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Abstract

Background

Identifying genes that are differentially expressed (DE) between two or more conditions with
multiple patterns of expression is one of the primary objectives of gene expression data
analysis. Several statistical approaches, including one-way analysis of variance (ANOVA),
are used to identify DE genes. However, most of these methods provide misleading results
for two or more conditions with multiple patterns of expression in the presence of outlying
genes. In this paper, an attempt is made to develop a hybrid one-way ANOVA approach
that unifies the robustness and efficiency of estimation using the minimum g-divergence
method to overcome some problems that arise in the existing robust methods for both
small- and large-sample cases with multiple patterns of expression.

Results

The proposed method relies on a B-weight function, which produces values between 0 and
1. The B-weight function with 8= 0.2 is used as a measure of outlier detection. It assigns
smaller weights (> 0) to outlying expressions and larger weights (< 1) to typical expres-
sions. The distribution of the B-weights is used to calculate the cut-off point, which is com-
pared to the observed -weight of an expression to determine whether that gene
expression is an outlier. This weight function plays a key role in unifying the robustness and
efficiency of estimation in one-way ANOVA.

Conclusion

Analyses of simulated gene expression profiles revealed that all eight methods (ANOVA,
SAM, LIMMA, EBarrays, eLNN, KW, robust BetaEB and proposed) perform almost identi-
cally for m = 2 conditions in the absence of outliers. However, the robust BetaEB method
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and the proposed method exhibited considerably better performance than the other six
methods in the presence of outliers. In this case, the BetaEB method exhibited slightly bet-
ter performance than the proposed method for the small-sample cases, but the the pro-
posed method exhibited much better performance than the BetaEB method for both the
small- and large-sample cases in the presence of more than 50% outlying genes. The pro-
posed method also exhibited better performance than the other methods for m > 2 condi-
tions with multiple patterns of expression, where the BetaEB was not extended for this
condition. Therefore, the proposed approach would be more suitable and reliable on aver-
age for the identification of DE genes between two or more conditions with multiple patterns
of expression.

1 Introduction

Microarray technology has enabled the expression levels of thousands of genes to be investi-
gated simultaneously. However, this technology poses statistical challenges by virtue of the
large number of transcripts surveyed with small sample sizes. The identification of transcripts
that are differentially expressed (DE) between two or more conditions is a common task that is
undertaken to reduce the dimensionality of the transcripts, as important genes belong to the
reduced set of DE transcripts. Useful information regarding the regulatory network can be
obtained by associating differential expressions with the genotypes of molecular markers [1].
By assigning DE genes to the list of gene sets, it is possible to obtain useful biological interpreta-
tions [2, 3]. Furthermore, the number of DE genes that influence a certain phenotype may be
large, whereas their relative proportions are typically small; therefore, identifying these DE
genes from among the large number of recorded genes is challenging [4-8].

In general, four types of statistical procedures are used to identify DE genes: (i) classical
parametric approaches, such as t-test, Ftest (ANOVA) and likelihood ratio test (LRT)-based
asymptotic 2-test; (ii) classical nonparametric approaches [8-11]; (iii) empirical Bayes (EB)
parametric approaches [5-7, 12, 13]; and (iv) EB nonparametric approaches [14, 15]. In the
classical procedures, DE genes are generally detected based on p-values (significance levels)
that are estimated either via permutation or based on the distribution of a test statistic, whereas
in EB procedures, the posterior probability (pp) of differential expression is used to identify DE
genes. However, most of the aforementioned algorithms are not robust against outliers [12,
16]. Thus, they may produce misleading results in the presence of outlying transcripts or irreg-
ular patterns of expression. Several recent studies have reported that the assumption of normal-
ity does not hold for some existing microarray datasets [17]. One of the causes for this
breakdown of the normality assumption may be related to the presence of outliers in the data.
c¢DNA microarray data are often corrupted by outliers that arise because of the many steps that
are involved in the experimental process, from hybridization to image analysis [12, 16].

Some nonparametric approaches, such as KW [9], are somewhat robust against outliers
between two or more conditions with multiple patterns of expression in the case of large sam-
ple sizes; however, these approaches are sensitive to outliers in the case of small sample sizes.
To overcome this problem, the S-divergence-based empirical Bayes (BetaEB) approach [16]
was developed for the robust identification of DE genes. This approach performs well in the
presence of outlying expressions with up to 50% genes for both small- and large-sample cases.
The parameters of the BetaEB approach are estimated based on the expressions of all genes. It
can tolerate up to 50% outlying genes if the mean vector is initialized by the median vector. In
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the presence of more than 50% outlying genes, it is difficult to initialize the shifting parameters
(mean vector) of this approach with the good part of the dataset. Therefore, the BetaEB
approach occasionally produces misleading results. Note that more than 50% outlying genes
may also occasionally occur with at least one patient/tissue sample. Moreover, this approach
was not extended for the detection of DE genes in the case of more than two conditions/groups
with multiple patterns of expression due to the computational complexity. Therefore, in this
paper, an attempt is made to develop a hybrid approach that unifies the robustness and effi-
ciency of estimation in one-way ANOVA using the minimum f-divergence method [18-21] to
overcome all of the aforementioned problems that arise in the BetaEB approach. The advantage
of the proposed algorithm compared to BetaEB is that it performs considerably better than the
BetaEB approach for both the small- and large-sample cases in the presence of more than 50%
outlying genes with 5% outlier samples for each outlying gene. The major advantage of the pro-
posed algorithm is that it performs well in the case of multiple conditions/groups (m > 2) for
identifying DE genes with multiple patterns of expression, whereas BetaEB was not extended
for multiple conditions/groups (m > 2) due to the computational complexity. The proposed
method introduces a weight function, which plays a key role in its performance. This weight
function assigns smaller weights to outlying observations, thereby ensuring the robustness of
the inference. Appropriate initialization of the parameters also improves the performance of
the proposed method, as is also discussed in this paper.

2 Materials and Methods

Let xji be the kth observed random expression of a gene in the jth condition (j=1,2, ..., m;
k=1,2,.., 1), which follows the one-way ANOVA model as expressed below:

Xy = W+ €, (1)
where y; is the mean of all expressions of a gene in the jth condition and e, is the random error
term that follows N (0, aj?). We wish to test the null hypothesis (Hp) : py =pa=... =t =t
against the alternative hypothesis (H;) : Hy is not true, assuming that 6> = 05 = ... = 0>, = 0”.

Thus, the generalized likelihood-ratio test (LRT) criterion yields the following F-statistic to test
H, against H;:
(i — )/ (m — 1)

T[0T+ m6s 4,6 (= m)

7 (2)

which follows the F-distribution with (m-1) and (n-m) degrees of freedom under H, [22],

whelren=r11+112+,...,+nmandﬂ:Z}.’i1

n.fi;/n. Here, fi, and 67 are the maximum likeli-
hood estimates (MLEs) of y; and o7, respectively, for the jth condition/group.

The critical region (CR) for testing Hy against H; at the (1-)100% level of significance is
defined by Pr[F > Fy|Hy] = @, where Fy = F,(m — 1, n — m) is the upper 100a% points of the F-
distribution with m — 1 and n — m degrees of freedom. Fj, is also known as the cut-off point or
critical value of the test. However, it is well known that the MLEs 9]. = (f;,67) of 0, = (w;, 77)
forj=1,2,...,min Eq (2) are highly sensitive to outliers. Therefore, the identification of DE
genes using classical ANOVA may produce misleading results because gene expression data
are often corrupted by outliers, as previously discussed. Thus, in this paper, we consider the
minimum f-divergence method [20, 21] to improve the robustness and efficiency of estimation

in one-way ANOVA. The minimum fS-divergence estimators 91..,} = (ft;5,07,) of the

PLOS ONE | DOI:10.1371/journal.pone.0138810 September 28,2015 3/26



@’PLOS ‘ ONE

Estimation of Differential Gene Expression with Multiple Patterns

parameters 6, = (;, 07) are computed iteratively as follows:

u _ szzl ¢ﬁ(xjk|0j.t)xjk
e Z:]:l ¢/f(xjk|0j.t)

and

9 . szzl ¢[}(xjk|0j.t)(xjk - luj,t)2
2, = 2 Ol , (@)
' B+1)" > L (z)[;(xjk‘aj‘t)

where
NS O
Wi (x;/6)) = exp {_ﬁ(xﬂ‘ — 1) }’ (%)

which we call the B-weight function [20, 21]. The notation 0,,, represents the update to 8, in
the (#+1)th iteration. The robustness of these estimators is discussed in the context of influence
functions in [20], and their consistency is discussed in [21]. Note that the minimum f-diver-
gence estimators [9]:/f = (ft;,, 67 ,) reduce to the classical MLEs 91 = (4;,67) for f=0.

Note that MLEs of a Gaussian distribution are consistent and asymptotically efficient in the
absence of outliers [23]. Therefore, in this paper, an attempt is made to develop a hybrid

approach in which the classical MLEs [91. are used in the absence of outliers and the minimum

B-divergence estimators 9}.' s (Egs (3) and (4) are used in the presence of outliers for the estima-
tion of 6; in one-way ANOVA. The minimum S-divergence method offers two approaches for
unifying the robustness and efficiency of estimation in ANOVA. One method is to select the
tuning parameter f via cross-validation (CV), as discussed in detail in a previous publication
[20]. In the absence of outliers, the CV method produces = 0 for the minimum f-divergence
estimators and is thus equivalent to the classical estimators, as discussed above. In the presence
of outliers, it produces > 0 for the minimum f-divergence estimators. To develop the alterna-
tive approach, we consider the B-weight function (Eq (5)) with B = 0.2 for outlier detection.
This weight function assigns smaller weights (> 0) to outlying/unusual observations and larger
weights (< 1) to uncorrupted/usual observations. An outlying gene expression xj is defined
based on the S-weight function as follows:

. > 0;, if x; is not an outlier
/I(xjk|0 ) = ) ) ) (6)
<9, if x; is an outlier,
where the threshold value J; is the pth quantile value of the distribution of W);(x; | 9].?,;). The
predicted distribution of the B-weight function is discussed in S1 File.

Thus, we can unify the minimum j-divergence estimator with MLEs for 6; in the jth condi-
tion as follows:

. " )
ajﬁ’ if Zk:l I[W/i(xjk\9j./x)>5j] < GT
0 : nj R _
0, i Dl Dy o) = M

which leads to the formulation of the hybrid one-way ANOVA approach for the robust and
efficient estimation of differential gene expression with multiple patterns with a modified
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F-statistic, denoted by Fj, as given by

Z]I‘(:l nj(:ajﬁ - ﬂﬂ)Q/(k —1)

PGty ety 0,60 ) (= m)

(7)

To test the null hypothesis (H,) against the alternative hypothesis (H;) from the robustness
perspective, we can compute p-values under the assumption that Fz approximately follows the
F-distribution. Note that this modified F-statistic (Fp) reduces to the classical F-statistic (Eq
(2)) for B =0. However, we can also compute permutation-based p-values to test whether Hy is
true or false, as discussed in S1 File.

2.1 Robust Multiple Comparison Test

Multiple comparison procedures are commonly used in ANOVA after a significant omnibus
test result is obtained via the F-test. A significant ANOV A result suggests the rejection of the
global null hypothesis Hy, which states that the means are identical across all groups being
compared. Multiple comparison procedures are then used to determine which of the means
differ significantly. In a one-way ANOVA involving m group means, there are m(m — 1)/2 pair-
wise comparisons. There are several methods for performing such a multiple comparison test.
In this paper, we consider the robustification of Fisher’s least significant difference (LSD) test
for multiple comparison tests. We reject Hy : 4; = y; at the 100(1-a)% level of significance for
all i # jwhen | fi,; — fi,; [> LSD,. Here, LSDy is computed as follows:

1 1 L
LSDﬁ = to(/z,n—m‘/MSE/i (;—f—;), 1 75_], (8)
i j
where MSE; = [n,67 ; + 1,63, + ... + 1,67, ,]/(n — m) and taya, » is the upper (1000/2)%
of the points of the t-distribution with # — k degrees of freedom. For 8 = 0, LSDg reduces to
Fisher’s (LSD) test.

3 Results and Discussion

We investigated the performance of the proposed method in comparison with other popular
methods using both simulated and real gene expression data.

3.1 Performance Evaluation Based on Simulated Gene Expression
Profiles

To investigate the performance of the proposed method in comparison with several popular
existing methods, such as the classical parametric approach ANOVA (F-test), the nonparamet-
ric approaches SAM [10] and KW (Kruskal-Wallis test) and the empirical Bayes (EB)
approaches LIMMA [13], EBarrays [5, 24], eLNN [25] and BetaEB [16], in the detection of DE
(important) genes, we considered gene expression profiles simulated based on classical
(ANOVA) and Bayesian (EBarrays LNN) data generation models for both small- and large-
sample cases with two and multiple groups/conditions in both the absence and the presence of
outlying expression, as discussed in subsections 3.1.1 and 3.1.2.

3.1.1 Performance Evaluation Based on Simulated Gene Expression Profiles with m = 2
Conditions. To investigate the performance of the proposed method in comparison with
seven popular methods (ANOVA, SAM, eLNN, LIMMA, KW, EBarrays and BetaEB), as men-
tioned above, for both small- and large-sample cases with m = 2 groups/conditions, we consid-
ered 100 datasets for both cases with sample sizes of n; = 1, = 3,4 and 15, respectively. Each
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dataset for each case represented gene expression profiles for 20,000 genes, each with n = (n; +
n,) samples, where the expression of each gene was generated using the one-way ANOVA
model described by Eq (1) for arbitrary values of (43, 4,) € (2,5) and o> =0.05. Among the
20,000 genes represented in each dataset for each case, we generated 300 DE genes (y; # p5)
and 19,700 EE (equally expressed) genes (¢, = y,). To investigate the robustness performance,
we generated three types of outlying datasets from each of the original datasets by replacing at
most 5% of the expression values from (1; + n,) samples by outliers with each 5%, 10% and
75% genes, respectively. The kth expression in the jth group for a gene was corrupted by an
outlier generated as follows: x}?}( =d+ max(xjk;k =1,2,..,n5=1,2), where d € (5,10) is an
arbitrary value.

We first investigated the goodness of fit of the predicted distribution of the S weights (Eq 12
in S1 File) compared with the observed distribution of 8 weights (W, (- | 91._,})). We produced
both the predicted distribution (solid curve) and the observed distribution based on simulated
gene expression data, assuming that i, = i, ; and o7 = 67, (Eq (1)) in both the absence and
the presence of 5% or 10% outlying expressions, as shown in Fig 1a and 1b, respectively. It is
clear that the predicted distributions (solid curves) in both figures reflect the corresponding
observed distributions (histograms). In Fig 1b, smaller B weights or insignificant weights with
p-values < 107 are evident, which correspond to outlying expressions. Note that the predicted
distributions (solid curves) are identical in both figures. Therefore, we can use either of these
two distributions to select the cut-off point (Eq (6)) to determine whether an expression is an
outlier. Table 1 and Table A in S1 File summarize the average performance results of the eight
investigated methods (ANOVA, SAM, LIMMA, eLNN, EBarrays, BetaEB, KW and Proposed)
based on 100 datasets generated using a one-way ANOV A model with m = 2 groups/conditions
and ¢® = 0.05 for cases of both small (1; = 1, = 3, 4) and large (n; = n, = 15) samples. The per-
formance indices/measures, including the true positive rate (TPR), the false positive rate
(FPR), the true negative rate (TNR), the false negative rate (FNR), the false discovery rate
(FDR), the misclassification error rate (MER), the area under the ROC curve (AUC) and the
partial AUC (pAUC), were calculated for each method based on their estimated top 300 DE
genes, under the assumption that the other estimated genes for each method were the EE genes
for each dataset (recall that each dataset contained 300 true DE genes and that the remainder
were true EE genes). The values of each of these performance measures lie between 0 and 1.
The method that produces the smallest values of FPR, FNR, FDR and MER and the largest val-
ues of TPR, TNR, pAUC and AUC is considered to be the best performer. The results pre-
sented in Table 1, Table A in S1 File and S1, S2, and S3 Figs clearly show the performance of all
eight methods for the identification of DE genes in the absence and presence of 5% or 10% out-
lying expressions with 5%, 10% and 75% genes for both the small- and large-sample cases. We
clearly observe that all eight methods performed similarly in the absence of outlying genes for
both the small- and large-sample cases. An interesting coincidence occurs between FNR and
FDR for all methods in all cases because we declared the top (1 — po) x 100% tp be DE genes,
where p, = 0.985 is the proportion of EE genes. A similar situation was also observed in [26].
For the same reason, we also obtained almost identical results for FPR and TNR in all cases for
all methods.

However, in the presence of 1 or 2 outlying expressions with 5%, 10% and 75% genes for the
small- or large-sample or both sample cases, four methods (eLNN, KW, BetaEB and Proposed)
exhibited better performance on average than the other four methods (ANOVA, SAM, EBar-
rays and LIMMA) because the former four methods produce larger values of TPR, AUC and
pAUC and smaller values of FNR, FDR and MER compared to the other four methods. Two
methods (KW and eLNN) showed slightly good performance for the large-sample case, but
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Fig 1. Predicted distribution of 8 weights. Predicted (solid curve) and simulated (histogram) observed
distributions of the 8 weights of Eq (5): (a) without outlying gene expressions and (b) with 5% outlying gene
expressions.

doi:10.1371/journal.pone.0138810.g001

they were sensitive to outliers for the small-sample case. The empirical Bayes approach
(BetaEB) exhibited good performance for both the small- and large-sample cases in the pres-
ence of outlying expressions with 5% and 10% genes, but it exhibited weak performance in the
presence of outlying expressions in 75% genes. Thus, the robust BetaEB method and the pro-
posed method exhibited better performance than the other six methods in presence of at most
50% outlying genes (although we provided results with 5%, 10% and 75% outlying genes only)
with 5% outliers for each outlying gene. The BetaEB approach appears to be slightly better than
the proposed method for the small-sample case, whereas the proposed method exhibited con-
siderably better performance than the BetaEB method for both the small- and large-sample
cases in the presence of more than 50% outlying genes. We also observed similar results when
we generated gene expression profiles based on a Bayesian (EBarrays LNN) data generating
model considering all aspects of the ANOVA model (Table B in S1 File).

3.1.2 Performance Evaluation Based on Simulated Gene Expression Profiles with m > 3
Conditions with Multiple Patterns. To investigate the performance of the proposed method
in comparison with the other methods for m = 4 conditions with multiple patterns for both
small- and large-sample cases, we tested these methods on 100 datasets for sample sizes of n;, =
ny = n3 = ny = 3 and 15, respectively. Each dataset for each case represented gene expression
profiles for 20,000 genes, each with n = (n; + n, + ns + n,) samples, where the expression of
each gene was generated using the one-way ANOVA model described by Eq (1) for arbitrary
values of (u1, pa, U3, Ha) € (3,5) and o> =0.05. We generated 19,700 EE genes (y; = p = s = phq)
and 300 DE genes with patterns such as (i) py; = o 7 ps = pa, (ii) g1 = po # 3 7 a4, and (iii) 4
# Uy 7 U3 7 py for each dataset for each case. To investigate the robustness performance for
m = 4 conditions with multiple patterns, we generated two types of outlying datasets from each
of the original datasets by replacing at most 5% of the expression values from (n; + n, + ns +
n,) samples by outliers with each 5% and 10% genes, respectively. An expression of (xjzk = 1,
2,...,n3j=1,.2,34) for a gene was corrupted by an outlier generated as follows: x; = d+ max
(xjk;k =1,2,..,n35=1,23, 4), where d € (5,10) is an arbitrary value.

In this study, we investigated the performance of the proposed method in comparison with
only four popular methods (ANOVA, SAM, LIMMA and KW) because the robust BetaEB
approach is not applicable for multiple patterns of expression because of its computational
complexity. Table 2 shows that all the methods, except KW, produce almost identical values of
FDR, AUC and pAUC in the absence of outlying genes for the small-sample case. KW was
found to have considerably lower values of AUC and pAUC and a larger value of FDR for mul-
tiple groups/conditions (m = 4) in the small-sample case. Additionally, it exhibits greater sensi-
tivity than the other methods (ANOV A, SAM, LIMMA and proposed) in the presence of
outlying genes. However, all of the methods, including KW, perform similarly in the absence of
outlying genes for the large-sample case. In this case, the performance of KW is better than
that of the other three methods (ANOVA, SAM and LIMMA) in the presence of outlying
genes, but it is slightly weaker than that of the proposed method. Thus, in all cases, the pro-
posed method exhibited performance similar to that of the other approaches in the absence of
outliers and better performance in the presence of outliers with lower FDR values and higher
AUC and pAUC values. We also investigated the performance of the proposed method in
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Table 1. Performance evaluation based on simulated gene expression profiles with m = 2 conditions/groups.

Results for the small-sample case (n; = hy = 3)
Methods  TPR FPR TNR FNR FDR MER AUC pAUC TPR FPR TNR FNR FDR MER AUC pAUC

Without outlying expressions For 1 outlier with each of 5% genes
ANOVA 0.939 0.001 0.998 0.072 0.072 0.004 00915 0.184 0475 0.011 0.989 0525 0.525 0.021 0.474 0.095
SAM 0.955 0.001 0.999 0.045 0.045 0.002 0954 0.191 0490 0.010 0.990 0.510 0.510 0.020 0.491 0.098
LIMMA 0.958 0.001 0.999 0.042 0.042 0.002 0.959 0.192 0485 0.011 0.989 0.515 0515 0.021 0.484 0.097
eLNN 0.932 0.001 0.999 0.068 0.068 0.003 0931 0.186 0.372 0.013 0.987 0.627 0.627 0.025 0.371 0.074

EBarrays 0.938 0.001 0.999 0.062 0.062 0.002 0.939 0.188 0.307 0.014 0986 0.692 0.692 0.028 0.306 0.061
BetaEB 0.938 0.001 0.999 0.062 0.062 0.002 0.937 0.188 0.940 0.001 0.999 0.060 0.060 0.002 0.941 0.188

KW 0.958 0.000 1.000 0.042 0.042 0.001 0.977 0.196 0.497 0.010 0.990 0.502 0.502 0.020 0.496 0.100

Proposed 0.939 0.001 0.998 0.072 0.072 0.004 0.915 0.184 0936 0.001 0.998 0.064 0.064 0.004 0.914 0.182
For 1 outlier with each of 10% genes For 1 outlier with each of 75% genes

ANOVA 0.318 0.014 0.986 0.682 0.682 0.027 0.318 0.063 0.087 0.019 0.981 0912 0.912 0.036 0.086 0.018

SAM 0.323 0.014 0.986 0.677 0.677 0.027 0.324 0.064 0.087 0.019 0.981 0912 0.912 0.036 0.086 0.018

LIMMA 0.318 0.014 0.986 0.682 0.682 0.027 0.317 0.064 0.087 0.019 0.981 0912 0.912 0.036 0.088 0.018

eLNN 0.250 0.015 0.985 0.750 0.750 0.030 0.251 0.050 0.025 0.020 0.980 0.975 0.975 0.039 0.026 0.005

EBarrays 0.210 0.016 0.984 0.790 0.790 0.032 0.211 0.042 0.025 0.020 0.980 0.975 0.975 0.039 0.024 0.005
BetaEB 0.940 0.001 0.999 0.060 0.060 0.002 0.941 0.188 0.025 0.020 0.980 0.975 0.975 0.039 0.024 0.005
KW 0.325 0.014 0986 0.675 0.675 0.027 0.326 0.065 0.087 0.019 0.981 0912 0912 0.036 0.088 0.018
Proposed 0.932 0.001 0.998 0.098 0.098 0.004 0.907 0.181 0.920 0.001 0.998 0.080 0.080 0.004 0.887 0.177
Results for the large-sample case (n4 = n, = 15)

Methods  TPR FPR TNR FNR FDR MER AUC pAUC TPR FPR TNR FNR FDR MER AUC pAUC

Without outlying expressions For 1 or 2 outliers with each of 5% genes
ANOVA 0.971 0.002 0.998 0.026 0.026 0.001 0.972 0.195 0.560 0.009 0.991 0.440 0.440 0.018 0.561 0.112
SAM 0.978 0.000 1.000 0.022 0.022 0.001 0.979 0.196 0.613 0.008 0.992 0.388 0.388 0.015 0.612 0.122
LIMMA 0.978 0.000 1.000 0.022 0.022 0.001 0.977 0.196 0.562 0.009 0.991 0438 0.438 0.018 0.563 0.112
eLNN 0.975 0.001 0.999 0.025 0.025 0.001 0.974 0.195 0.850 0.003 0.997 0.150 0.150 0.006 0.849 0.170

EBarrays 0.973 0.001 0.999 0.028 0.028 0.001 0.974 0.195 0.562 0.009 0.991 0438 0438 0.018 0.561 0.112
BetaEB 0.973 0.001 0.999 0.028 0.028 0.001 0.975 0.195 0973 0.001 0.999 0.028 0.028 0.001 0.972 0.195

KW 0.973 0.001 0.999 0.028 0.028 0.001 0.973 0.194 0.911 0.002 0.998 0.089 0.089 0.008 0.801 0.160

Proposed 0.971 0.002 0.998 0.026 0.026 0.001 0.973 0.195 0975 0.001 0.999 0.025 0.025 0.001 0.976 0.195
For 1 or 2 outliers with each of 10% genes For 1 or 2 outliers with each of 75% genes

ANOVA 0420 0.012 0.988 0.580 0.580 0.023 0.420 0.084 0.312 0.014 0986 0.688 0.688 0.028 0.311 0.062

SAM 0497 0.010 0.990 0.502 0.502 0.020 0.497 0.099 0.347 0.013 0.987 0.652 0.652 0.026 0.347 0.069

LIMMA 0425 0.012 0.988 0.575 0.575 0.023 0.425 0.085 0.347 0.013 0.987 0.652 0.652 0.026 0.348 0.069

eLNN 0.885 0.002 0.998 0.115 0.115 0.005 0.885 0.177 0.855 0.003 0.997 0.145 0.145 0.006 0.856 0.171

EBarrays 0.427 0.012 0.988 0.573 0.573 0.023 0.427 0.085 0.228 0.016 0.984 0.772 0.772 0.031 0.227 0.045
BetaEB 0.973 0.001 0.999 0.028 0.028 0.001 0.973 0.195 0225 0.016 0984 0.775 0.775 0.031 0.224 0.045
KW 0.851 0.004 0.996 0.149 0.149 0.008 0.807 0.161 0.808 0.009 0.991 0.192 0.192 0.002 0.936 0.187
Proposed 0.973 0.001 0.999 0.028 0.028 0.001 0.973 0.195 0978 0.000 1.000 0.022 0.022 0.001 0.979 0.196

Average performance results of eight methods (ANOVA, SAM, LIMMA, eLNN, EBarrays, BetaEB, KW and Proposed) based on 100 datasets generated
using a one-way ANOVA model with m = 2 groups/conditions and o = 0.05 for both sample sizes n1 = n2 = 3 and n1 = n2 = 15. Each dataset for each
case contained 300 true DE genes, and the remainder were 19700 true EE genes. The performance indices/measures TPR, FPR, TNR, FNR, FDR, MER
and AUC were calculated for each method based on the top 300 estimated DE genes, under the assumption that the other estimated genes in each
dataset for each case were EE genes for each method. The performance measure 'pAUC' was calculated at FPR = 0.2 for each method and for each
dataset.

doi:10.1371/journal.pone.0138810.t001
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Table 2. Performance evaluation based on simulated gene expression profiles with m > 3 conditions with multiple patterns.
Methods
PM/PI ANOVA SAM LIMMA KW Proposed

Average performance in the small-sample case (n; =n; =nz = ng = 3)
Without outlying expressions

FDR 0.0967 0.0915 0.0833 0.8600 0.0967

AUC 0.9012 0.9089 0.9105 0.1394 0.9012

pAUC 0.1816 0.1825 0.1854 0.0274 0.1816
For a single outlying expression with each of 5% genes

FDR 0.5467 0.4400 0.5400 0.9033 0.1067

AUC 0.4533 0.5600 0.4599 0.0962 0.8933

pAUC 0.0906 0.1120 0.0919 0.0188 0.1786
For a single outlying expression with each of 10% genes

FDR 0.6967 0.7633 0.6933 0.9200 0.1100

AUC 0.3033 0.2362 0.3066 0.0796 0.8900

pAUC 0.0606 0.0469 0.0613 0.0156 0.1780

Average performance in the large-sample case (n; = n = n3 = ng = 15)
Without outlying expressions

FDR 0.0200 0.0200 0.0200 0.0200 0.0233

AUC 0.9800 0.9800 0.9800 0.9800 0.9767

pAUC 0.1960 0.1960 0.1960 0.1960 0.1953
For 1-2 outlying expression in each 5% genes

FDR 0.3833 0.3367 0.3800 0.0567 0.0233

AUC 0.6165 0.6633 0.6198 0.9433 0.9767

pAUC 0.1231 0.1326 0.1238 0.1886 0.1953
For 1-2 outlying expression in each 10% genes

FDR 0.4933 0.4633 0.4267 0.0833 0.0233

AUC 0.5063 0.5366 0.5727 0.9166 0.9767

pAUC 0.1010 0.1073 0.1140 0.1833 0.1953

Average performance results for five methods (ANOVA, SAM, LIMMA, KW and Proposed) based on 100 datasets generated using a one-way ANOVA
model for both small- and large-sample cases with m = 4 groups/conditions and o2 = 0.05. The performance measure/index (PM/Pl) FDR was calculated
for each method based on the top 300 estimated DE genes, under the assumption that the other estimated genes were EE genes for each dataset (recall
that each dataset contained 300 true DE genes and the remainder were EE genes). The performance measure 'pAUC' was calculated at FPR = 0.2 for
each method and for each dataset.

doi:10.1371/journal.pone.0138810.t002

comparison with the same four methods (ANOVA, SAM, LIMMA and KW) for m = 4 condi-
tions with FDR and with the family-wise error rate (FWER) fixed to 1% using adjusted p-values
based on the Benjamini-Hochberg (BH) and Bonferroni corrections, respectively. Tables 3 and
4 present the average TPR using p-values and adjusted p-values at the 1% level of significance
for both the small- and large-sample cases, respectively. The results shown in brackets () repre-
sent the average FPR. Table 3 also shows that three methods (ANOVA, LIMMA and proposed)
are strong enough to achieve higher TPR (> 80%) than SAM and KW using both raw p-values
and adjusted p-values in the absence of outlying genes. The SAM obtains a lower TPR than the
other three methods (ANOVA, LIMMA and proposed) when controlling FWER by Bonferroni
corrections. The KW also shows that there are no DE genes in the absence of outlying genes for
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Table 3. Performance evaluation based on simulated gene expression profiles with m > 3 conditions with multiple patterns based on raw p-values
and adjusted p-values (controlling FDR and FWER) at 1% for a small sample size.

METHODS Without outlying expressions  With 5% outlying expressions in 5% genes  With 5% outlying expressions in 10% genes
Using raw p-values
TPR.ANOVA 0.944 0.467 0.314
(0.012) (0.012) (0.011)
TPR.SAM 0.947 0.553 0.220
(0.003) (0.001) (0.006)
TPR.LIMMA 0.955 0.471 0.315
(0.009) (0.012) (0.012)
TPR.KW 0.000 0.000 0.000
(0.000) (0.000) (0.000)
TPR.Proposed 0.944 0.941 0.939
(0.012) (0.012) (0.013)
Using adjusted p-values with Benjamini-Hochberg (BH) procedure (controlling FDR at 1%)
TPR.ANOVA.BH 0.893 0.431 0.284
(0.000) (0.000) (0.000)
TPR.SAM.BH 0.440 0.390 0.000
(0.000) (0.000) (0.000)
TPR.LIMMA.BH 0.905 0.438 0.291
(0.000) (0.000) (0.000)
TPR.KW.BH 0.000 0.000 0.000
(0.000) (0.000) (0.000)
TPR.Proposed.BH 0.893 0.873 0.875
(0.000) (0.000) (0.000)
Using adjusted p-values with Bonferroni correction procedure (controlling FWER at 1%)
TPR.ANOVA.Bonf 0.891 0.383 0.256
(0.000) (0.000) (0.000)
TPR.SAM.Bonf 0.623 0.328 0.222
(0.000) (0.000) (0.000)
TPR.LIMMA.Bonf 0.901 0.399 0.264
(0.000) (0.000) (0.000)
TPR.KW.Bonf 0.000 0.000 0.000
(0.000) (0.000) (0.000)
TPR.Proposed.Bonf 0.891 0.890 0.888
(0.000) (0.000) (0.000)

Average performance results for five methods (ANOVA, SAM, LIMMA, KW and Proposed) based on 100 datasets generated using a one-way ANOVA
model for the small-sample (n; = n2 = ng = n4 = 3) case with m = 4 groups/conditions and o® = 0.05, where each dataset contained 300 true genes and
the remainder were 19700 true EE genes. The values represent the average TPRs based on raw p-values and adjusted p-values for the ANOVA, SAM,
LIMMA, KW and Proposed methods in both the absence and the presence of outlying expressions. The value within the bracket () indicates the average
FPRs. The adjusted p-values were calculated using Benjamini-Hochberg (BH) and Bonferroni correction methods.

doi:10.1371/journal.pone.0138810.t003

the small-sample case (Table 3). As an example, from Table 3, we observe that ANOVA, SAM,
LIMMA, KW and the proposed methods obtained TPRs of 0.944 (0.012), 0.947 (0.003), 0.955
(0.009), 0.000 (0.000) and 0.944 (0.012) based on the true set of 300 DE genes in the absence of
outlying genes, FPR shown in parenthesis, on average, respectively.

However, in the presence of outlying genes, Tables 3 and 4 both show that most of the meth-
ods, except the proposed method, are unable to achieve high TPRs for both sample cases.
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Table 4. Performance evaluation based on simulated gene expression profiles with m > 3 conditions with multiple patterns based on raw p-values
and adjusted p-values (controlling FDR and FWER) at 1% for a large sample size.

METHODS Without outlying expressions  With 5% outlying expressions in 5% genes  With 5% outlying expressions in 10% genes
Using raw p-values
TPR.ANOVA 0.981 0.631 0.503
(0.010) (0.009) (0.009)
TPR.SAM 0.980 0.841 0.719
(0.004) (0.032) (0.056)
TPR.LIMMA 0.983 0.635 0.508
(0.010) (0.009) (0.009)
TPR.KW 0.982 0.975 0.975
(0.008) (0.008) (0.008)
TPR.Proposed 0.983 0.981 0.981
(0.037) (0.036) (0.036)
Using adjusted p-values with Benjamini-Hochberg (BH) procedure (controlling FDR at 1%)
TPR.ANOVA.BH 0.975 0.522 0.381
(0.000) (0.000) (0.000)
TPR.SAM.BH 0.957 0.602 0.450
(0.000) (0.000) (0.000)
TPR.LIMMA.BH 0.977 0.525 0.386
(0.000) (0.000) (0.000)
TPR.KW.BH 0.972 0.872 0.855
(0.000) (0.000) (0.000)
TPR.Proposed.BH 0.977 0.968 0.975
(0.002) (0.002) (0.002)
Using adjusted p-values with Bonferroni correction procedure (controlling FWER at 1%)
TPR.ANOVA.Bonf 0.965 0.485 0.345
(0.000) (0.000) (0.000)
TPR.SAM.Bonf 0.937 0.477 0.333
(0.000) (0.000) (0.000)
TPR.LIMMA.Bonf 0.970 0.485 0.345
(0.000) (0.000) (0.000)
TPR.KW.Bonf 0.941 0.581 0.469
(0.000) (0.000) (0.000)
TPR.Proposed.Bonf 0.969 0.955 0.968
(0.000) (0.000) (0.000)

Average performance results for five methods (ANOVA, SAM, LIMMA, KW and Proposed) based on 100 datasets generated using a one-way ANOVA
model for the large-sample (n; = n2 = n3 = n4 = 15) case with m = 4 groups/conditions and o® = 0.05, where each dataset contained 300 true genes and
the remainder were 19700 true EE genes. The values represent the average TPRs based on raw p-values and adjusted p-values for the ANOVA, SAM,
LIMMA, KW and Proposed methods in both the absence and the presence of outlying expressions. The value within the bracket () indicates the average
FPRs. The adjusted p-values were calculated using Benjamini-Hochberg (BH) and Bonferroni correction methods.

doi:10.1371/journal.pone.0138810.t004

Interestingly, we observed that all methods, including SAM and KW, perform well for the
large-sample case in the absence of outlying genes, whereas we observed a loss of efficiency of
SAM and KW for the small-sample case. The nonparametric approach KW is more efficient
than the other three methods (ANOVA, SAM and LIMMA) in the presence of outliers in dif-
ferent proportions of genes for the large-sample case (Table 4). Therefore, we observed that the
proposed method performed similarly in the absence of outliers, but it exhibited the best
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performance in the presence of outliers compared to all other methods in all cases of both sam-
ple sizes (Tables 3 and 4).

The results presented in Tables 2, 3 and 4 were calculated under the global null hypothesis
(Hy) of no differential gene expressions in the m = 4 conditions. However, after rejection of the
global Hy, a multiple comparison test was required to identify the pattern of differential gene
expression. Tables 5 and 6 present the adjusted p-values of the multiple comparison tests for
ANOVA, LIMMA, KW and the proposed method based on the datasets corresponding to the
true patterns y; = py 7# s = pg and yy = p, # Y3 7 g, respectively. Both tables indicate that all
four methods (ANOVA, LIMMA, KW and Proposed) were successful in identifying the correct
patterns of differential gene expression in the absence of outlying expressions, whereas in the

Table 5. Performance evaluation in multiple comparison tests using four methods (ANOVA, LIMMA,
KW and Proposed) for a small sample size.

H1 M2 M3

Without outlying expressions

o (0.9379) - -
{1.0000} - -
[0.8808] - -
(0.5537) - -

s (0.0003) (0.0004) -
{0.0000} {0.0000} -
[0.0364] [0.0419] -
(0.0001) (0.0001) -

g (0.0003) (0.0006) (0.9110)
{0.0000} {0.0001} {1.0000}
[0.0396] [0.0450] [0.8796]
(0.0001) (0.0002) (0.5166)

With 5% outlying expressions

2 (0.9343) - -
{1.0000} - -
[0.7964] - -
(0.5498) - -

Us (0.3865) (0.4527) -
{0.6605} {0.6610} -
[0.4104] [0.4738] -
(0.0002) (0.0002) -

g (0.3759) (0.4393) (0.9026)
{0.6057} {0.6313} {1.0000}
[0.3717] [0.4564] [0.8553]
(0.0002) (0.0002) (0.5163)

Average p-values for multiple comparison tests using four methods (ANOVA, LIMMA, KW and Proposed)
based on 100 sets of expressions for a DE gene with the pattern yy = > # s = 4 for small samples of
size (N1 = n2 = n3 = n4 = 3) with m = 4 conditions and o® = 0.05. The expression profiles for the gene were
generated using a one-way ANOVA model. The p-value was calculated for each method and each dataset.
A larger p-value indicates equality between the mean expressions of two groups. The bracket types (), {}, []
and () indicate the average gene p-values obtained using ANOVA, LIMMA, KW and the proposed
methods, respectively.

doi:10.1371/journal.pone.0138810.t005
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Table 6. Performance evaluation in multiple comparison tests using four methods (ANOVA, LIMMA,
KW and Proposed) for a large sample size.

H1 H2 H3

Without outlying expressions

s (0.9944) - -
{1.0000} - -
[0.9118] - -
(0.5709) - -

Uz (0.0000) (0.0000) -
{0.0000} {0.0000} -
[0.0000] [0.0000] -
(0.0000) (0.0000) -

g (0.0000) (0.0000) (0.0000)
{0.0000} {0.0000} {0.0000}
[0.0000] [0.0000] [0.0000]
(0.0000) (0.0000) (0.0000)

With 5% outlying expressions

o (0.9213) - -
{1.0000} - -
[0.8504] - -
(0.5007) - -

s (0.4452) (0.4481) -
{0.7440} {0.7639} -
[0.0003] [0.0001] -
(0.0000) (0.0000) -

Us (0.2645) (0.2219) (0.6475)
{0.4775} {0.4008} {0.9199}
[0.0000] [0.0000] [0.0026]
(0.0000) (0.0000) (0.0000)

Average p-values for multiple comparison tests using four methods (ANOVA, LIMMA, KW and Proposed)
based on 100 sets of expressions for a DE gene with the pattern yy = u» # s # 4 for large samples of
size (n1 = n2 = n3 = n4 = 15) with m = 4 conditions and o = 0.05. The expression profiles for the gene
were generated using a one-way ANOVA model. The p-value was calculated for each method and each
dataset. A larger p-value indicates equality between the mean expressions of two groups. The bracket
types (), {}, [1 and () indicate the average gene p-values obtained using ANOVA, LIMMA, KW and the
proposed methods, respectively.

doi:10.1371/journal.pone.0138810.t006

presence of a few outliers (5%), the proposed method exhibited superior performance in identi-
fying the correct patterns. For example, in the absence of outlying genes, all four methods
(ANOVA, LIMMA, KW and Proposed) provided larger p-values, such as 0.9379, 1.000, 0.8808
and 0.5537, respectively (Table 5), because we considered no difference between group 1 and
group 2 in the pattern of a gene. Among them, the LIMMA performed better (p-value = 1)
than the other approaches in obtaining the true difference between group 1 and group 2 of the
pattern. In the case of group 1 and group 3, all four methods detected the true difference
between group 1 and group 3 of the pattern, but among them, the ANOVA, LIMMA and pro-
posed methods performed better than the KW method in obtaining the true pattern. However,
two (ANOVA and LIMMA) of the four methods failed to detect the true patterns in the
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Table 7. Performance evaluation in pairwise comparison tests using four methods (ANOVA, LIMMA, KW and Proposed) for the small-sample case.

Adjusted p-value < 0.05

Pair of groups Predicted DR (/ogg—/{ < —1)" True DR Correctly predicted DR Predicted UR (log%‘ > +1)* True UR Correctly predicted UR

G1 vs.
G1 vs.
G1 vs.
G2 vs.
G2 vs.
G3 vs.

G1 vs.
G1vs.
G1 vs.
G2 vs.
G2 vs.
G3vs.

G2
G3
G4
G3
G4
G4

G2
G3
G4
G3
G4
G4

Without outlying expressions

{49, 51, 50, 49}
{130, 129, 130, 130}
{50, 49, 49, 50}
{100, 101, 102, 100}
{51, 49, 47, 51}
{50, 50, 51, 50}

With a single outlying expression in 10% genes

{37, 31, 41, 49}
{107, 90, 112, 130}
{43, 38, 43, 50}
{84, 69, 87, 100}
{43, 36, 43, 51}
{43, 37, 43, 50}

50 {49, 50, 50, 49} {101, 100, 98, 101} 100 {100, 99, 98, 100}
130 {130, 129, 130, 130} {99, 102, 101, 99} 100 {99, 100, 100, 99}
50 {50, 49, 48, 50} {101, 100, 99, 101} 100 {100, 99, 99, 100}
100 {99, 100, 100, 99} {20, 19, 20, 20} 20 {20, 19, 20, 20}

50 {50, 49, 47, 50} {49, 50, 49, 49} 50 {49, 50, 49, 49}

50 {49, 48, 50, 49} {132, 128, 129, 132} 130 {130, 128, 129, 130}
50 {37, 31, 41, 49} {83, 74, 84, 100} 100 {83, 74, 84, 100}
130 {107, 90, 112, 130} {83, 76, 84, 99} 100 {83, 76, 84, 99}

50 {43, 38, 43, 50} {83, 69, 83, 101} 100 {83, 69, 83, 100}
100 {84, 69, 87, 99} {15, 12, 16, 20} 20 {15, 12, 16, 20}

50 {43, 36, 43, 50} {37, 27, 43, 49} 50 (37, 27, 43, 49)

50 {43, 37, 43, 49} {107, 87, 117, 131} 130 {107, 87, 117, 130}

We generated 300 DE genes out of 20,000 total genes for m = 4 conditions with different patterns for a small-sample case (n1 = n2 = n3 = n4 = 6) and 0°
= 0.05, with a 2-fold change in expression between the groups, to investigate the pattern-detection performance of the proposed method in comparison
with the others. The values reported in the form {x, x, x, x} in this table represent the numbers of downregulated (DR) or upregulated (UR) differentially

expressed (DE) genes estimated by the ANOVA, LIMMA, KW and proposed (Bold) methods, respectively. °Note that log%{ < —1 indicates significant

2-fold downregulation and /ogﬁ—: > +1 indicates significant 2-fold upregulation.

doi:10.1371/journal.pone.0138810.t007

presence of 5% outliers in the previous expression, as shown in Tables 5 and 6, respectively.
The nonparametric approach KW performed more poorly than these two methods in detecting
the true patterns with larger p-values, even in the absence of outlying genes for the small-sam-
ple case, but better for the large-sample case with multiple groups in both the absence and pres-
ence of outlying genes, whereas the proposed method remained similar, as previously
mentioned, to the case where outliers were absent in both sample sizes.

To investigate the pattern-detection performance of the proposed method in comparison to
the others, we generated 300 DE genes among the 20,000 genes in the dataset for m = 4 condi-
tions with different patterns for the sample size (nl1 = n2 = n3 = n4 = 6) with a 2-fold change in
expression between the groups. Then, we first applied four methods (ANOVA, LIMMA, KW
and Proposed) to test the null hypothesis of no differential expression among four groups for
each gene. If the test was rejected, then we applied the multiple comparison test for pattern
detection of gene expression. Table 7 presents the multiple comparison results, where the val-
ues presented in the form {x, x, X, x} indicate the numbers of downregulated (DR) or upregu-
lated (UR) differentially expressed (DE) genes estimated using ANOVA, LIMMA, KW and the
proposed methods, respectively. This table also describes the true patterns of the DE genes in
the various groups. We observe that all four methods exhibited nearly identical performance in
the absence of outlying genes; however, in the presence of a single outlying expression in each
of 10% genes, the proposed method exhibited far superior performance compared to the other
methods.
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3.2 Performance Evaluation Based on Real Gene Expression Profiles

We considered three publicly available microarray gene expression datasets in the analyses pre-
sented in subsections 3.2.1, 3.2.2 and 3.2.3 to evaluate the performance of the proposed method
in comparison with several popular methods, as discussed above. These three datasets are (i)
the platinum spike gene expression dataset [27], (ii) the colon cancer gene expression dataset
[28] and (iii) the pancreatic cancer gene expression dataset [29]. All three datasets were gener-
ated using Affymetrix technology.

3.2.1 Analysis of the Platinum Spike Gene Expression Dataset with m = 2 Conditions.
This dataset was previously analyzed in [4, 27]. It consists of 18 spike-in samples (9 controls
versus 9 test cases). We downloaded this dataset from the GEO website under the accession
number GSE21344. We also downloaded the designated fold change (FC) dataset associated
with the probes from www.biomedcentral.com/content/supplementary/1471-2105-11-285-s5.
txt. After pre-processing (using RMA) and filtering the dataset, we obtained gene expressions
with 18707 probes, among which 1944 probes are known as the designated DE genes under
spiked-in fold changes of 0.25, 0.28, 0.40, 0.66, 0.83, 1.5, 1.7, 2, 3 and 3.5. In our analysis, we
consider these designated DE genes as designated ‘DE gene-set’ and the rest of the genes as des-
ignated ‘EE gene-set’ for performance evaluation of the proposed method in a comparison with
the other seven methods (ANOVA, SAM, eLNN, LIMMA, KW, EBarrays, BetaEB). We applied
all eight methods to the dataset to identify the DE genes. We considered the estimated top 1944
genes for each method and crossed with the designated ‘DE gene-set’ to calculate the same
summary statistics (TPR, TNR, FPR, ENR, FDR, MER, AUC and pAUC) for performance eval-
uation as used for the simulation studies. Table 8 shows that all the methods produce similar
results with the original spike dataset. Although the performance of all methods appears to be

Table 8. Performance evaluation based on Spike gene expression profiles with 2 conditions for the sample case (n; =n,=9).

Original expression

Methods TPR FPR TNR FNR FDR MER AUC pAUC

ANOVA 0.8189 0.0210 0.9790 0.1811 0.1811 0.0376 0.8165 0.1613
SAM 0.8338 0.0193 0.9807 0.1662 0.1662 0.0345 0.8319 0.1648
LIMMA 0.8297 0.0197 0.9803 0.1703 0.1703 0.0354 0.8283 0.1645
eLNN 0.8071 0.0224 0.9776 0.1929 0.1929 0.0401 0.8057 0.1600
EBarrays 0.8292 0.0198 0.9802 0.1708 0.1708 0.0355 0.8275 0.1641
BetaEB 0.8066 0.0201 0.9799 0.1934 0.1934 0.0360 0.8247 0.1634
KW 0.8097 0.0221 0.9779 0.1903 0.1903 0.0396 0.8053 0.1576
Proposed 0.8098 0.0195 0.9805 0.1902 0.1902 0.0348 0.8225 0.1647

Including single outlier in each of 200 genes from designated set of 1944 genes

ANOVA 0.7618 0.0276 0.9724 0.2382 0.2382 0.0495 0.7592 0.1498
SAM 0.7731 0.0263 0.9737 0.2269 0.2269 0.0471 0.7704 0.1519
LIMMA 0.7644 0.0273 0.9727 0.2356 0.2356 0.0490 0.7623 0.1508
eLNN 0.7757 0.0260 0.9740 0.2243 0.2243 0.0466 0.7673 0.1467
EBarrays 0.7567 0.0282 0.9718 0.2433 0.2433 0.0506 0.7554 0.1500
BetaEB 0.8061 0.0202 0.9798 0.1939 0.1939 0.0361 0.8242 0.1633
KW 0.7536 0.0286 0.9714 0.2464 0.2464 0.0512 0.7490 0.1461
Proposed 0.8090 0.0199 0.9801 0.1910 0.1910 0.0363 0.8215 0.1636

We considered the estimated top 1944 genes for each method and then crossed with the designated ‘DE gene-set’ to calculate the summary statistics
(TPR, TNR, FPR, FNR, FDR, MER, AUC and pAUC) for performance evaluation in the Spike gene expression profiles.

doi:10.1371/journal.pone.0138810.t008
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similar for this dataset, the f-weight function of the proposed method detected 9% (= 1684)
genes as outlying genes, where 1634 outlying genes belonged to the designated EE gene-set and
the remaining 50 genes belonged to the designated DE genes. Outlier genes are indicated with a
red color in S4(a)-S4(c) Fig. Both EE and DE outlying genes are distributed with respect to the
interval of estimated p-values or (1-posterior probabilities), as shown in S4(d)-S4(e) Fig for
each method. We observed that the proposed method detected the largest number of desig-
nated EE (233) and DE (40) outlying genes with p-values of less than 0.05. To investigate the
reason for why the proposed method detected the largest number of designated EE outlying
genes with p-values of less than 0.05 compared to the other approaches, we present the M-A
plot based on group medians in S4F Fig. In the M-A plot, the marker (-) with a gray color rep-
resents all genes, the marker (°) with a green color represents designated DE genes, the marker
(*) with a blue color represents designated EE outlying genes, and the marker (*) with a red
color represents designated DE outlying genes. We clearly observed that some designated DE
genes belong to the zero line (EE line); however, no designated EE outlying genes belong to the
zero line (EE line). Therefore, the outlying 233 designated EE genes detected by the proposed
method as DE genes with p-values of less than 0.05 should belong to the designated DE gene-
set. Thus, the robust methods (KW, BetaEB and Proposed) did not perform better than the
classical methods (ANOVA, SAM, LIMMA, eLNN and EBarrays), even for the dataset contain-
ing outlying genes. To show the outlier effects on the methods, we corrupted low label expres-
sions of 200 designated DE genes by a single outlier larger than the maximum value of
expressions. Then, we applied all methods again and evaluated the performance, as shown in
Table 8. We found that the proposed and BetaEB methods remained almost unchanged for all
the summary statistics, as previously calculated in the case of the original expression, whereas
all of the other methods decreased TPR, AUC, and pAUC and increased FNR, FDR and MER
significantly. Thus, the application of robust methods would be better than classical methods
for real gene expression data analysis.

3.2.2 Analysis of the Colon Cancer Gene Expression Dataset with m = 2 Conditions.
This dataset has been analyzed in a previous study [28] and consists of 22 control and 40 colon
cancer samples with 2000 genes. We downloaded this dataset from the website http://
microarray.princeton.edu/oncology/affydata/index.html. We then directly applied three meth-
ods (KW, BetaEB and the proposed method) to this dataset, as before, to identify the DE genes.
Fig 2a presents the Venn diagram of the top 100 DE genes estimated by each of the three meth-
ods (KW, BetaEB and Proposed). From this Venn diagram, it is evident that 75 DE genes are
common to all three methods. The -weight function of the proposed method identified 28%
genes in the entire dataset as outliers. The outlier genes are indicated in red in S5(b)-S5(d) Fig.
The proposed method identified 8 DE genes that were not detected by the other methods, of
which five genes (UBE2I, R60883, PRIM1, POLD2 and REG1A) were upregulated and four
genes (MUC2, ADCY2 and GLUT4) were downregulated. Six of these 8 genes were corrupted
by outliers; these genes are indicated in Fig 2b by a red circle. To obtain some insights into the
possible mechanisms that may be important in the development of resistance to drugs, the
WebGestalt2 software package (available from http://bioinfo.vanderbilt.edu/webgestalt) [30]
was used to query two pathway databases, KEGG (Kyoto Encyclopedia of Genes and Genomes)
and GO (Gene Ontology) Pathways, for these 8 DE genes, yielding many important pathways
to be enriched. We identified three important genes, which were described as L21993 (ADCY2;
adenylate cyclase 2 (brain)), U21090 (POLD2; polymerase (DNA directed) delta 2, accessory
subunit) and X74330 (PRIM1; primase DNA, polypeptide 1 (49 kDa)), which are involved in
purine metabolism, DNA replication, pyrimidine metabolism and other metabolic pathways.

Using the GO database, we determined that POLD2 and PRIM1 are involved in biological
processes and that the genes POLD2, PRIM1, U29092 (ubiquitin-conjugating enzyme E2I
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Fig 2. Venn diagram and outlier gene expression profile for colon cancer data. Comparison of the
results on the colon cancer gene expression dataset. (a) Venn diagram of the top 100 genes estimated by
KW, BetaEB and the proposed method. (b) Outlying DE genes detected by the proposed method only. The
results for the control group are plotted below the lines, and the results for the cancer group are plotted above
the lines.

doi:10.1371/journal.pone.0138810.g002
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(UBE2I)), ADCY2, M94132 (human mucin 2 (MUC2) mRNA sequence), and M27190 (regen-
erating islet-derived 1 alpha (REG1A)) are involved in molecular functions and cellular com-
ponents (S6 Fig We also investigated these 8 DE genes in the Oncomine database (http://www.
oncomine.org). As summarized in Table C in S1 File, various independent studies have
reported significant gene under-/over-expression in colon cancer tissues compared with corre-
sponding normal tissues. We found that four independent studies have reported significant
over-expression of PRIM1 (p-value < 0.0002) in colon cancer tissues compared with corre-
sponding normal tissues. Moreover, in one of these four studies, the rank of PRIM1 over-
expression was within the top 4%, whereas in the remaining studies, this over-expression was
ranked in the top 6-21%, similar to other genes (Table C in S1 File). These studies strongly sug-
gest that these 8 genes may also be associated with colon cancer.

In our analysis, we also found some DE genes detected by other methods, such as only 5
genes by KW and 10 genes by BetaEB (Fig 2a). We applied all of these 15 genes to WebGestalt2
software for KEGG pathway analysis. Only five genes, X53743 (FBLN1: fibulin 1), X67699
(CD52: CD52 molecule), D38551 (RAD21: RAD21 homolog (S. pombe)), X16356 (CEA-
CAM1: carcinoembryonic antigen-related cell adhesion molecule 1 (biliary glycoprotein)) and
X07290 (ZNF3: zinc finger protein 3), were mapped using the KEGG Map in WebGestalt. We
did not obtain any specific pathway for these genes, but some genes were very crucial from the
previous investigations by different authors. As an example, the gene FBLN1 (fibulin 1)
(detected by the KW approach only) was identified as a tumor suppressor gene whose inactiva-
tion may contribute to carcinogenesis [31]. It plays a tumor suppressive role in colorectal can-
cer (CRC)[32] and gastric cancer [33], among others. The gene RAD21 (detected only by the
BetaEB method) is a component of the cohesion complex and is integral to chromosome segre-
gation and error-free DNA repair. This gene expression in CRC is associated with aggressive
disease, particularly in KRAS mutant tumors, and resistance to chemoradiotherapy. The gene
RAD21 may be an important novel therapeutic target [34]. The gene CEACAMI (detected
only by the BetaEB method) is a tumor suppressor whose expression is known to be lost in the
great majority of early adenomas and carcinomas. The loss of CEACAM1 expression is more
common in neoplastic tumors than the adenomatous polyposis coli (APC) mutations [35].
Notably, these genes were also statistically significant by the proposed method with p-values
(p) 0 0.0003 < p < 0.0020, but they were not included in the top 100 genes. On the other
hand, 8 DE genes of the proposed method were found by the KW and BetaEB approaches with
p-values of 0.004 < p < 0.02 and posterior probabilities (pp) of 0.50 < pp < 1, respectively.

3.2.3 Analysis of the Pancreatic Cancer Gene Expression Dataset with m = 4 Condi-
tions. This dataset was used in the research reported in [29]. It consists of 24 samples, with 6
replicates in each of m = 4 conditions —circulation tumor samples (CTC), hematological cells
(G), original tumor tissue (T'), and non-tumor pancreatic control tissue (P) from patients and
represents 8152 genes. We downloaded this dataset from the website http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?token = zbotduky//wssgujm/&acc=GSE18670. This dataset had been
pre-processed by previous users [29]. Therefore, we directly applied four methods (ANOVA,
LIMMA, KW and Proposed) to this dataset to test the null hypothesis (H,) of no differential
expressions among four groups for each gene. If the H, was rejected, we performed a pairwise
comparison test for all 4 methods to identify the pattern of gene expressions. Fig 3a presents a
Venn diagram of the DE genes estimated by the four methods based on pairwise comparisons
of CTCvs T, CTCvs P, CTC vs G, T vs P, T vs G and G vs P, which was also the approach used
in [29]. We used the Bonferroni method to adjust the p-values for ANOVA and KW and the
Benjamini-Hochberg (BH) method to adjust the p-values for LIMMA and the proposed
method. We used adjusted p-values at the 5% level of significance with an absolute fold change
of 2 for each pairwise comparison in identifying DE genes. From this Venn diagram, it is
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Fig 3. Venn diagram and outlier gene expression profile for pancreatic cancer data. (a) Venn diagram of the DE genes estimated by all four methods
(ANOVA, LIMMA, KW and Proposed) based on pairwise comparisons of CTCvs T, CTCvs P, CTC vs G, Tvs P, T vs G and G vs P. (b) Frequency
distributions of B-weights for each expression of the 8152 genes in 24 samples. (c) Scatter plot of the smallest S-weight for each of the 8152 genes vs. the
gene index, where the smallest value represents the minimum value of 24 S-weights from 24 samples for each gene. The red circles between the two gray
lines represent moderate/noisy outliers, whereas the other red circles, corresponding to 8-weights of less than 0.2, represent extreme outliers. (d) Plot of
ordered smallest B-weights in (c) for 8152 genes. (e) The 80 DE genes detected by the proposed method only, as shown in (a). Seventeen out of 80 DE
genes were detected as extreme outlying genes using the S-weight function. The results for the T, P, G and CTC groups are plotted above the lines with four
different colors. The outlying samples are indicated by circles above them.

doi:10.1371/journal.pone.0138810.9003

evident that 2712 DE genes were common to all four methods in these 6 pairwise comparisons.
The S-weight function of the proposed method identified 31% genes in the entire dataset as
outliers. The outlier genes are indicated in red in Fig 3(b-d). However, there exist some outliers
that may not influence the classical methods. In our simulation studies, we considered some
special types of outliers that influence the classical methods. For example, let us consider a true
EE gene between two groups as EE = {(20, 21, 22), (21, 20, 22)} and a true DE gene between
two groups as DE = {(20, 21, 22), (26, 27, 28)}, where () is used to represent the samples of
expressions from a group. In the case of an EE gene, we observe that the absolute mean differ-
ence between two groups is 0, whereas in the case of a DE gene, the absolute mean difference
between two groups is 6. If we corrupted the EE gene by an outlier expression as EE1 = {(20,
59%,22), (21, 60%, 22)}, EE2 = {(20, 0%, 22), (21, 1%, 22)}, EE3 = {(20, 59%, 22), (21, 90*, 22)}, EE4
={(20, 21, 22), (21, 60%, 22)}, we will observe that outliers (*) in EE1 and EE2 cannot influence
the classical/non-robust methods, whereas outliers (*) in EE3 and EE4 can highly influence the
classical/non-robust methods. Similarly, if we corrupted the previous DE gene by an outlier
expression as DE1 = {(20, 21, 22), (26, 70*, 28)}, DE2 = {(20, 1%, 22), (26, 27, 28)}, DE3 = {(20,
1%, 22), (26, 70%, 28)}, DE4 = {(20, 21, 22), (26, 8*, 28)}, DE5 = {(20, 38%, 22), (26, 27, 28)}, DE6
={(20, 29%, 22), (26, 17*, 28)}, we will observe that the assumed outliers (*) in DE1- DE3 can-
not influence the classical/non-robust methods, whereas outliers (*) in DE4-DE6 can highly
influence the classical/non-robust methods. The group variance/scale is 1 in both cases of origi-
nal EE/DE genes, whereas the group variance/scale lies between 1 and 1565 in both cases of
outlying EE/DE genes. In the current real data analysis, we found that the proposed method
detected 80 DE genes that were not detected by any of the other methods. Among these 80 DE
genes, 35 genes were corrupted by outliers. Among these 35 outlying genes, we considered 17
extreme outlying genes expressions for functional analysis to investigate their importance as an
example. These outlying genes were then plotted above the lines with four different colors for
the T, P, G and CTC groups, where the outlier samples are indicated by red circles above (Fig
3e). To compare all possible comparisons, only genes with significant 2-fold up/down regula-
tion were selected (using adjusted p-values < 0.05) for all methods (Table 9). In this table, we
observed a large number of DE genes detected by the proposed method. We searched for func-
tional enrichment of specific pathways by these 17 DE genes using the WebGestalt gene analy-
sis toolkit [30]. By mapping the differentially expressed gene set against the biological function
annotations in the Gene Ontology database, we found significant enrichment of genes involved
in the positive regulation of muscle-cell differentiation, the immune-response-regulating cell
surface receptor signaling pathway, and the antigen-receptor-mediated signaling pathway, as
well as genes involved in the carboxylic acid biosynthetic process (S2 File (xls)). Using the
KEGG database, we found that several probes mapped to signaling pathways, including the
beta-Alanine metabolism pathway, the MAPK signaling pathway and other metabolic path-
ways (Table 10 and S3 File (xls)). The pathway with the highest expression ratio in CTC was
the p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway, which is known to
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Table 9. Pairwise comparison analysis by all 4 methods with their corresponding selected significance DE genes.

Numbers of DR and UR genes

Corrected p-value < 0.05

Pair of groups Predicted DR (Iog%’ < -1 Overlapped predicted DR Predicted UR (Iog%l' > +1)° Overlapped predicted UR
CTCvsT {1570, 1909, 1533, 1710} 1367 {1392, 1663, 1294, 1590} 1215

CTCvs P {1589, 1904, 1590, 1720} 1413 {1446, 1738, 1323, 1675} 1247

CTCvs G {612, 911, 463, 826} 354 {744, 938, 618, 916} 534

TvsP {20, 0, 25, 60} 0 {51, 7, 72, 94} 7

Tvs G {1001, 1179, 1125, 1122} 983 {890, 1132, 1107, 1070} 856

Pvs G {1081, 1281, 1215, 1220} 1048 {898, 1191, 1165, 1094} 857

The values reported in the form {x, x, x, x} in this table represent the numbers of downregulated (DR) or upregulated (UR) differentially expressed (DE)

genes estimated by the ANOVA, LIMMA, KW and proposed (Bold) methods, respectively. “Note that log% < —1 indicates significant 2-fold downregulation

and logjﬁj—;‘ > +1 indicates significant 2-fold upregulation.

doi:10.1371/journal.pone.0138810.t009

Table 10. KEGG pathways for the 17 DE genes identified by the proposed method only.

KEGG ID KEGG pathway description No. of genes (%) p-values Adjusted p-values
hsa00410 beta-Alanine metabolism 2 (11.76) 2.25e-05 6.75e-05
hsa04010 MAPK signaling pathway 2 (11.76) 0.0033 0.0099
hsa01100 metabolic pathways 2 (11.76) 0.0507 0.1521

KEGG terms that are significantly enriched in the 17 pancreatic-cancer-related genes identified by the proposed method only. The p-values were
estimated using the hypergeometric test and then adjusted via the Bonferroni multiple testing correction (adjusted p-values).

doi:10.1371/journal.pone.0138810.t010

be involved in cancer cell migration. In the p38 MAPK pathway, PP2CB and MEF2C were sig-
nificantly upregulated. The simulation study results in Table 7 also increase our confidence in
the results of the proposed method for this real dataset because that simulated dataset was gen-
erated in accordance with the parametric properties of this real dataset.

4 Conclusion

We proposed a hybrid one-way ANOVA approach that unifies the robustness and efficiency of
estimation of model parameters for the discovery of differential gene expressions with two or
more conditions with multiple patterns. The proposed approach is controlled by the S-weight
function of the minimum f-divergence method such that MLEs are used in the absence of out-
liers and minimum f-divergence estimators are used in the presence of outliers for estimating
the group parameters in the ANOVA model. The proposed method produces robust and effi-
cient results because MLEs are consistent and asymptotically efficient under a Gaussian distri-
bution in the absence of outliers and because the minimum f-divergence estimators are highly
robust and asymptotically efficient in the presence of outliers. It overcomes the problems that
arise in the existing robust methods for both small- and large-sample cases with multiple pat-
terns of gene expression. The -weight function plays the key role in the performance of the
proposed method. It can accurately and significantly detect outlying expressions.
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The simulation results showed that all eight methods (ANOVA, SAM, LIMMA, EBarrays,
eLNN, KW, robust BetaEB and proposed) perform almost identically for both the small- and
large-sample cases with m = 2 conditions in the absence of outliers. The robust BetaEB method
and the proposed method exhibited better performance than the other six methods in the pres-
ence of at most 50% outlying genes (although we provided results with 5%, 10% and 75% outly-
ing genes only) with one or two outliers for each outlying gene. However, the BetaEB approach
appears to be slightly better than the proposed method for the small-sample case, whereas the
proposed method exhibited considerably better performance than the BetaEB method for both
the small- and large-sample cases in the presence of more than 50% outlying genes with 5%
outlier samples for each outlying gene. To investigate the performance of the proposed method
in the case of multiple (m > 2) conditions with multiple patterns of expression, four popular
methods (ANOVA, SAM, LIMMA and KW) were considered based on the availability of soft-
ware/extended-version of the algorithms for testing the equality multiple means. The non-
parametric approach KW exhibited weak performance in a comparison of four methods
(ANOVA, SAM, LIMMA and proposed) for the small-sample case with m > 2 conditions in
the absence of outliers. However, the proposed method exhibited improved performance com-
pared to the other methods for the small-sample case in the presence of outliers. The non-
parametric KW method and the proposed method showed better performance in a comparison
of the other three methods (ANOVA, SAM and LIMMA) for the large-sample case with m > 2
conditions in the presence of few outlying genes, where the proposed method appears to be
slightly better than the KW method. The results on real gene expression datasets demonstrated
that the proposed method can identify some additional outlying genes as differential expres-
sion compared to the other methods. Moreover, we found that the identified genes are reported
as being important genes in different studies by other researchers. Therefore, the proposed
approach would be more suitable and reliable on average for the identification of DE genes
between two or more conditions with multiple patterns of expression.

Supporting Information

S1 Fig. Plot of FDR versus number of top DE genes estimated by different methods. (a) In
the absence of outlying genes. (b) In the presence of one outlying expression in 5% genes. (c) In
the presence of one outlying expression in 10% genes. (d) In the presence of one outlying
expression in 75% genes.

(TIF)

S2 Fig. Plot of FNR versus FPR estimated by different methods. (a) In the absence of outly-
ing genes. (b) In the presence of one outlying expression in 5% genes. (c) In the presence of one

outlying expression in 10% genes. (d) In the presence of one outlying expression in 75% genes.
(TIF)

$3 Fig. ROC curves produced by different methods. (a) In the absence of outlying genes. (b)
In the presence of one outlying expression in 5% genes. (c) In the presence of one outlying
expression in 10% genes. (d) In the presence of one outlying expression in 75% genes.

(TTF)

S4 Fig. Results of spike data analysis. (a) Frequency distribution of S-weights for each expres-
sion of 18707 genes with 18 samples. (b) Scatter plot of the smallest 3-weight for each of the
18707 genes vs. the gene index, where the smallest value represents the minimum value of 18
B-weights from 18 samples for each gene. The red circles between the two gray lines represent
moderate/noisy outliers, whereas the remaining red circles, corresponding to S-weights of less
than 0.2, represent extreme outliers. (c) Ordered plot of the smallest -weights shown in (b) for
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the 18707 genes. (d) Bar plots based on the outlying designated EE genes detected by the pro-
posed S-weight function. (e) Bar plots based on the outlying designated DE genes detected by
the proposed f-weight function. (f) M-A plot based on the group medians, where red stars (x)
are used for the 233 outlying designated EE genes detected by the proposed method with p—
value < 0.05 shown in (d), and blue stars (x) are used for the 40 outlying designated DE genes
detected by the proposed method with p-value < 0.05 shown in (e).

(TIFF)

S5 Fig. Results of colon cancer data analysis. (a) Venn diagram of the top 100 genes estimated
by BetaEB, KW and the proposed methods. (b) Frequency distribution of S-weights for each
expression of 2000 genes with 61 samples. (c) Scatter plot of the smallest S-weight for each of
the 2000 genes vs. the gene index, where the smallest value represents the minimum value of 61
B-weights from 61 samples for each gene. The red circles between the two gray lines represent
moderate/noisy outliers, whereas the remaining red circles, corresponding to -weights of less
than 0.2, represent extreme outliers. (d) Ordered plot of the smallest 3-weights shown in (c) for
the 2000 genes.

(TTF)

S6 Fig. Gene ontology (GO) categories of eight (8) genes. This directed acyclic graph (DAG)
shows the gene ontology categories of eight (8) genes, detected by the proposed method only in
the colon cancer dataset, obtained using the WebGestalt database. These enriched GO catego-
ries were hierarchically organized into a DAG tree; each box in the tree lists the name of the
GO category, the number of genes in that category, and the FDR-adjusted p-value (adjP) if the
enrichment is significant. The categories shown in red are enriched (adjusted p-value

of < 0.05), whereas those in black are non-enriched.

(TTF)

S1 File. Results for simulated and real gene expression datasets. Performance evaluations
based on simulated gene expression profiles are presented in Tables A and B and real gene
expression colon cancer dataset results are presented in Table C.

(PDF)

S$2 File. GO Pathways for 17 pancreatic cancer DE genes. Gene Ontology analysis informa-
tion.

(XLS)

S3 File. KEGG Pathways for 17 pancreatic cancer DE genes. KEGG analysis information.
(XLS)
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