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Diabetes is associated with a paucity of insulin-producing
B-cells. With the goal of finding therapeutic routes to treat
diabetes, we aim to find molecular and cellular mecha-
nisms involved in -cell neogenesis and regeneration. To
facilitate discovery of such mechanisms, we use a verte-
brate organism where pancreatic cells readily regenerate.
The larval zebrafish pancreas contains Notch-responsive
progenitors that during development give rise to adult
ductal, endocrine, and centroacinar cells (CACs). Adult
CACs are also Notch responsive and are morphologically
similar to their larval predecessors. To test our hypothesis
that adult CACs are also progenitors, we took two
complementary approaches: 1) We established the
transcriptome for adult CACs. Using gene ontology, trans-
genic lines, and in situ hybridization, we found that the
CAC transcriptome is enriched for progenitor markers.
2) Using lineage tracing, we demonstrated that CACs
do form new endocrine cells after B-cell ablation or
partial pancreatectomy. We concluded that CACs and
their larval predecessors are the same cell type and
represent an opportune model to study both p-cell
neogenesis and B-cell regeneration. Furthermore, we
show that in cftr loss-of-function mutants, there is a
deficiency of larval CACs, providing a possible expla-
nation for pancreatic complications associated with
cystic fibrosis.

The zebrafish has a remarkable regenerative capacity, in-
cluding an ability to regenerate pancreatic B-cells (1,2). The
regenerative capacity of the fish has already revealed new
avenues by which therapies may be developed to replace

tissues in patients that otherwise would not normally heal
(3). Humans and other mammals can also undergo some-
what limited B-cell regeneration (4-6), yet whether such
regeneration includes [3-cell neogenesis is still under debate
(7-9). Investigation into whether B-cell neogenesis occurs
in mammals has likely been hindered by the more limited
regenerative capacity of those models. Knowledge of the
mechanisms used in the adult zebrafish pancreas to regen-
erate endocrine tissue has the potential to reveal routes by
which missing 3-cells could be replaced in diabetic patients.
Pancreata from zebrafish and mammals share consid-
erable similarity in terms of morphology and gene
expression. The larval zebrafish pancreas contains a single
principal islet and, starting at 5 days postfertilization,
secondary islets that form throughout the pancreas
parenchyma (10). The adult zebrafish pancreas consists
of four lobes: gallbladder-spleen, middle, left, and ventral.
B-Cells are arranged as isolated single cells and in islets
along with other endocrine cells. The principal islet is
normally located in the gallbladder-spleen lobe (11).
During zebrafish development, pancreatic Notch-
responsive cells (PNCs) give rise to endocrine, ductal,
and centroacinar (CACs) cells (10,12). CACs are defined as
specialized ductal epithelial cells located at the ends of
ducts within the acinar lumen. Both PNCs and CACs are
ductal cells that share the following characteristics: 1)
possession of long-cytoplasmic extensions (13), 2) distinc-
tive ultrastructure (14), and 3) responsiveness to Notch
signaling (10,15,16). CACs have been proposed to be adult
multipotent progenitors in rodents (15-19). Although the
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progenitor status of mammalian CACs remains controver-
sial (20-24), the idea is supported by the observation
that mammalian CACs proliferate in response to different
injuries, including streptozotocin-induced destruction of
B-cells (25), partial pancreatectomy (26), and acute or
chronic administration of caerulein (27).

To characterize CACs in more detail, we used RNA-Seq to
define their transcriptome. Gene ontology analysis revealed
that CACs are enriched for genes important in progenitor
biology. To explore whether CACs are involved in B-cell re-
generation, we have used two injury models in zebrafish: 1)
a transgenic method to specifically ablate B-cells and 2)
partial pancreatectomy (PPx), a surgical procedure that
removes the left lobe of the pancreas. Using inducible ge-
netic lineage tracing, we find that CACs do indeed contribute
to B-cell regeneration. Our discovery that CACs act as en-
docrine progenitors in a rapidly regenerating, genetically
tractable model can reveal mechanisms important in -cell
neogenesis that have been difficult to study in mammals and
that may ultimately be applied to improve regenerative ca-
pacity in diabetic patients to restore (3-cell mass.

RESEARCH DESIGN AND METHODS

Transgenic Lines
Tg(HS4-sst2:CFP;ins:PhiYFP-m-dest1-2TA-nfsB)™%  (abbre-
viated ins:NTR) carries a transgene containing 1) insulin pro-
moter driving a zebrafish codon-optimized NTR-T2A-yellow
fluorescent protein (YFP) open-reading frame and 2) so-
matostatin? promoter/enhancer driving CFP transcription
(Fig. 44). Other lines are listed in Supplementary Table 2.

CAC lIsolation

Three-month postfertilization adult Tp1:GFP (method 1)
and Tpl:gfp; flil:DsRed (method 2) fish were killed and
pancreata dissected in 1X Hanks’ balanced salt solution
(HBSS) without Ca®* or Mg”*. Pancreata were dissociated
in 0.7 mg/mL Collagenase P (Roche) (37°C, 20 min), fol-
lowed by addition of FBS (Gibco) to a 5% final concentra-
tion on ice. Cells were collected by 3 X 5 min centrifugation
(700g, 4°C) with resuspension in 1X HBSS with 5% FBS.
Cells were then resuspended in 1X HBSS, 0.01% Trypsin
(Gibco) (37°C, 5 min), followed by 3 X 5 min centrifugation
(700g, 4°C) with resuspension in 1X HBSS and 5% FBS and
filtration through 70 wmol/L and 40 pmol/L nylon filters
(BD Falcon). For method 1, allophycocyanin-conjugated
anti-CD-105 (60039AD; STEMCELL Technologies) was
used to label endothelial cells. Cells were sorted on a BD
Biosciences FACSAria III cell sorter.

RNA Sequencing

Total RNA was isolated (RNeasy Mini, Qiagen) and RNA-
Seq libraries were prepared (version 2; TruSeq RNA
Sample Preparation kit, Illumina). Fifty-cycle single-end
reads were collected (Genome Analyzer II, Illumina).
Reads were processed and mapped to Zv9/danRer7 using
RSEM (28). EBSeq (29) was used to determine differential
expression and significance values. Data files have been
submitted to GEO (http://www.ncbi.nlm.nih.gov/geo/).
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Quantitative PCR

cDNAs were made (SuperScript III First-Strand Synthesis
kit, Invitrogen). Quantitative PCR (qPCR) was performed
on a Bio-Rad C1000 Bio-Rad thermal cycler and analyzed
using the CFX Manager software (Bio-Rad). qPCR primers
are listed in Supplementary Table 3.

Drug Treatments

For ablation of B-cells, 30 mmol/L metronidazole (MTZ)
(M3761; Sigma) in PBS was intracoelomically (i.c.) in-
jected into ins:NTR fish at a dose of 0.25 g/kg body wt.
Control fish were injected with PBS. For activation of
CreERT2, 20 pL of 2 pwmol/L 4-hydroxytamoxifen (4OHT)
(T176; Sigma) (12) was i.c. injected daily for 3 days. For induc-
tion of 2° islets, 50 pwmol/L N-[N-(3,5-Difluorophenacetyl)-
L-alanyl]-S-phenylglycine t-butyl ester (DAPT) in E3 medium
(30) was applied to larvae from 3-5 dpf (10).

Partial Pancreatectomy

Fish were anesthetized in 0.168 mg/mL tricane (Sigma)
(30). An incision was made on the left flank, and most of
the left pancreatic lobe was removed. Sham surgeries were
performed as controls. Fish were kept in still water (28°C)
that was changed after daily feeding. For the first 3 days
after surgery, EAU was added to the water (2.5 pmol/L).
After PPx plus 3 days, EdU was delivered by i.c. injection
of 20 pL of 25 wmol/L 5-ethynyl-2'-deoxyuridine (EdU).

Immunohistochemistry, In Situ Hybridization, and
Microscopy

Five dpf larvae were fixed in 4% paraformaldehyde (4°C
overnight). Antibody staining and in situ hybridization
were performed as previously described (12,31). Primers
for making riboprobes are listed in Supplementary Table
3. For adult pancreata, 3-month postfertilization zebra-
fish were fixed overnight in 10% formalin at 4°C. Viscera
were then dissected, embedded in paraffin blocks, and
processed using standard procedures (Abcam). Antibodies
are listed in Supplementary Table 4. Images were collected
using a Nikon AZ100 microscope or a Nikon Al-si Laser
Scanning Confocal microscope. For adult quantification,
at least five sections of each individual islet >1,000 pwm
were counted per fish.

Glucose Assays

Adult fish were fasted (24 h) and killed, and blood glucose
was measured using a OneTouch Ultra (LifeScan) glucose
meter (32). Larval glucose levels were determined in 5 dpf
larvae using a glucose assay kit (BioVision). The cftrP#1049
mutant larvae were genotyped by observing Kupffer ves-
icle in 10-somite stage embryos (33). As a positive control,
ins:nfsb-mCherry’* larvae were treated with 10 mmol/L
MTZ (Sigma) or vehicle from 3 to 5 dpf (2).

RESULTS

Transcriptome Analysis of CACs

During development, endocrine cells, ductal cells, and
CACs originate from ductal PNCs, which are the only
Notch-responsive cells in the larval pancreas (Fig. 1A)
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Figure 1—RNA-Seq of the CAC transcriptome. A: PNCs (arrows) form the entire pancreatic duct (green) in 5 dpf larvae. gb, gallbladder.
Scale bar = 50 pm. B: In the adult pancreas, CACs (arrows) represent a subset of the ductal epithelium (green), which contains mostly non-
Notch-responsive cells (arrowheads). CACs are the only epithelial pancreas cells that remain Notch responsive. Scale bar = 20 pm. Anti-
2F11 (green), To1:hmgb1-mCherry (red), DAPI (blue). C: Differential gene expression (fold change >1.5) between CACs and non-CACs from
two separate preparations. Expression of 236 genes was enriched in CACs in both preparations. D: Genes most highly enriched in CACs
vs. non-CACs. P, probability of a gene being equally expressed in CAC and non-CAC samples. E: qPCR for cftr, clcn1b, and her15 from an
independent cell preparation confirms their enrichment in CACs (**P = 0.005, t test). F: Functional annotation clustering of genes upregu-
lated in CACs. DAVID analysis of biological process, cellular component, and molecular function gene ontology terms reveals significant
enrichment (enrichment score >1.3) of four clusters of terms associated with the identified 236 CAC markers.
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Figure 2—CAC-enriched gene expression in adult pancreas. A: Nkx6.1 (green) is expressed in CACs visualized using the Notch reporter
Tp1:hmgb1-mCherry (red). B: Endogenous expression pattern and subcellular location of a Cftr in TgBAC(cftr-GFP) fish. Cftr-GFP fusion
protein (green) is expressed in cell extensions of Nkx6.1-expressing cells (red). C: Endogenous expression pattern of nkx2.2a in TgBAC
(nkx2.2a:meGFP) fish; membrane GFP (green) is expressed in Nkx6.1-expressing cells (red). Membrane GFP expression is occasionally
observed in non-CACs cells within islets (yellow asterisk). CACs (arrows), scale bars = 20 pm.

(10,12). CACs are the only PNC-derived cells that remain
Notch-responsive in adults (12) (Fig. 1B); hence, we hy-
pothesized that CACs may function as adult progenitors.
To explore this possibility, we sought to characterize the
CAC transcriptome using RNA-seq. To flow sort adult
CACs, we dissociated pancreata from Tpl:GFP adult fish
and used two methods to remove contaminating Notch-
responsive endothelial cells: a CD105 allophycocyanin-
conjugated antibody to label endothelial cells red (method
1) and a second transgene, fli:dsRed, which drives red
fluorescent protein expression in endothelial cells
(method 2) (Supplementary Fig. 1A). Using either red
fluorescent blood vessel marker (bv), we collected four
populations from dissociated adult pancreata: green fluo-
rescent protein (GFP)+/bv—, GFP+/bv+, GFP—/bv+, and
GFP—/bv— (Supplementary Fig. 1B). As expected, gPCR
revealed high expression of the CAC marker sox9b in
GFP+ populations and of the vascular marker c¢dh5 in
bv+ populations (Supplementary Fig. 1C).

Using each method, we sequenced RNA from GFP+/bv—
(CAQ) populations and GFP—/bv— (non-CAC) populations.
Considering the intersection of both sequencing experi-
ments, we identified 353 genes that were differentially
expressed with >1.5-fold change difference in CACs versus

non-CACs, including 236 upregulated genes (Fig. 1C and D
and Supplementary Table 1). As expected for an epithelial
cell type, these genes included a number of ion channels
(clenlb, cftr) but also transcription factors important
in regulating pancreas progenitors such as the Notch-
downstream targets herl5.1/her15.2 (34). Using method 2,
we generated another independent preparation of RNA and
quantified expression of cftr, clenlb, and herl5 by qPCR.
These genes were significantly upregulated in CACs versus
non-CACs (Fig. 1E), confirming that our catalog is enriched
for CAC markers.

Using the functional annotation-clustering algorithm in
DAVID (35), we investigated whether our 236 CAC markers
were enriched for particular gene ontology terms. This anal-
ysis identified four biological clusters with a statistically
significant enrichment score >1.3 (Fig. 1F): 1) developmen-
tal programming, 2) epithelial cell biology, 3) epithelial de-
velopment, and 4) cell motility/cytoskeletal organization
(Supplementary Fig. 2). This analysis confirms that CACs
express a genetic program consistent with an epithelial
progenitor cell population, supporting our hypothesis
that CACs function as an adult progenitor cell pool.

We next investigated the expression pattern of three
CAC markers in adult pancreas: Nkx6.1, Cftr, and Nkx2.2a.
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Figure 3—PNCs express CAC markers. A and B: Whole mount in
situ hybridization for clcn1b and her15 mRNA (purple) in Tp1:GFP
(green) pancreata at 5 dpf. C and D: Nkx6.1 and TgBAC(cftr-GFP)
expression (green) in whole mount Tp7:Amgb1-mCherry (red nuclei)
pancreata at 5 dpf. E: TgBAC(nkx2.2a:meGFP) expression in
Nkx6.1-expressing cells in 5 dpf pancreas. Scale bars = 50 pm.

Nkx6.1 is important for endocrine differentiation and is a
known marker of PNCs (36). Using the Tp1:hmgbl-mCherry
reporter line, in which all Notch-responsive cells express
nuclear mCherry, we observed Nkx6.1 expression in all
CACs (Fig. 2A). Using TgBAC(cftr-gfp) fish, we observed the
endogenous expression pattern of a Cftr-GFP fusion protein
(33), which was localized to the thin cellular extensions of
Nkx6.1-expressing cells (Fig. 2B). Without the advantage of
using CAC or cell polarity markers, others have concluded
that Cftr marks the apical surface of ductal cells (37). In fact,
the protein is restricted to the thin extensions of CACs that
cover the inner lumen of the pancreatic duct. (See also
Fig. 3D.) Lastly, we used TgBAC(nkx2.2a:meGFP [membrane
GFP]) fish to examine the endogenous expression pattern
of nkx2.2a, a transcription factor important in endocrine
differentiation (38). In these fish, Nkx6.1-expressing CACs
expressed meGFP (Fig. 2C). Overall, our analysis establishes
a new set of markers that are consistent with the predicted
role of CACs as progenitor cells.

Larval Notch-Responsive Progenitors Express CAC
Markers

Our transcriptome analysis suggested that CACs are adult
progenitors, so we next hypothesized that CACs and PNCs
may represent a single cell type. Thus, we used in situ
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hybridization and the above-mentioned transgenic lines
to examine the expression pattern of several of our new
CAC markers in larval pancreata. To visualize PNCs, we
used our Notch-responsive reporter lines, Tp1:GFP or Tpl:
hmgbl-mCherry. In 5 dpf fish, we observed clcnlb, herl),
Nkx6.1, Cftr-GEP, and nkx2.2a:meGFP expression in PNCs
(5 of 5 genes examined) (Fig. 3A-E). As PNCs are progen-
itors for adult CACs (12) and share marker gene expres-
sion, cell morphology, and ultrastructure with them (10),
we conclude that PNCs are in fact an early population of
CACs. Henceforth, we will refer to PNCs as larval CACs.

CACs Proliferate and Are More Proximal to Islets
During B-Cell Regeneration

Larval CACs contribute to endocrine and ductal cell
populations during development (12). Thus, we next set
out to discover whether adult CACs play a role in (-cell
regeneration. To ablate B-cells, we used HS4-sst2:CFP;ins:
PhiYFP-m-dest1-2TA-nfsB™ % zebrafish (abbreviated ins:
NTR). In these animals, B-cells express destabilized YFP
and nitroreductase, which converts MTZ to a cytotoxin
(Fig. 4A). Fish were initially injected with MTZ (MTZ +0
days) or vehicle and then were killed at MTZ +3, +5, +7,
+10, and +17 days. We then analyzed blood glucose levels
and pancreas morphology. At MTZ +3 days, we observed
near total B-cell ablation (99.7%) and an unaffected a-cell
population (Fig. 4B-D and Supplementary Fig. 3A and B).
These fish were severely hyperglycemic but returned to
euglycemia after 2 weeks of recovery (Fig. 4E), confirming
previous studies (1). By MTZ +5 to +7 days, the number
of single B-cells and B-cell clusters (small groups of B-cells
not containing a-cells) initially increased and then re-
solved between MTZ +10 and +17 days (Supplementary
Fig. 3C and D). This observation is consistent with a model
of B-cell neogenesis, where single cells differentiate, pro-
liferate, and form islets (25).

To visualize CACs after B-cell ablation, we used the Notch
reporter Tp1:GFP. Single 3-cells were often seen proximal to
or in contact with CACs in controls (Fig. 5A). By measuring
the distance between single (3-cell nuclei and the nuclei of
the two nearest GFP-positive cells, we determined that at
MTZ +5 and +7 days, CACs were significantly closer to single
B-cells (14.35 * 0.6 wm and 14.74 = 0.7 pm, respectively)
than in controls (22.81 = 1.56 wm, P < 0.0001) (Fig. 5A-D).
Additionally, adjacent to CACs we occasionally saw single
insulin-expressing cells that were GFP positive and lacked
extensions (6 of 19 fish at MTZ +5 and +7 days) (Fig. 5C).
These results are consistent with a cell-fate transition
from CAC to single (-cell via a double-positive stage.

Large islets were associated with CACs in regenerating
and control pancreata (Fig. 5E). During regeneration, the
distance between large islets and CACs significantly de-
creased (10.84 * 0.6 um in controls vs. 6.27 '~ 0.4 pm
at MTZ +17, P < 0.0001) (Fig. 5SH). GFP-positive cells,
many of which coexpressed insulin (59.1% at MTZ +10
days, 7 of 7 fish), could even be found inside regenerating
islets (Fig. 5F, G, and I). Together, these results are
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Figure 4—B-Cell ablation and regeneration. A: ins:NTR transgene (see RESEARCH DESIGN AND METHODS). SST, somatostatin2. B and C: Three days
following treatment, control transgenic fish (B) compared with MTZ-treated fish (C). Insulin-expressing B-cells (green) were nearly absent from
islets. Anti-insulin (green), anti-glucagon (red), DAPI (blue). Scale bars = 50 um. D: The percentage of B-cells per islet returns to control levels
by MTZ +17 days. E: Blood glucose levels in MTZ- and vehicle-treated fish. B-Cell ablation results in hyperglycemia, which returns to control
levels by MTZ +17 days. Ctrl, control; D, day; N, number of fish analyzed. *P < 0.05; ns, not significant, t test compared with control.

consistent with CAC migration during regeneration—a hy-
pothesis supported by similar observations in rodents (39).

We also observed cell proliferation during {-cell
regeneration using EdU incorporation (40). Fish were
coinjected with EAU on MTZ +0 days and every other
day thereafter until sacrifice. In contrast to controls, by
MTZ +17 days many B-cells were labeled with EAU (4% vs.
50%, n = 4 and 6 fish, respectively), and CACs peripheral
to islets were also EAU labeled (6% vs. 30%, respectively)
(Fig. 5J and K). Thus, proliferation of both B-cells and
CACs had occurred during regeneration after cell-specific
ablation. Altogether, our observations led us to hypothe-
size that CACs play an active role in -cell regeneration.

CACs Directly Contribute to 3-Cell Regeneration

To directly test whether CACs are a bona fide adult
progenitor population, we used our cre-based strategy to
lineage trace Notch-responsive cells (12,41). This system
uses two transgenes: 1) a Notch-responsive cre driver,
Tpl:CreERT2, and 2) the cre responder, Bactin:lox-stop-

lox-hmgbl-mCherry. Zebrafish carrying both transgenes
are called lineage-tracing fish (LT). Addition of 40HT to
LT fish indelibly labels Notch-responsive cells with nuclear-
mCherry (nuc-mCherry). To quantify the efficiency of
40HT-dependent labeling in adults, we used LT fish that
also carried the Notch-responsive reporter, Tpl:GFP.
After injection of adult LT; Tp1:GFP fish with 4OHT daily
for 3 days, 75% of GFP-positive cells were labeled with
nuc-mCherry (n = 5) (Fig. 6A-C).

LT; ins:NTR triple-transgenic zebrafish were injected
daily for 3 days with 4OHT to label CACs and on the
next day were injected with MTZ to induce (3-cell ablation.
Control fish received identical 40HT injections followed
by vehicle injection. In control pancreata, nuc-mCherry
label was seen in CACs but never in insulin-expressing
cells (n = 1,191 cells from 5 fish). During early regeneration
at MTZ +3 days, B-cells were ablated and only CACs were
nuc-mCherry labeled, as in controls. However, by MTZ +7
days, in addition to CACs, cells within recovering islets were
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Notch-responsive cells and the percentage of islets containing GFP/insulin (Ins) double-positive cells. Within those islets containing GFP+
cells, quantification of GFP+ B-cells and insulin+ CACs. J and K: At MTZ +17 days, B-cells (open arrow) and CACs (arrowhead) have
incorporated EdU. Tp1:GFP (green), anti-glucagon (red), anti-insulin (white), anti-EdU (magenta), DAPI (blue). Scale bars = 50 um.
Ctrl, control; D, day. *P < 0.05, t test compared with control.

also labeled. At MTZ +10 days, 43% of insulin-expressing CACs Contribute to Ductal Cells and Endocrine Cells
cells were nuc-mCherry labeled (n = 320 cells from 4 fish) After Partial Pancreatectomy

(Fig. 6D-F). Hence, we concluded that CACs are progenitors We predicted that adult CACs represent a progenitor
that contribute to 3-cell neogenesis. source for other pancreatic cell types. To test this capacity
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Control +7 days

MTZ +7 days

Glucagon

PPx +7 days

Ptf1a:eGFP.
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Figure 6 —CACs are progenitors of endocrine and ductal cell types. A—C: 40HT injection labels 75% of Notch-responsive cells (green) with
nuc-mCherry (red nuclei) in LT; Tp1:GFP fish. D-F: LT; ins:NTR regenerating islets at MTZ +7 days. nuc-mCherry labels insulin-expressing
CAC progeny (yellow arrowheads). G-I: LT; Ptf1a:gfp fish at PPx +7 days. nuc-mCherry (red nuclei) labels regenerating duct, CACs (yellow
asterisks), and insulin-expressing islet cells (white) but not eGFP-positive acinar cells (green). Anti-insulin (white), anti-glucagon (green in B),

anti-mCherry (red), DAPI (blue). Scale bars = 25 pm.

of CACs during regeneration, we next used PPx in LT;
Ptfla:eGFP double-transgenic fish, which express enhanced
GFP (eGFP) in all acinar cells. We injected fish with 40HT
and EdU as previously before surgically removing the left
pancreatic lobe and treating with EdU for the following
7 days. By PPx +7 days, the operated pancreata appeared
indistinguishable from sham controls and 27.6% of the
cells in the regenerating lobe had incorporated EdU (vs. 1%
in sham controls, n = 5 and 5, respectively), demonstrating
that proliferation had occurred (Supplementary Fig. 4). We
detected nuc-mCherry-labeled endocrine cells, ductal cells,
and CACs in the regenerated lobe but did not observe nuc-
mCherry label in eGFP-expressing acinar cells (Fig. 6G-I).
Accordingly, we concluded that CACs represent a progenitor
pool for both endocrine and ductal cells during regenera-
tion, as do larval CACs during development (12).

cftr Is Necessary for Pancreas Development

Having established that CACs are endocrine and ductal
progenitors during development and regeneration, we
next became interested in whether any of the CAC
markers that we identified were important for pancreas
development. The expression of cftr in CACs is of partic-
ular interest, as loss of function of this gene in humans

leads to cystic fibrosis (CF), a debilitating disorder associ-
ated in 90% of cases with pancreatic insufficiency, pan-
creatic ductal blockage, and CF-related diabetes (CFRD)
(42). Analysis of the pancreata from cftr mutant larvae
showed that by 5 dpf, there was a small but significant
deficit in pancreas size and fewer Nkx6.1-expressing larval
CACs (Fig. 7A-C, G, and H). Consequently, the potential
of cftr’” larvae to produce secondary islets was also
significantly reduced (Fig. 7D-F and I), although this re-
duction did not affect glycemia (Supplementary Fig. 5).
Taken together, our results suggest that Cftr plays a role
in zebrafish CAC development and function. Ultimately,
cftr mutant fish may serve as a critically important CFRD
disease model.

DISCUSSION

Previously, we described a pancreatic Notch-responsive
population that resides in the larval ducts. These pro-
genitor cells differentiate and give rise to at least three
kinds of cells in the adult: endocrine cells, ductal cells, and
CACs. Two pieces of data suggested that CACs may also be
progenitors: 1) as shown previously by us and others,
CACs closely resemble their larval precursors in terms of
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Figure 7—Cftr plays an important role in the pancreas. A-F: Five dpf cftr’/~ pancreata have fewer CACs (anti-Nkx6.1, green) (A-C), and
secondary islet cells induced by DAPT treatment (anti-insulin plus anti-glucagon plus anti-somatostatin, arrows, red) (D-F) compared with
cftr’~ and wild-type pancreata. Scale bar = 100 wm. G-I: Quantification of the number (#) of CACs (G), surface area (H), and number of induced
secondary islet cells () in wild-type, cftr”’~, and cftr /= 5 dpf pancreata. N, number of pancreata quantified. *P < 0.05. **P < 0.001, t test.

morphology and ultrastructure (10,13,39), and 2) as
reported here, our newly discovered markers for adult
CACs are also expressed in the larval progenitors. As we
are interested in the cellular origins of 3-cell regeneration,
we decided that CACs were a promising candidate and set
out to see whether these cells were involved in pancreas
recovery after tissue damage.

Using a Notch-responsive reporter, we observed CACs
physically responding to the regeneration process, even
appearing to infiltrate damaged islets. However, the formal
possibility existed that non-CAC cells of unknown origin
became Notch responsive during the regenerative response.
Therefore, we used genetic lineage tracing of Notch-
responsive cells in our LT fish to label CACs and their
progeny before tissue damage. The presence of labeled cells
near the periphery of islets suggests that lineage-traced
CACs migrate from their centroacinar position toward dam-
aged islets. Interestingly, our functional annotation analysis
revealed that the CAC transcriptome is significantly
enriched for genes important for cell migration in other
contexts (e.g., cxcl12, npr2a). Investigation into the role
these genes play during (-cell regeneration may reveal
the mechanism behind this remarkable movement.

Clearly, B-cells can regenerate via neogenesis from
CACs in the adult zebrafish pancreas in a manner analo-
gous to endocrine formation during development.

However, the precise extent to which CACs contribute to
B-cell neogenesis cannot be reliably quantified using our
methods. For reasons discussed below, our data (and those
of other lineage tracing experiments) should not be over-
interpreted. Additionally, we appreciate that other cell
types also contribute to pancreas regeneration, such as
o- and d-cells that have been shown to transdifferentiate
in murine and zebrafish models of B-cell loss (43-45).

Hepatocytes in the liver of zebrafish can regenerate
from biliary epithelial cells (BECs) in larvae and adults
(41). Like CACs, BECs are Notch-responsive ductal cells.
Hepatocyte regeneration is dependent on the function of
the transcription factor Sox9b, which is upregulated as
biliary epithelial cells dedifferentiate (41). Sox9b function
is also required for the differentiation of pancreas pro-
genitors toward an endocrine fate (31). In contrast to
BECs, we observe that CACs maintain developmental pro-
grams, as evidenced by their continued expression of
s0x9b and nkx6.1. Indeed, the master regulators of B-cell
differentiation nxk6.1 and nkx2.2a are expressed in fish
CACs but not in mammalian CACs (34,38). This difference
may underlie the enhanced ability of the zebrafish pan-
creas to regenerate after (-cell loss, as maintenance of
developmental programs in fish CACs may allow them
to be continually available for differentiation once the
need for new B-cells arises.
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The notion that CACs and/or ductal cell types contrib-
ute to adult B-cell neogenesis in mammals has been the
focus of intense scrutiny. A number of studies have used
various loci to lineage trace CACs/ductal cells during
murine pancreas development and regeneration including
CAII (20), Hnf1B (21), Mucl (22), Hesl (23), and Sox9
(24). While all of the labeled cell populations contributed
to the endocrine compartment during embryogenesis,
most of these studies were unable to demonstrate that
adult pancreatic ductal cells contribute to 3-cell neogenesis
after either pancreatic ductal ligation or 3-cell-specific abla-
tion in adults (21-24). However, the results of these studies
come with several caveats. If genes important in maintaining
progenitor status (thus blocking differentiation) are used to
drive lineage tracing, the highest creER activity will likely
occur in cells that are the least expected to differentiate.
As such, unless 100% of a particular cell population can be
reliably labeled, one cannot definitively rule out the contri-
bution of ductal cells to B-cell regeneration in mammals.
Therefore, the contribution of zebrafish CACs to B-cell re-
generation presents an intriguing and potentially critical
model of (3-cell neogenesis from endogenous progenitors.

Despite conflicting evidence for CAC contribution to
mammalian pancreas regeneration, injury does seem to
reactivate developmental pathways in the adult pancreas.
After pancreatic ductal ligation, Sox9-expressing ductal
cells give rise to a few cells expressing Ngn3 (24), a gene
that encodes a master regulator of embryonic endocrine
differentiation. In another study, lineage tracing of Ngn3-
expressing cells demonstrated that some of these cells do
indeed complete differentiation and become B-cells (46).
Although this latter result clearly demonstrates that neo-
genesis can occur in the mammalian pancreas, this form of
regeneration is very limited and dependent on the severity
of the injury. Interestingly, isolated aldehyde dehydrogenase
isoform 1 (ALDH1)+ murine CACs/terminal ductal cells can
produce endocrine cells in both pancreatosphere and dorsal
bud explant cultures (47). However, whether these ALDH1+
cells are in fact CACs is unclear, as they do not highly
express Hesl, a downstream target of canonical Notch sig-
naling and a hallmark of CACs (10,15,16). In the fish,
Aldh1-expressing cells have recently been described in asso-
ciation with, but separate from, larval and juvenile CACs
(48). Whether CACs represent a genetically uniform or het-
erogeneous population in either fish or mammals remains
to be determined. Regardless, all together these observa-
tions suggest that it may be possible to manipulate devel-
opmental pathways in the adult in order to improve the
regenerative capacity of the mammalian pancreas.

Knowing that CACs are adult progenitors in the
pancreas will facilitate future studies into other human
diseases. As an example, we decided to study the CF trans-
membrane conductance regulator (cftr), transcripts for
which are highly enriched in zebrafish CACs. Abnormal
CFTR channel function causes CF, a debilitating disease
often associated with CFRD. CFRD is characterized by
diminished B-cell mass and insulin dependence (42).
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Our examination of cftr mutant larvae (5 dpf) revealed
that these fish had a small but significant reduction in
pancreas size. Such early pancreatic phenotypic conse-
quences of Cftr loss of function were not observed by
Navis and Bagnat (37). There are numerous reasons for
this apparent discrepancy between studies: 1) the well-
documented occurrence of phenotypic variation in CF
due to modifiers in the genetic background (49), 2) con-
focal microscopy on microdissected pancreata providing
better resolution, and 3) potential differences in animal
husbandry, which is known to affect phenotype in other
CF animal models (50). Using our Notch-responsive
reporters and microdissection to facilitate careful observa-
tion, we detect fewer CAC progenitors in ¢ftr mutant larvae.
Possibly due to having fewer progenitors, these fish develop
fewer secondary islets. As patients with CFRD have a di-
minished 3-cell mass, these observations in mutant fish are
intriguing and warrant further investigation.

In summary, regeneration occurs readily in the adult
zebrafish pancreas, and we believe that studies with this
model organism will continue to shed light on mechanisms
that can be exploited to improve regeneration in diabetic
patients. Furthermore, our new insights into the importance
of cftr in pancreas development suggest that the role of
CFTR in the human pancreas should be reevaluated.
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