and several YUC genes encoding auxin biosynthesis
genes (YUC2, YUCS5, YUCS, and YUCY9). When com-
pared with the set of KAN1-regulated genes in white
light and shade, we can identify 43 genes that are shade
induced and repressed by ectopic KAN1 induction (Fig.
6A). A slightly larger set of genes (59) contains genes
that are only repressed by KANT1 in shade conditions.
Because these 59 genes are all shade induced, the role
of KAN1 is to keep their expression low, even under
inductive light conditions (Fig. 6A). Inspection of these
59 shade-regulated KAN1 targets revealed a strong
overrepresentation of genes whose products func-
tion in hormone biosynthesis or hormone-mediated
signaling (Table II). Four genes are associated with
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Figure 6. Shade RNA-Seq. A, Venn diagram depicting the numbers of genes identified by mRNA-Seq of shade-exposed plants and
KAN1 target genes. B, Responses of known shade-regulated genes involved in dissipating the auxin signal. Plotted are relative
expression levels of the average of two biological replicates obtained from mRNA-Seq. FPKM, Fragments per kilobase of transcript
per million mapped reads (calculated by Cufflinks package); WL, white light.

abscisic acid (ABA) signaling processes: PYRABACTIN
RESISTANCE1-LIKE5/REGULATORY COMPONENT
OF ABSCISIC ACID RECEPTORS encoding an ABA
receptor; A5¢02760, an ABA down-regulated PROTEIN
PHOSPHATASE 2C phosphatase; ABSCISIC ACID
INSENSITIVE (ABI) FIVE BINDING PROTEIN4, an
ABI5-binding protein involved in ABA signal transduc-
tion; and POTASSIUM CHANNEL IN ARABIDOPSIS1
encoding an ABA-regulated potassium channel. Another
four genes are involved in brassinosteroid (BR) synthesis/
signaling: DWARF4 (DWF4) encoding a P450 enzyme in-
volved in BR synthesis; PHYB ACTIVATION TAGGED
SUPPRESSOR1 (BAS1) encoding a P450 enzyme involved
in BR catabolism; BRASSICOSTEROID-ENHANCED
EXPRESSION1 (BEET) encoding a basic helix-loop-helix
transcription factor; and BRH1 encoding a ring-finger
protein. The vast majority of genes, however (23 in to-
tal), encode auxin synthesis, transport, and signaling
components. Among these genes are several SAUR genes,
AUXIN/IAA transcriptional regulators, as well as three of
the four shade-induced YUC-type auxin biosynthesis en-
zymes (YUC2, YUC5, and YUCS), all of which are no
longer induced by shade when KANI is ectopically
expressed (Fig. 6B). The 59 genes (Table II) that no longer
respond to shade in a situation where KANI is ectopically
active might represent the core set of genes required for
activating growth in response to shade. It also demon-
strates that one of the major functions of KANT1 is to block
auxin action at all levels.

Shade, Auxin, Action

To further probe the possibility of KAN1 controlling
auxin-mediated growth responses, we exposed Col-0
wild-type plants and 355:FLAG-GR-KANT1 transgenic
plants to either white-light or simulated canopy shade
conditions in the presence or absence of DEX. When
mock treated, both Col-0 and 35S::FLAG-GR-KAN1
transgenic plants develop long hypocotyls upon expo-
sure to shade (Fig. 7A). In response to DEX treatment,
however, wild-type plants show normal responses
whereas 355:FLAG-GR-KANI1 transgenic plants are
completely shade insensitive (Fig. 7A). These findings
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support a role for KANT1 in the control of auxin-mediated
growth responses. The fact that several of the shade-
induced KANT1 target genes have a role in the produc-
tion of auxin (Table II; Fig. 6) prompted us to assess levels
of free auxin in both Col-0 and 35S:FLAG-GR-KANI1
transgenic plants. When exposed to true shade, we can
detect elevated levels of free auxin in Col-0 plants, and
this increase is unaffected by DEX application (Fig. 7B).
In contrast to wild-type plants, the amount of free auxin
in shade is strongly reduced in 355:FLAG-GR-KAN1
transgenic plants only when treated with DEX (Fig. 7B).
These findings suggest that the growth-repressing
effect of ectopic KAN1 expression in shade is partly
due to the inability of these transgenic plants to boost
auxin synthesis.

Since ectopic expression of KAN1 is able to suppress
both the production of auxin and the elongation of the
hypocotyl, we tested the shade-avoidance response of
kan1 kan2 loss-of-function double mutant plants. When
grown in white light, kanl kan2 double mutant plants
develop significantly longer hypocotyls compared
with wild-type plants (Fig. 7C). In far-red light-enriched
conditions, hypocotyl elongation is significantly reduced
in kan1 kan2 double mutant plants compared with wild-
type plants (Fig. 7, C and D). These findings indicate that
KANT1 is not only able to suppress elongation growth but
thatits activity is also required for a full shade-avoidance
response in wild-type plants.

DISCUSSION

We have employed a meta-analysis approach to gain a
deeper understanding of the function of the KANI1
transcription factor by identifying its direct target genes.
Using this approach, we can identify a set of putative
KANT1 target genes that act downstream of KANI in
patterning and growth-promoting pathways (Fig. 1;
Table I). Furthermore, by performing gene expression
analysis of transgenic 355:FLAG-GR-KAN1 plants in
shade conditions, we found that a large number of auxin-
related genes underlie direct KAN1 regulation and that
plants ectopically expressing KAN1 cannot induce auxin
biosynthesis in shade conditions (Fig. 7).
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Table Il. Shade-regulated KANT target genes

Arabidopsis Genome

Initiative Code Annotation

ChIP-Seq Binding Site

Shade Col-0 Mock White
Light Col-0 Mock

Shade GR:KANT DEX
Shade GR:KAN1 Mock

AT1G02640 BXL2

AT1G04240 SHY2

AT1G14920 GAl

AT1G15670 KMD2
AT1G18400 BEE1

AT1G21050 Unknown protein
AT1G21830 Unknown protein
AT1G29430 SAUR-like
AT1G29440 SAUR63
AT1G29450 SAUR64
AT1G29460 SAURG65
AT1G29500 SAURG66
AT1G29510 SAURG68
AT1G67900 NPH3 family
AT1G70940 PIN3

AT1G72416 DnaJ domain superfamily
AT2G23170 GH3.3
AT2G26710 BAS1

AT2G42870 PAR1

AT2G43820 GT

AT3G02140 TMAC2
AT3G03820 SAUR29
AT3G03850 SAUR26
AT3G12920 BRG3

AT3G15540 IAA19

AT3G21330 BHLH87
AT3G23030 1AA2

AT3G47570 LRR protein kinase family
AT3G50340 Unknown protein
AT3G50660 DWF4
AT3G55500 ATEXPA16
AT3G58120 ATBZIP61
AT3G61460 BRH1

AT4G13260 YUC2

AT4G14560 IAA1

AT4G17460 HAT1

AT4G18170 WRKY28
AT4G25260 Plant invertase superfamily
AT4G27450 Aluminum induced
AT4G28720 YUC8

AT4G31820 ENP

AT4G36850 PQ loop repeat family
AT4G37770 ACS8

AT5G02760 APD7

AT5G05440 PYL5

AT5G12050 Unknown protein
AT5G18010 SAURT19
AT5G18030 SAUR21
AT5G18050 SAUR22
AT5G18060 SAUR23
AT5G39860 PRE1

AT5G43890 YUC5

AT5G44260 TZF5

AT5G46240 KAT1

AT5G47370 HAT2

AT5G48900 Pectin lyase-like superfamily
AT5G52900 MAKR6
AT5G62280 Unknown protein
AT5G66580 Unknown protein
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Identification of a Set of Direct KAN1 Target Genes Using
Genome-Wide Comparative Approaches

Genome-wide transcriptional profiling approaches
have been employed to study the regulation of KAN1
target genes using 355:KANI-GR transgenic plants
(Merelo et al., 2013; Reinhart et al., 2013). All approaches
resulted in the identification of a relatively large num-
ber of potential direct KAN1 target genes (greater than
200). Using a comparative approach, we filtered all
available data sets to condense the number of genes
regulated by KAN1. Even though all data sets were
generated with transgenic plants harboring a similar
inducible overexpression construct of KAN1 (either
FLAG-GR-KANT1 or KAN1-GR), there are differences in
the genes that are regulated. Between the tiling array
study and the microarray study, only 35% of the genes
(89 out of 249) of the microarray study were identified
using tiling arrays and only 41% of the genes identified
to be altered on the tiling array were confirmed by
RNA-5Seq (205 out of 495). Interestingly, 73% (182 out of
249) of the genes identified by microarray could be
verified by mRNA-Seq (Fig. 1A). Further comparison of
all data sets with our ChIP-Seq data revealed that 68%
and 65% of the genes that are regulated using RNA-Seq
or tiling arrays, respectively, had KAN1-binding re-
gions close to or in their coding regions (Fig. 1B). Also in
this comparison, the microarray data set yielded the
largest overlap, with approximately 87% of the identi-
fied genes (217 out of 249) being bound by KANL1. The
finding that, of the 75 genes that were identified in all
data sets, 72 contain KAN1-binding regions (corre-
sponding to 96%) further indicates that our meta-
analysis enriched for genes that are likely direct KAN1
targets (Table I).

KANT1 is well known for its role as a patterning factor
of leaves, shoots, roots, and ovules. Surprisingly, when
analyzing the 72 high-confidence target genes, we
found a strong overrepresentation of genes involved in
responding to stimulus (47 out of 72, corresponding to
approximately 65%), and several of the genes are in-
volved in hormone-mediated signaling processes (Fig.
2A; Table I). A significant number of KAN1 targets are
involved in the regulation of ion transport, which is in-
triguing and suggests that, upon activation, KAN1 could
strongly influence the cellular environment (e.g. redox
state). HD-ZIPIII transcription factors counteract KAN
activity in the patterning process. The finding that REV,
a member of the HD-ZIPIII family, is redox sensitive (Xie
et al., 2014) would allow the regulation by KAN1 via
changing the cellular redox state. Such regulation could
potentially add to the HD-ZIPIII/KAN antagonism and
thus contribute to patterning and growth processes.

Identification of Novel cis-Elements in Genes Regulated
by KAN1

Combinatory analysis of genes regulated by KAN1
(using RNA-Seq) and promoters bound by KANT1 (us-
ing ChIP-Seq) revealed three sequence motifs (E1-E3)
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to be enriched in the respective target gene promoters
(Fig. 3). These novel elements could be recognized by
KANT1 directly or might represent binding sites for
proteins that interact with KAN1 and bind DNA as a
heteromeric complex. The selection of genes with a
single binding site of E1, E2, or E3 in the proximal
promoter revealed that these genes are bound by KAN1
and also underlie negative regulation by KANT1 (Fig. 5).
This suggests that KAN1 can recognize these novel cis-
elements and is able to transcriptionally control the
expression of the respective genes. To confirm that
KANT1 is involved in the regulation of these putative
target genes, we also examined their levels of expres-
sion in wild-type and kanl kan2 double mutant plants.
We found that only one of the examined genes is sig-
nificantly increased in expression in kanl kan2 plants
relative to the wild type (Fig. 2B). The expression levels
of three genes are significantly lower in kan1 kan2 plants
relative to the wild type, and all other genes are not
significantly changed (Fig. 2). This discrepancy could
be explained by the fact that we isolated RNA from
whole seedlings, but both KAN1 and KAN2 exhibit a
strong cell type-specific pattern of expression. In addi-
tion, KANI itself is a transcriptional repressor that
negatively regulates other transcription factors that also
function as repressors (e.g. TEM1, JKD, or HAT2). Re-
moval of the repressive activity of genes encoding re-
pressors (in the kanl kan2 double mutant background)
can potentially result in the up-regulation of shared
secondary target genes. Another hypothesis is that the
loss of KAN1 and KAN2 changes cell type identity and
that the cells in which KANT1 acts to repress these target
genes are no longer present, resulting in no overall
change in expression of these putative targets.

KANT1 Represses a Large Number of Shade-Induced Genes
and Counteracts Auxin-Mediated Shade Growth

Previous work has shown that both HD-ZIPIII and
KAN1 oppositely regulate a number of shared targets
that are associated with the shade-avoidance response
(Brandt et al., 2014). These common targets include genes
encoding the auxin biosynthesis enzymes YUC5 and
TAA1 as well as the HAT2 transcription factor. To better
understand the role of KANT1 in shade, we used mRNA-
Seq to identify shade-regulated genes that are also reg-
ulated by KAN1. We can identify 59 such genes that
include a large number of genes encoding auxin syn-
thesis and signaling components, providing evidence
that one of the main functions of KANT is to inhibit both
the production and dissipation of the auxin signal. This is
in line with the finding that, when treated with DEX,
355:FLAG-GR-KANT1 transgenic plants are unable to
elongate their hypocotyls (Fig. 7A). This effect might be
related to the fact that KANI is a strong repressor of
auxin biosynthesis genes and auxin levels in shade are
strongly affected in transgenic 35S::FLAG-GR-KAN1
plants treated with DEX (Fig. 7B). Three YUC genes
(YUC2, YUC), and YUC8) show strong transcriptional
up-regulation in response to shade treatment in the
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Figure 7. Influence of KANT on shade-induced auxin production. A,
Hypocoty! lengths of 35S::FLAG:: GR-KANT and wild-type Col-0 without
50 um DEX in white light and simulated canopy shade (far-red light-
enriched white light) are significantly shorter in the DEX-induced trans-
genic line. Box plots show the observed experimental data; white boxes
represent hypocotyls grown in white light, and gray boxes represent
shade-grown hypocotyls. B, Determination of free auxin levels in Col-0
and in 355::FLAG-GR-KANT transgenic plants using gas chromatography-
mass spectrometry. Plants were grown on petri dishes for 10 d and
treated with either mock solution or a 5 um DEX solution for 45 min.
One-half of the plants were then transferred to simulated canopy shade
conditions for another 45 min (gray background). Plotted are levels of
free IAA per gram fresh weight (FW). C, Hypocotyl lengths of kanT kan2
double mutant and wild-type Col-0 seedlings in white light (WL) and
far-red light (FR)-supplemented white light. Box plots show the observed
experimental data; white boxes represent hypocotyls grown in white
light, and gray boxes represent WL+FR hypocotyls. *, P < 0.001. D,
Ratio of the lengths of hypocotyls grown in far-red light-enriched white-
light conditions compared with white light. Plotted is the average of
three biological experiments with sp. *, P < 0.05.

wild type but not in DEX-induced transgenic 35S::
FLAG-GR-KANI1 plants. These findings indicate that
YUC2, YUC5, and YUCS are instrumental for the in-
duction of auxin in response to shade. However,
KANT1 seems to affect the shade-induced production of
auxin at multiple levels, as it can also repress the ex-
pression of TAAI that converts Trp to indole-3-
pyruvic acid (Stepanova et al., 2011), which is subse-
quently converted to auxin by YUC-type cytochrome
P450 monooxygenases. Thus, KAN1 blocks both steps
in this two-step biosynthetic process.

In contrast to the findings that KAN1 acts as a re-
pressor of auxin-related gene expression and, thus, as
an inhibitor of shade-induced growth responses, we
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found that kanl kan2 loss-of-function double mutant
plants show elongated hypocotyls in white light con-
ditions but reduced hypocotyl growth in far-red light-
enriched white light conditions (Fig. 7, C and D). These
findings show that KAN1 activity is essential for a full
shade-avoidance response and suggest that the auxin
gradient, which is established by the opposing activities
of HD-ZIPIII and KAN, generates the driving force for
elongation growth. If the gradient is weakened by the
loss of HD-ZIPIII activity (less auxin production in
adaxial tissue) or the loss of KAN activity (higher auxin
in abaxial tissue), this driving force is weakened and
hypocotyl growth is reduced.

CONCLUSION

Using a meta-analysis approach, we performed a
comparative analysis with genome-wide expression
and ChIP-Seq data sets for KAN1. We were able to
produce a set of 72 high-confidence KANI target genes
that are transcriptionally down-regulated by ectopic
KANI1 expression and are directly bound by KAN1. By
performing RNA-Seq in white light and shade condi-
tions, we identified several genes involved in auxin
biology. Concordantly, our data show that ectopic KAN1
suppresses auxin production in shade, which accounts for
the non-shade-avoiding phenotype of transgenic plants
ectopically expressing KANT.

Plants carrying loss-of-function mutant alleles in
genes encoding for HD-ZIPIII transcription factors ex-
hibit reduced shade-avoidance responses (Brandt et al.,
2012; Baima et al., 2014), while gain-of-function mu-
tants seem to be slightly hypersensitive to shade. In
addition, HD-ZIPIII can induce auxin production and
also positively regulate several other shade-induced
genes. HD-ZIPIII and KAN transcription factors have
opposing roles in controlling development, which is
evidenced by loss- and gain-of-function phenotypes:
loss of HD-ZIPIII activity causes developmental defects
similar to KAN gain of function, while HD-ZIPIII gain

HQI_-ZJ_IPIII } 7
KANADI N ,

| &

Hormone production

(auxin, ABA?, BR?)
TFs and other genes

HYPOCOTYL « BASIC GROWTH » LEAF BUD
ELONGATION MODULE OUTGROWTH

Figure 8. Speculative model for the action of the HD-ZIPIII/KAN growth-
promoting module. HD-ZIPIlls and KANs show polar expression in both
the vasculature of the hypocotyl and the early leaf primordium. Activation
of the HD-ZIPIII/KAN module causes the spatial induction/repression of a
number of direct target genes that results in the production of auxin and
outgrowth of the leaf primordium or elongation of the hypocotyl.
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of function resembles KAN loss of function. In addition,
both gene families seem to impinge on a set of shared
target genes (Brandt et al., 2012; Merelo et al., 2013;
Reinhart et al., 2013). In short, these findings point to-
ward the existence of a basic growth regulatory module
driven by the opposite activities of HD-ZIPIII and KAN
(Fig. 8). We hypothesize that this module is at the basis
of shade-induced auxin production, which is a prereq-
uisite for elongation growth processes. After leaf pri-
mordia initiation, HD-ZIPIII and KAN act to establish a
pattern that partitions the primordium into an adaxial
(future upper leaf side) domain and an abaxial (future
lower leaf side) domain. We think that it is possible that
the same forces that are being produced in response to
shade, which act to elongate the hypocotyl, also take
place in the leaf primordium, driving its outgrowth
from the shoot apex.

MATERIALS AND METHODS
Plant Material and Growth Conditions

For hypocotyl measurements, Arabidopsis (Arabidopsis thaliana) plants were
grown for 2 d in constant white light conditions to induce germination and then
kept for another 4 to 5 d either in the same growing conditions or were trans-
ferred to simulated canopy shade conditions (Brandt et al., 2012). The kan1 kan2/+
(Landsberg erecta) mutant plants were backcrossed into the Col-0 background
three times to obtain kan1 kan2 (Col-0) plants for comparative analysis with Col-0
wild-type plants.

For hypocotyl measurements, gene expression studies, and the determina-
tion of free auxin, wild-type and mutant plants were grown in white light and in
simulated canopy shade conditions. The following light regime was applied:
long-day conditions at 22°C for 2 d in a Fi-totron 600H growth chamber (Fisons)
in white light (blue light [460-480 nm] = 2.34 umol m s, red light [650-670 nm] =
1.93 umol m 257, far-red light [720-755 nm] = 0.65 umol m2s!, and photo-
synthetically active radiation [395-710 nm] = 89.3). For shade avoidance hypo-
cotyl measurements, plants were transferred at day 2 to a shaded compartment
(using a combination of LEE filters [LEE] and far-red light bulbs [Narva; http://
www.narva-bel.de/]) in the growth chamber and irradiated with far-red light-
enriched white light (blue light = 0.88 umol m 25", red light = 1.65 umol m 25",
far-red light = 2.56 umol m 2 s, and photosynthetically active radiation = 39.8).
Seedlings were kept under these conditions for 4 d. Seedlings were photographed
and hypocotyls were measured using Image]. Comparison of the wild type and
kan1 kan2 double mutant was performed by growing them for 7 d under white
light (20-25 wmol m ™2 s™* photosynthetically active radiation; red:far-red light
ratio of 5.6) or for 2 d in white light and another 5 d under far-red light-enriched
white light (20-25 umol m 2 s~' photosynthetically active radiation; red:far-red
light ratio of 0.06).

Chromatin Immunoprecipitation

For the chromatin immunoprecipitation experiments, Col-0 and trans-
genic 355::FLAG-GR-KANI plants were grown in liquid Murashige and
Skoog medium for 10 d and induced with 50 um DEX for 90 min prior to
harvesting. Chromatin immunoprecipitation experiments were carried out
as described by Kwon et al. (2005), except that anti-FLAG M2 magnetic
beads (Sigma-Aldrich) were used and immunoprecipitation experiments
were performed for only 2 h.

RNA Extraction and Quantitative PCR

RNA was isolated from seedlings using the Roboklon GeneMATRIX Uni-
versal RNA Purification Kit following the manufacturer’s recommendations.
One microgram of total RNA was reverse transcribed using the Fermentas
RevertAid Premium reverse transcriptase with oligo(dT) primers. Comple-
mentary DNAs were diluted 10-fold, and 3.5 uL was used for RT-PCR.
Quantitative measurements were performed on a Bio-Rad CFX384 using the
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Fermentas SYBR Green qPCR master mix. Relative quantities were calculated
using the comparative threshold cycle method by determining the expression of
a gene of interest relative to an internal housekeeping gene. Oligonucleotides
are listed in Supplementary Table S2.

RNA-Seq Analysis

Sequencing libraries were prepared using the Illumina TruSeq RNA Library
Preparation Kit according to the manufacturer’s recommendations. Libraries
were sequenced on the Illumina HiSeq2000 platform, and between 14 and 22
million read pairs per sample were obtained. Approximately 550 million
paired-end reads were loaded into Galaxy (version 15.05.rc1; Giardine et al.,
2005; Blankenberg et al., 2010; Goecks et al., 2010), and quality was assessed
using FastQC (version 0.10.1). Tophat2 (version 2.0.9) aligned above 90% of
read pairs of each sample correctly to The Arabidopsis Information Resource 10
genome (Kim et al., 2013). Galaxy’s Cufflinks package (version 0.0.7) was
employed for differentially expressed gene calling (cutoff g-value of 0.05;
Trapnell et al., 2010).

Auxin Measurements

For the determination of free auxin (IAA) levels, approximately 200 mg of
Arabidopsis seedlings was harvested and homogenized in liquid nitrogen.
Extraction of the free analytes was carried out at 28°C for 90 min with 1.5 mL
of ethyl acetate containing 0.1% (v/v) formic acid and the internal standards
3-hydroxybenzoic acid and indole-5-formic acid. After centrifugation at
10,000g at 4°C for 10 min, 1.2-mL supernatants were collected, the ethyl ac-
etate was removed, and the samples were dried overnight in a SpeedVac
(100 mbar). Derivatization was performed with 70 uL of N-methyl-N-(trimethylsilyl)
trifluoracetamide (Sigma-Aldrich) for 60 min at 40°C; 1 uL was injected onto
the gas chromatograph column. Determination of the analytes was done by
gas chromatography-mass spectrometry (Agilent 6890 gas chromatograph and
Agilent 5973 single-quadrupole mass spectrometer; Agilent Technologies) using
split-injection mode and an SPB-50 column (30 m, 0.25 mm internal diameter;
Supelco, Sigma-Aldrich). The gas chromatograph oven temperature was held at
70°C for 5 min, then ramped at 5°C min " to 265°C followed by 2°C min™" from
265°C to 280°C, and afterward held for an additional 8 min at 280°C. Helium was
used as the carrier gas with a flow rate of 1 mL min~". Detection of analytes was
performed by electron impact ionization single-quadrupole mass spectrometry
operated in selected ion monitoring mode.

Sequence data from this article can be found in the Gene Expression
Omnibus Database under accession number GSE68684.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Comparison of available genome-wide data sets
aiming at the identification of genes down-regulated by KAN1.

Supplemental Table S1. Genes whose expression is altered in response to
shade in Col-0 plants.

Supplemental Table S2. Oligonucleotide sequences used in this study.

Supplemental Data Set S1. Lists of KAN1-regulated genes.
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