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Abstract

Two different studies were conducted to assess the accuracy and precision of an algorithm 

developed for automatic reconstruction of the cerebral cortex from T1-weighted magnetic 

resonance (MR) brain images. Repeated scans of three different brains were used to quantify the 

precision of the algorithm, and manually selected landmarks on different sulcal regions throughout 

the cortex were used to analyze the accuracy of the three reconstructed surfaces: inner, central, and 

pial. We conclude that the algorithm can find these surfaces in a robust fashion and with subvoxel 

accuracy, typically with an accuracy of one third of a voxel, although this varies with brain region 

and cortical geometry. Parameters were adjusted on the basis of this analysis in order to improve 

the algorithm’s overall performance.
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Introduction

Many brain mapping procedures require automated methods to find and mathematically 

represent the cerebral cortex in volumetric MR images. Such reconstructions are used for 

characterization and analysis of the two-dimensional (2-D) geometry of the cortex— e.g., 

computing curvatures (Cachia et al., 2001; Zeng et al., 1999), geodesic distances (Cachia et 

al., 2002; Rettmann et al., 2002), thickness and volume (Fischl and Dale, 2000; MacDonald 

et al., 2000; Miller et al., 2000; Magnotta et al., 1999; Kruggel and von Cramon, 2000; 

Tosun et al., 2001; Crespo-Facorro et al., 1999; Kim et al., 2000; Jones et al., 2000; Kabani 
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et al., 2001; Yezzi and Prince, 2003; Lerch and Evans, 2005), segmenting sulci and gyri 

(Cachia et al., 2002; Rettmann et al., 2002; Behnke et al., 2003), surface flattening (Carman 

et al., 1995; Drury et al., 1996; Timsari and Leahy, 2000), and spherical mapping (Fischl et 

al., 1999; Tosun et al., 2004b; Angenent et al., 1999).

The cerebral cortex is a thin, folded sheet of gray matter (GM). As illustrated in Fig. 1, the 

cortical GM is bounded by the cerebrospinal fluid (CSF) on the outside, and by the white 

matter (WM) on the inside. The boundary between GM and WM forms the inner surface, 

and the boundary between GM and CSF forms the pial surface. It is useful to define the 

central surface as well; it lies at the geometric center between the inner and pial surfaces, 

representing an overall 2-D approximation to the three dimensional (3-D) cortical sheet. 

Many approaches have been proposed in the literature for the reconstruction of these 

surfaces from MR brain images (Mangin et al., 1995; Teo et al., 1997; Davatzikos and 

Bryan, 1996; Sandor and Leahy, 1997; Joshi et al., 1999; Dale et al., 1999; Zeng et al., 1999; 

Xu et al., 1999; MacDonald et al., 2000; Kriegeskorte and Goebel, 2001; Shattuck and 

Leahy, 2002). These approaches mostly differ in their ability to capture the convoluted 

cortical geometry, reconstruction accuracy, and robustness against imaging artifacts. We 

have developed a 3-D reconstruction method, called Cortical Reconstruction Using Implicit 

Surface Evolution (CRUISE), for automatic reconstruction of these three nested cortical 

surfaces from T1-weighted volumetric axially acquired MR brain images (Han et al., 2001b, 

2004).

This paper presents two different studies – a repeatability analysis and a landmark accuracy 

study – characterizing the precision and accuracy of CRUISE algorithms. The goal of these 

studies is to evaluate the performance of CRUISE (in accuracy and precision) and to suggest 

optimal parameters for CRUISE algorithms. We note that a preliminary version of this work 

has appeared as a conference paper (Tosun et al., 2004a). The organization of this paper is as 

follows. CRUISE: cortical reconstruction using implicit surface evolution briefly describes 

the CRUISE algorithms and the relation between its parameters and the location of the 

reconstructed surfaces. The precision and accuracy analysis is described in Repeatability 

analysis and Landmark accuracy study on inner and pial surfaces, respectively. Based on the 

results reported in Landmark accuracy study on inner and pial surfaces, Parameter 

adjustment and evaluation describes an approach to adjust the parameters used in CRUISE 

algorithms. The paper is summarized and suggestions for future work are given in 

Discussion and future work.

CRUISE: cortical reconstruction using implicit surface evolution

The general approach we use to find cortical surfaces from MR image data is described in 

Xu et al. (1999). As described in Han et al. (2001a,b, 2002, 2003), several improvements to 

this initial approach have been made over the past several years. CRUISE is the current 

embodiment of this basic approach together with the improvements, and is described in Han 

et al. (2004). CRUISE is a data-driven method combining a robust fuzzy segmentation 

method, an efficient topology correction algorithm, and a geometric deformable surface 

model. The algorithm has been targeted toward and evaluated on the Baltimore Longitudinal 

Study of Aging MR imaging studies (Resnick et al., 2000). A given data set comprises a 
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volumetric SPGR series (Wang and Rieder, 1990) acquired axially on a GE Signa 1.5 T 

scanner with the following parameters: TE = 5, TR = 35, FOV = 24, flip angle = 45°, slice 

thickness = 1.5, gap = 0, matrix = 256 × 256, NEX = 1. Thus, the native voxel size is 0.9375 

mm × 0.9375 mm × 1.5 mm. We now briefly describe CRUISE, the algorithm whose 

performance is evaluated in subsequent sections of this paper.

The first processing step in CRUISE is to re-slice the image volume to horizontal cross-

sections parallel to the plane passing through the anterior and posterior commissures, 

followed by the skull-stripping process to remove the cerebellum, extracranial tissue, and 

brain stem (at the level of the diencephalon) as described in (Talairach and Tournoux, 1988; 

Goldszal et al., 1998). In particular, removal of extracranial tissue was accomplished by a 

sequential application of morphological operators, thresholding, seeding, region growing, 

and manual editing, as follows. First, the brain tissue was detached from the surrounding 

dura by a 3-D morphological erosion operator with a spherical structuring element of radius 

2 mm. Then, a 3-D seeded region growing extracted the brain tissue. The tissue lost in the 

erosion step was recaptured by a 3-D morphological dilation operator with a spherical 

structuring element of radius 4 mm. Since the CSF/dura interface is difficult to determine 

reliably with the SPGR pulse sequence, a limitation of these automated steps is that an 

undetermined amount of sulcal CSF is typically removed. In addition, some manual editing 

was necessary to extract the sagittal sinus anteriorly and posteriorly, to eliminate 

extracranial tissues mesial to the temporal lobes, to remove portions of the dura posteriorly, 

and to edit out the cerebellum and brainstem. These steps required some manual interaction 

including identification of the anterior and posterior commissures. The remaining image 

volume is then resampled to obtain isotropic voxels each having size 0.9375 mm × 0.9375 

mm × 0.9375 mm using cubic B-spline interpolation in order to simplify numerical 

implementation, make subsequent processing less sensitive to orientation, and avoid 

computational errors due to non-isotropic voxels.

The next step in processing this “skull-stripped” MR image volume is to apply a fuzzy 

segmentation algorithm (Pham and Prince, 1999; Pham, 2001), yielding three membership 

function image volumes representing the fractions of WM, GM, and CSF within each image 

voxel, denoted by µWM, µGM, and µCSF, while compensating for intensity inhomogeneity 

artifacts inherent in MR images, and smoothing noise. A sample axial cross-section from a 

T1-weighted MR image volume and a skull-stripped MR image volume are shown in Figs. 

2a–b, and cross-sections of the computed membership functions are shown in Figs. 2c–e.

Fig. 3 illustrates idealized, one-dimensional (1-D) profiles of the membership functions, 

µWM, µGM, and µCSF, along a line passing through cortical gray matter. From left to right, 

these profiles indicate the presence of first white matter, then gray matter, then cerebrospinal 

fluid. Here, α is a threshold that is used to locate the interface defined between WM and GM 

tissues. Ideally, GM/ WM interface voxels contain both WM and GM, and the voxels inside 

the GM/WM interface have larger WM fraction than GM fraction. Therefore, an isosurface 

of the WM membership function at an isolevel α = 0.5 provides a good approximation to the 

GM/ WM interface. It is apparent from Fig. 2c, however, that such an isosurface will include 

non-cortical surfaces such as the subcortical interfaces near the brainstem and within the 

ventricles.
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To prevent undesirable parts of the WM membership isosurface from being generated, an 

automatic method called AutoFill (Han et al., 2001a) is used to edit µWM in order to fill the 

concavities corresponding to the ventricles and the subcortical GM structures such as the 

putamen and caudate nucleus with white matter. The AutoFill-edited white matter 

membership is denoted by μ̂WM, an example of which is shown in Fig. 2f The largest 

triangle mesh surface of the α = 0.5 isosurface of μ̂
WM is a close approximation to the 

GM/WM interface within each cortical hemisphere, and it connects the two hemispheres 

across the corpus callosum at the top and through the brainstem at the bottom. A graph-

based topology correction algorithm (GTCA) (Han et al., 2002) followed by a topology-

preserving geometric deformable surface model (TGDM) (Han et al., 2003) is used to 

estimate a topologically correct and slightly smoothed “inner surface” on the GM/WM 

interface, as shown in Figs. 4a and 4d. The smooth, artificial surface on the bottom of the 

brain is caused by AutoFill editing.

The inner surface serves as an initial surface for finding both the central surface that lies at 

the geometric center of the GM tissue and the pial surface that lies at the GM/CSF tissue 

interface. These surfaces are difficult to find due to the effect of partial volume averaging, 

which makes adjacent GM banks within narrow sulci barely distinguishable. In particular, 

within each sulcal fold, two GM banks separated by CSF should be clearly defined; but 

evidence of CSF is often missing in tight sulci. To compensate for this effect, CRUISE uses 

anatomically consistent enhancement (ACE) (Xu et al., 2000; Han et al., 2001b), which 

automatically edits the gray matter membership function, creating thin (artificial) CSF 

separations within sulci. An ACE-edited gray matter membership function, denoted by μ ̂
GM, 

is shown in Fig. 2g. This image shows sulcal CSF where the original GM membership 

function (Fig. 2d) does not.

The ACE-edited GM membership function is used in two ways to find the central and pial 

surfaces. First, a generalized gradient vector flow (GGVF) external force (Xu et al., 1999) is 

computed directly from μ̂GM, as if it were an edge map itself. A TGDM deformable surface 

is then initialized at the inner surface and is driven toward the central surface using the 

GGVF forces. This yields a central surface, as shown in Figs. 4b and 4e. To find the pial 

surface, it is observed that the β = 0.5 isosurface of μ̂
WM + μ̂

GM (shown in Fig. 2h) is a very 

good approximation to the pial surface. Accordingly, a region-based TGDM deformable 

surface model (Han et al., 2001b) is used to drive the central surface toward the β = 0.5 

isosurface of μ̂
WM + μ̂

GM, yielding an estimate of the pial surface, as shown in Figs. 4c and 

4f.

Connectivity consistent marching cubes (CCMC) algorithm described in (Han et al., 2003) is 

used to compute the isosurfaces from the results of each deformable model. When surfaces 

are computed using geometric deformable models such as TGDM, they contain no self-

intersections. Also, in the TGDM deformable surface models described above, an extra 

constraint is used to ensure that the central surface is outside the inner surface and the pial 

surface is outside the central surface. Thus, the three cortical surfaces shown in Figs. 4a – f 

contain no self intersections, and they are properly nested with no mutual intersections. Figs. 

4g – i show the contours of these nested cortical surfaces superposed on skullstripped MR 

image cross-sections. Visual inspection reveals excellent fidelity of both the inner and 
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central surfaces, with occasional large errors on the pial surface. It is the goal of the present 

paper to give quantitative measures to the accuracy and precision of CRUISE on 

reconstructing these three nested surfaces.

Repeatability analysis

The first study is focused on the robustness of CRUISE against imaging noise and artifacts 

to assess the precision on reconstructing the nested surfaces. This is accomplished by 

conducting a repeatability study using three subjects each scanned twice within a short time 

interval during which the subject was repositioned in the scanner. Ideally, our surfaces 

should be reproduced with high precision in successive scans of the same subject’s brain. 

For longitudinal analysis, repeatability is a critical feature of a cortical reconstruction 

algorithm, since detection of subtle changes is the main objective. The goal of the 

repeatability analysis is to measure the differences in surface reconstruction from repeated 

scans of the same subject, and to identify the regions where large differences are observed. 

A preliminary repeatability analysis was reported in Han et al. (2004); the present paper 

provides a complete description of the analysis and provides additional results.

Surface masking

CRUISE was applied to each of the six MR image data sets (the original and repeat scan MR 

images of the three individual subjects) to generate six sets of nested cortical surfaces. 

Surfaces reconstructed from the MR image data sets are represented by triangle meshes 

comprising approximately 300,000 vertices each. Our aim is to measure how well CRUISE 

can reproduce the cortical geometry despite changes in patient position and the introduction 

of different MR noise and artifacts in the repeat scan. Therefore, surface elements that do 

not correspond to cortex are ignored in the analysis.

Surface elements that do not belong to cortex reside on the artificial surface created by 

AutoFill joining the hemispheres below the corpus callosum (see Figs. 2c and 2f and Figs. 

4d – f). Accordingly, we formed a mask for each MR image data set marking the regions 

that were modified by AutoFill. The modified regions were identified automatically by 

subtracting the original WM membership function µWM from the AutoFill-edited WM 

membership function μ̂WM. A binarized version of this difference volume was then used to 

identify the triangle mesh vertices not corresponding to cortical geometry. Vertices so 

identified are excluded from the entire analysis given below, from 3-D surface alignment to 

distance analysis, including all statistical performance analysis.

3-D surface alignment

We are interested in shape differences between the two repeat scans; a rigid body difference 

should not matter. Therefore, the repeat scan surface W is first aligned with the original 

surface V in order to remove a shift or rotation that inevitably took place between the two 

scans. Although a 3-D volumetric registration approach could be used to align the original 

and repeat scan volumetric MR image data sets, since our primary objective is to measure 

differences between the surfaces, a 3-D surface registration approach is used instead to 

avoid possible surface differences due to the volume registration errors. Specifically, we use 
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a global 3-D rigid body surface-based registration algorithm based on iterative closest point 

algorithm (ICP) (Besl and McKay, 1992). At each iteration, ICP first finds the closest point 

correspondences between the point sets, and then finds a rigid body transformation of one 

point set in order to minimize the average distance of the corresponding points. These steps 

are repeated until convergence. The reason that we applied ICP to directly align the surfaces 

instead of using a volume registration method is because here we are interested in 

comparing the shapes of the estimated cortical surfaces. Directly aligning the surfaces 

removes the possibility that errors we report would be, in part, due to errors in volume 

registration. ICP is an iterative method for aligning two point sets.

The surfaces V and W are represented by vertices –  in V and  in W – 

connected by triangular surface elements. Ordinarily, ICP ignores the fact that V and W are 

surfaces when creating correspondences. Instead, it finds a mapping ℐ(i) that gives the point 

wℐ(i)∈W corresponding to the closest vertex vi ∈ V. Accordingly, the pair [vi, wℐ(i)] forms a 

correspondence pair, and ICP finds the rigid body transformation ℛ(·) of points in W that 

minimizes the average distance between correspondences, given by

(1)

where ‖·‖ gives the length of a vector.

Our modification to ICP acknowledges the fact that V and W are triangulated surfaces rather 

than simple point sets. This means that the closest point to vi ∈ V on W may not be a vertex, 

but may instead be a point on a triangular element defined by the vertices in W. This 

situation is illustrated in Fig. 5. In our modification to ICP, correspondence pairs are 

identified by projection operators. In particular, we identify the closest point to vi ∈ V on the 

surface W by the projection W(vi), where W(·) is the projection (onto W) operator. 

Similarly, the closest point to wj ∈ W on the surface V is given by V(wj), where V(·) is the 

projection (onto V) operator. This identification yields the correspondence pairs [vi, W(vi)], 

i = 1, …,N and [wj, V(wj)], j = 1, …, M. In order to reduce possible directional bias, we 

define the modified ICP objective function in a bilateral fashion, as follows

(2)

The fact that W is being moved under a rigid body transformation is reflected in this 

expression by the use of the rigid body transformation operator ℛ(·)

One additional aspect should be clarified. Each cortical segmentation produces three cortical 

surfaces - inner, central, and pial - and all three should be aligned before computing shape 

differences. It is possible to align each surface separately using modified ICP; but we elected 

to align them all together in one larger modified ICP algorithm. To achieve this, it is 

necessary to modify the projection operators so that they yield points on corresponding 

surfaces. For example, if vj represents an inner vertex, the projection W(vj) yields a point 
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on the inner surface of the model W. We have modified ICP for this nested surface 

approach.

Distance measures

After the nested surface model W has been transformed into alignment with V, we are in 

position to quantify the distance between the two surfaces. One good measure of this 

distance is the modified ICP objective function, Eq. (2). We use Eq. (2) as a measure of 

absolute distance (AD) between two surfaces V and ℛ(W), where W is aligned with a 

(optimal, after ICP) rigid body transformation ℛ.

To provide a thorough analysis on the absolute distance measure, two distance measures 

defined from one surface to the other are used. The first distance function “W -distance” is 

defined on the mesh nodes  of the surface ℛ(W), as the norm of the difference 

vector between correspondence pair [ℛ(wj), V(ℛ(wj)), j = 1,…,M. In an analogous 

fashion, the second distance function “V-distance” is defined on the mesh nodes  of 

the surface V, as the norm of the difference vector between correspondence pair [vj, 

ℛ(W)(vi)], i = 1,…,N. W-distance and V-distance measures are illustrated in Fig. 5.

W-distance and V-distance measures are small when the surfaces are very similar and grow 

larger as the surfaces become dissimilar. Differences in the smoothness of the two surfaces 

could conceivably make W-distance and V-distance measures substantially different 

(although we do not expect this in a repeatability analysis, where the CRUISE algorithm 

uses the same parameters in each trial). It is useful to identify a signed distance (SD)—for 

example, to see whether one surface is always inside the other. To provide a signed distance, 

the inner product of the difference vector with the outward normal vector of the surface on 

which the distance measure is defined is computed. If the inner product is positive, then the 

signed distance is positive, and if the inner product is negative, then the signed distance is 

negative.

Results

In Table 1, statistics of the combined distance measure (incorporating both W-distance and 

V-distance) are reported, and W-distance measures on the nested cortical surfaces of the 

three subjects are displayed in Fig. 6. No specific pattern was observed on any of the nested 

surfaces of the three individual subjects analyzed in this study.

Overall, the mean signed distances for any surface are just a few hundredths of a mm. This 

indicates that the corresponding surfaces are well aligned and there are no gross geometric 

errors between the two scans. The overall mean absolute distances are in the range 0.23 – 

0.33 mm, which is slightly less than one third of a voxel size. We conclude that CRUISE has 

sub-voxel precision on locating the nested cortical surfaces. Smaller means and standard 

deviations are observed on the central surface compared with those for the inner and pial 

surfaces. This adds strength to the claim that the central surface can be found in a more 

robust fashion (Xu et al., 1999).
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Although the average and the standard deviations are reasonably small, there are regions 

where the aligned surfaces are separated by large distances. Table 1 indicates the percentage 

of analyzed surface (ignores “AutoFill-edited WM points”) where the absolute distance is 

larger than 1.0 and 2.0 mm. This is between 1.7 and 3.7% of the surface where AD > 1.0 

mm and 0.2–0.5% of the surface where AD > 2.0 mm, which is small, but of concern in 

longitudinal analysis where the sought changes might be in the neighborhood of these small 

percentages. We analyzed many of these regions manually, and found that large separations 

can occur because of differences in skull-stripping, AutoFill editing, topology correction, 

and ACE editing. Skull stripping is particularly problematic because user interaction can 

erroneously remove GM or leave dura, which can affect the positioning of all three surfaces, 

particularly the central and pial surfaces. The remaining sources of errors are noise spikes 

present in one data set but not the other and subtle differences in partial volume averaging 

due to the slight positioning differences between the two scans. ACE-related differences are 

only present on the central and pial surfaces.

Landmark accuracy study on inner and pial surfaces

Accurate representation of the cerebral cortex is crucial in characterization and analysis of 

the geometry of the cortex. In this section, we evaluate the reconstruction accuracy of 

CRUISE in addition to its robustness against imaging artifacts. A landmark accuracy study 

on the central surface using a set of 50 manually selected central surface landmarks – 5 on 

each hemisphere of 5 brains – was reported in our previous work (Han et al., 2004; Xu et al., 

1999). The distance from each landmark to the central surface estimated by our algorithm 

served as a measure of accuracy. Overall, the mean landmark error was 0.51 mm with a 

standard deviation of 0.41 mm, illustrating subvoxel accuracy in our reconstruction of the 

central surface (see Han et al., 2004).

The focus of the landmark accuracy study presented in this paper is to quantify the accuracy 

of the inner and pial surfaces estimated by the CRUISE algorithm. In addition, we assess 

how the accuracy varies both across the surface as well as within different cortical 

geometries. Twelve raters1 participated in this study. Each rater identified a series of 

landmarks at the GM/WM and GM/CSF tissue interfaces on the skull-stripped MR brain 

image volumes. The landmarks effectively yield a rater implied surface at the corresponding 

cortical layer. Throughout this study, we refer to these surfaces as the implied surfaces and 

the estimated (inner and pial) surfaces generated by CRUISE as the reference surfaces. To 

quantify the level of agreement between the reference and implied surfaces, we define a 

landmark offset measure as the signed minimum distance from a given landmark to the 

corresponding reference surface, using negative and positive values to indicate the landmark 

point being inside or outside the reference surface, respectively. Fig. 7 illustrates the 

landmark offset from a given landmark to the reference surface. These measures will be 

used to quantify the accuracy of the estimated inner and pial surfaces and to infer any 

systematic bias of CRUISE in either the inward or outward directions.

1Three of the raters have expertise on analyzing MR brain images.
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The CRUISE reference surfaces are defined primarily by the 0.5 isolevels of the μ̂
WM and 

μ ̂
GM + μ̂

WM functions as described in CRUISE: cortical reconstruction using implicit 

surface evolution. Thus, in addition to the landmark offset measurement, the values of 

surface defining membership function at the landmarks (μ̂WM for the inner surface, and μ ̂
WM 

+ μ̂
GM for the pial surface) could provide insight into a systematic bias of the CRUISE 

estimated surfaces. For example, if the membership values at the landmarks were 

consistently higher than 0.5 for both inner and pial surfaces, this would indicate an outward 

bias of the CRUISE estimated surfaces. This is made clear by referring back to Fig. 3. 

Consider the isosurfaces that would be generated at higher μ̂
WM and µGM + μ̂

WM isolevel 

values—i.e., α > 0.5 and β > 0.5 respectively. The isosurfaces estimated at these isolevels 

would give an inner surface and a pial surface inside the surfaces estimated at α = 0.5 and β 

= 0.5 indicating an outward bias of the CRUISE estimated surfaces. We are particularly 

interested in these measures because α and β are easily changed to improve the performance 

of CRUISE.

The landmark accuracy study consisted of three steps. First, we conducted an analysis of 

both the landmark offsets and the membership function values at the landmarks. This 

analysis quantifies the accuracy of the CRUISE estimated surfaces as well as any systematic 

bias. In the second step, we selected new threshold values of α and β according to the 

observed landmark offset and membership function values. These values were selected so 

that they best fit the raters’ data from step one. In the third step, we repeated the landmark 

accuracy study with the new thresholds. The following is a complete description of the 

landmark picking procedure, the analysis, and the results.

Interactive program for landmark picking

Our initial landmark accuracy study on the central surface (Han et al., 2004; Xu et al., 1999) 

included only one rater who picked a single landmark in each region-of-interest at integer 

number coordinates. Since the landmarks were manually picked, there is always uncertainty 

about the validity of the result as the level of measured errors approaches the inherent 

variability of the rater. To minimize this uncertainty, we designed a new landmark accuracy 

study for the inner and pial surfaces with an extended number of landmarks and raters, using 

two different MR brain image volumes. Landmarks are located on the GM/WM and 

GM/CSF interfaces in six cortical regions where each region is defined by a cortical sulcus. 

These include the sylvian fissure (SYLV), superior frontal (SF), superior temporal (ST), 

cingulate (CING), and parieto-occipital (PO) sulci of each cortical hemisphere, and the 

central (CS) sulcus of the left hemisphere. These sulcal regions are colored on the right 

hemisphere of one cortical surface in Fig. 8. Within each region, landmarks are defined on 

the three cortical geometries—”sulcal fundus”, “sulcal bank”, and “gyral crown”. Sulcal 

fundus points lie along the bottom of a cortical fold, sulcal bank points lie along the sides of 

a fold, and gyral crown points lie along the top of a fold, as illustrated in Fig. 1.

A visualization program was written using Open Visualization Data Explorer 4.2.0, IBM 

Visualization Software to pick landmarks inside a region-of-interest box on the pre-selected 

axial cross-sections of the raw MR image volume. We chose to pick landmarks by viewing 

axial cross-sections, the orientation on which the MR images were acquired. A total of 66 
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axial cross-sections were pre-selected, each corresponding to one of the eleven sulcal 

regions, one of the three cortical geometries, and one of the tissue interfaces. The purpose of 

the visualization program is to provide a standard way of picking the landmarks so that a 

statistical analysis approach could be used to compare the data of different raters. The 

interface had two primary displays. The first display, shown in Fig. 9(a), provided the 

information required to pick the landmarks on that axial cross-section. This included 

information on which tissue interface the landmarks should be selected, the number of 

landmarks to select, and the cortical geometry type. In addition, a counter was incremented 

after each landmark selection indicating the number of picks remaining. A blue box outlined 

a 10 voxel × 10 voxel region in which the rater was required to pick the landmarks. In the 

second primary display, shown in Fig. 9(b), an enlarged view around the 10 voxel × 10 

voxel outlined by the blue box from the first display was shown. The interface allowed the 

rater to adjust several parameters including the center and size of the enlarged view in the 

second display as well as the colormap scaling to improve the contrast between different 

cortical tissues. The rater was able to select between two possible colormaps—linear or 

logarithmic. In the linear map, each colormap level corresponds to a constant intensity range 

in the image. The second colormap utilizes logarithmic scaling providing more contrast at 

low intensities. Each landmark was selected in this second primary display with a right 

mouse click and the selected point was marked in red in all displays. In order to get a sense 

of the location of the point in 3-D, the two orthogonal cross-sections through this point were 

also displayed, as shown in Figs. 9c – d. The landmark was automatically recorded as the 

physical position of the selected point with floating number coordinates and landmarks 

identified by a given rater were forced to be at least 0.50 mm apart from each other. The 

rater also had the flexibility of removing any of the previously recorded landmarks. All 

raters were asked to use the same linux workstation with fixed monitor settings, but 

encouraged to vary the brightness and contrast colormap table as desired. This encouraged 

raters to concentrate on picking landmarks on the desired tissue interface, and not simply to 

pick intensity edges that they might observe on a static display with fixed lighting 

conditions.

Data

Twelve raters participated in the landmark accuracy study and the study was carried out 

using two different MR image volumes. First six raters picked landmarks on both image 

volumes and the remaining raters picked landmarks on only the first image volume. Ten 

landmarks were picked on each of 66 pre-selected axial cross-sections. Each rater picked a 

total of 330 landmarks equally distributed across the different sulcal regions and different 

geometry groups on each cortical tissue interface. It took approximately 1 h and 30 min per 

brain to pick the landmarks, with a substantial portion of this time required for adjusting the 

parameters of the colormap scaling function for the best contrast.

Two measures were computed in this study—landmark offset and surface defining 

membership function value (SDMFV). The SDMFV at each landmark point is defined as the 

value of the AutoFill-edited WM membership function, μ̂WM, for the inner surface and the 

sum of the ACE-edited GM and AutoFill-edited WM membership functions, μ̂GM + μ̂
WM, 

for the pial surface. To measure the landmark offset, first the minimum absolute distance 
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(AD) from landmark point to the corresponding reference surface is computed, and then the 

absolute distance measurement is signed according to the sign convention illustrated in Fig. 

7, which gives the signed distance (SD) from the landmark point to the corresponding 

reference surface.

The landmark offset measure calculation requires finding the closest point on the reference 

surface to the landmark point. Since each landmark point is categorized by the sulcal region 

in which it is picked, we restricted the distance calculation in the sulcal region of interest. To 

identify the reference surface points in the sulcal regions analyzed in this study, we utilized 

the sulcal segmentation method described in Rettmann et al. (2002), and the assisted sulcal 

labeling program described in Rettmann et al. (2005). Presumably the 10 voxel × 10 voxel 

box provided to the rater in each preselected axial cross-section includes only points within 

a given sulcal region, however, due to the highly convoluted nature of the cortex in 3-D, the 

landmark point and its corresponding closest point might not be in the same sulcal region. 

For less than 2.0% of the landmark points, the closest point on the corresponding reference 

surface had a non-matching sulcal label. reference surface either had a non-sulcal region 

label or had a different sulcal region label than the given landmark point’s. These landmark 

points were excluded from the entire analysis presented below.

Data analysis

We first tested the effects of variable intensity inhomogeneity and colormap scaling by 

comparing the algorithm versus rater across the two different subjects, the three different 

cortical geometries (sulcal fundus, sulcal bank, and gyral crown), and eleven different sulcal 

regions. In this study, we analyzed the GM/ WM and GM/CSF interface data separately.

Statistical analyses were performed using R version 2.0.0 (The R Development Core Team, 

2003). The effects of “rater”, “subject”, “sulcus”, and “geometry” on dependent SD and 

SDMFV measures were analyzed in a series of multivariate analyses of variance 

(MANOVA), with “subject”, “sulcus”, and “geometry” used as nested grouping factors and 

“rater” as a repeated factor. The first MANOVA focused on the effects of “rater”, “subject”, 

“sulcus”, and “geometry” on SD and SDMFV measures. Bartlett’s test showed statistically 

significant (1% level) evidence against the null hypothesis that the covariance matrices are 

homogeneous. Two-tailed hypotheses were tested using Pillai’s trace criteria since it is 

robust to violations of assumptions concerning homogeneity of the covariance matrix. 

MANOVA revealed a significant effect of “rater”, “sulcus”, and “geometry”, but “subject” 

failed to reach significance for both GM/WM and GM/CSF interface data. The threshold for 

significance was set at P < 0.01.

We conducted follow-up univariate analyses using Type III sums of squares to elucidate 

these effects. The second MANOVA focused on the effects of “rater”, “subject”, “sulcus”, 

and “geometry” on the dependent measures of raters 1–6. Results revealed no significant 

effect of “subject”, but group differences in “rater”, “sulcus”, and “geometry”. A third 

MANOVA focused on the effects of “rater”, “sulcus”, and “geometry” on the dependent 

measures of raters 7–12, and revealed significant group differences. Significant differences 

in the performance of the algorithm relative to rater across different aspects of the cortical 

geometry and across different sulcal regions may reflect variability in noise, intensity 
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inhomogeneity, abnormalities in the original MR brain volume, and colormap scaling 

function for the different brain features. On the other hand, the absence of an effect for 

“subject” reflects the intra-rater consistency of picking landmarks in different MR images. A 

final MANOVA focused on the dependent SD and SDMFV measures of each rater 

separately and tested the effects of “sulcus”, “geometry”, and, if applicable, “subject”. The 

results revealed significant “sulcus” and “geometry” group differences, but not significant 

group difference of “subject” for both GM/WM and GM/CSF interface data of the raters 1, 

2, and 3.

Landmark offset on the inner surface

The landmark offset statistics on the inner surface for different sulcal regions and different 

cortical geometries are shown in Table 2. The overall mean landmark offset is −0.34 mm 

with a standard deviation of 0.63 mm, which can be interpreted as about one third mm 

accuracy on the inner surface estimation. Only 15% of the landmarks are farther than 1.0 

mm from the estimated inner surfaces, and about 1.0% of the landmarks are farther than 2.0 

mm from the estimated inner surfaces, indicating that gross errors are not common.

In addition to variance on SD measure with cortical geometry and position, we looked at the 

correlation between SD measure and the inner cortical surface orientation relative to the 

normal direction of axial cross-sections. For each landmark point, the relative orientation of 

the inner cortical surface was quantified using the angle between the inner cortical surface 

patch around the closest surface point to that landmark point and the axial cross-section on 

which the landmark point was selected. The correlation coefficient between SD measures 

and the relative inner cortical surface orientation is −0.164. This statistically significant 

negative correlation (P <0.01) indicates that the accuracy is better when the local surface 

patch is perpendicular to the axial cross-section. This could indicate that raters are able to 

better localize interfaces that are perpendicular to the viewing plane. It is also possible that 

this is related to the underlying data resolution, which is poorest in (approximately) the 

direction orthogonal to our axial cross sections.

Landmark offset on the pial surface

The landmark offset statistics on the pial surface are also shown in Table 3. The overall 

mean landmark offset is −0.32 mm with a standard deviation of 0.49 mm, and only 8% of 

the landmarks are farther than 1.0 mm from the estimated pial surfaces. Smaller standard 

deviations of the pial surface landmark offsets compared with inner surface landmark offsets 

indicate a higher stability for the pial surface. The higher stability on the pial surface could 

be due to the ACE-processing in the CRUISE algorithm (see CRUISE: cortical 

reconstruction using implicit surface evolution). In ACE-processed regions, ACE is more 

dominant than the membership isolevel criterion in defining the surface location (Han et al., 

2003). A smaller mean landmark offset and standard deviation is observed at the ACE-

processed regions as compared with the mean landmark offset and standard deviation of the 

regions not processed by ACE (see Table 3). This suggests that the GM/CSF interface 

defined by ACE is more in accordance with the rater implied surfaces. A study similar to the 

one described in the previous section was carried out to assess the correlation between the 
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SD measure and the relative orientation of the pial cortical surface but the estimated 

correlation coefficient (0.040) is not statistically significant.

Consistent negative mean landmark offsets (more pronounced on the sulcal fundus regions 

for both the GM/WM and GM/CSF interface data) and the mean SDMFVs greater than 0.5 

(reported in Tables 4 and 5) may be interpreted as an outward bias of CRUISE. To address 

this observation, a simple parameter adjustment study is described in Parameter adjustment 

and evaluation.

Parameter adjustment and evaluation

In Landmark accuracy study on inner and pial surfaces, we reported the landmark offsets on 

the inner and pial surfaces. We observed consistent negative mean landmark offsets on both 

the inner and pial surfaces, which indicates an outward bias of CRUISE. Based on the 

observed SDMFV at the landmarks (cf. Tables 4 and 5), we wanted to estimate the α and β 

thresholds that best fit the landmark data and repeat the landmark accuracy analysis with the 

surfaces estimated with the new α and β thresholds. For this purpose, we needed to divide 

the landmark data into two groups; the first group (training data) was used to estimate the 

new α and β thresholds, and the second group (test data) was used to repeat the analysis to 

quantify any such improvement.

We wanted the training data to represent both MR brain images and all possible cortical 

geometry and sulcus factors used in the analysis presented in Landmark accuracy study on 

inner and pial surfaces. Only the first six raters picked landmarks on both MR brain images, 

hence, the training data should be a subset of these raters’ data. The grouping was based on 

the intra-rater consistency on picking landmarks reported in Landmark accuracy study on 

inner and pial surfaces. Therefore, data of the raters 1, 2, and 3 formed the training data, and 

the rest of the data were used to test the new α and β thresholds.

SDMFV statistics for the training data are reported in Table 6. Although we observed that 

the α and β thresholds should be functions of the cortical geometry – i.e., the ideal 

thresholds are different for different parts of the brain – in this study, we chose a simpler 

approach and set α and β to the observed mean SDMFV, and repeated our previous analysis 

with these thresholds.

The average of μ̂WM measure at the GM/WM landmarks of the training group is 0.69. The 

inner surface was estimated using the new α = 0.69 threshold and the repeated landmark 

offset statistics for the GM/WM landmarks of the test group are given in Table 7. For 

comparison reasons, we also included the landmark offset statistics of the test group for the 

inner surface estimated using α = 0.5. Although the landmark offset measure is improved by 

55% in the sulcal fundus region and by 92% in the sulcal bank region, we see a degradation 

of landmark offset measure in the gyral crown region. The average inner surface accuracy 

over all cortical geometries is 0.04 mm.

The TGDM to estimate the central surfaces was initialized at the inner surface estimated by 

α = 0.69 threshold and the new central surfaces were used as the initial condition for the 

TGDM with the new β threshold to estimate the new pial surfaces (see CRUISE: cortical 
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reconstruction using implicit surface evolution). β threshold was set to the average of μ̂WM + 

μ ̂
GM measure at the GM/CSF landmarks of the training group; β = 0.55. The statistics of the 

landmark offset measure on the new pial surfaces are reported in Table 8 with the landmark 

offset measure statistics on the old pial surfaces for comparison purposes. By adjusting the β 

threshold, 10%–41% improvement on the landmark offset measure is observed on different 

geometry groups. A sample axial cross-section from the first MR image volume with 

surfaces estimated with the original and the new α and β thresholds are shown in Fig. 10. 

Based on the visual inspection, a better performance has been achieved both on the inner 

and pial surfaces with the use of the new threshold values; however, the new threshold 

values have no substantial effect on the central surface estimation.

By setting β threshold to the average of μ̂
WM + μ̂

GM measure over all training group 

landmarks, we make the assumption that the pial surface is determined solely by the 

isosurface of the μ̂WM + μ̂
GM function everywhere in the cortex. However, it is quite evident 

from difference between the average μ̂
WM + μ̂

GM measure on regions not edited by ACE and 

regions edited by ACE (cf. Table 6) that the ACE stopping criterion is more dominant than 

the isolevel criterion. To address this issue, we explored two approaches. First, since the 

raters selected landmarks on the original MR image volumes without any ACE editing, 

instead of the μ̂
WM + μ̂

GM measure, we used the μ̂WM + µGM measure and set the β threshold 

to its average at the training landmarks; β = 0.65 as reported in Table 6. 18%–58% 

improvement is observed on different geometry regions. The results are reported in Table 8. 

We observed perfect accuracy in the regions edited by the ACE algorithm with this new β 

threshold adjustment. In the second approach, we only used the training group landmarks on 

the regions not edited by the ACE algorithm, but still used the μ̂
WM + μ̂

GM measure. This 

time, the β threshold is set to 0.69 (see Table 6), and the resultant landmark offset measure 

statistics are given in Table 8. This threshold adjustment yields 24%–76% improvement on 

the landmark offset measure and the average pial surface accuracy over all cortical 

geometries is 0.09 mm.

Different percentile improvements on the different geometry groups, and occasional 

degradation support the claim that the α and β thresholds should be defined as functions of 

the cortical geometry. In future work, we will investigate the features that can be extracted 

from the membership functions so that the α and β can be defined as functions of cortical 

geometry, but still yield topologically correct nested cortical surfaces.

In order to see the effect of the α and β thresholds on estimating the central surface, we 

repeated the landmark accuracy study reported in (Han et al., 2004) on the new central 

surfaces estimated by using the new thresholds. Slight differences were observed on the 

reported values, but no substantial improvement or change was noted. These results show 

the robustness of the central surface reconstruction with respect to the α and β thresholds, 

which supports our previous claim about the stability of the central surface and how well it 

captures the geometry of the cortex compared with the inner and pial surfaces (Xu et al., 

1999).
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The repeatability analysis on the nested cortical surfaces was also carried out using the new 

thresholds. Although slight differences were observed in the reported values, no substantial 

improvement or change was noted.

Discussion and future work

The purpose of this work was to evaluate the accuracy and precision of the CRUISE 

algorithms developed for the automatic reconstruction of the nested surfaces of the cerebral 

cortex from MR image volumes. This was accomplished by conducting two different 

studies. Our first conclusion is that the nested cortical surfaces – inner, central, and pial – 

can be found in a robust fashion using the CRUISE algorithms. Second, the three nested 

cortical surfaces can be found with subvoxel accuracy, typically with an accuracy of one 

third of a voxel. In this work, the performance of the CRUISE algorithm was tested on a 

single BLSA data set. The MR acquisition protocol that is used in the BLSA is based on a 

well-established MR pulse sequence that is very common in neuroscience research, and is 

capable of being implemented on all MR scanners. Although performance will differ when 

the algorithm is applied to data having different acquisition protocols, we believe that 

acquisition parameters can be adjusted on modern scanners to achieve equal or superior 

performance to that described herein. Currently, we utilize “rater implied surfaces”, derived 

from rater selected landmarks, to quantify the accuracy of CRUISE. In future work, we plan 

to create a nested surface truth model from the visible human cyrosection and MR image 

data (Spitzer et al., 1996), and validate our methods against these data.

The nested surfaces can be reliably used for analysis of the cortex geometry; however, the 

reported accuracy levels can be of concern in longitudinal analysis since the sought changes 

might be in the neighborhood of the observed errors. A simple experiment to improve 

CRUISE by selecting new threshold values which were more in accordance with the rater 

implied surfaces was presented in Parameter adjustment and evaluation. Our statistics on SD 

and SDMFV suggest that the positioning of tissue interfaces with respect to the membership 

function values varies spatially. In future research, we expect to show that a variable 

threshold scheme – e.g., varying α and β thresholds as functions of cortical geometry or 

position – will provide even higher accuracy in the CRUISE reconstruction algorithm. 

Alternative segmentation methods may also yield new ways to further improve CRUISE.
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Fig. 1. 
A cartoon drawing illustrating the definition of the three nested cortical surfaces—”inner”, 

“central”, and “pial”—and the definition of the three cortical geometries—”sulcal fundus”, 

“sulcal bank”, and “gyral crown”.
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Fig. 2. 
Cross-sectional view of (a) T1-weighted MR image volume; (b) skull-stripped MR image 

volume; (c) WM membership µWM; (d) GM membership µGM; (e) CSF membership µCSF; 

(f) AutoFill-edited WM membership μ̂WM; (g) ACE-edited GM membership μ ̂
GM; (h) sum 

of AutoFill-edited WM membership and ACE-edited GM membership μ̂
WM + μ̂

GM.
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Fig. 3. 
One-dimensional (1-D) profiles of WM, GM and CSF membership functions.
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Fig. 4. 
Topologically correct cortical surfaces of a sample brain: (a) inner surface top view; (b) 

central surface top view; (c) pial surface top view; (d) inner surface bottom view; (e) central 

surface bottom view; (f) pial surface bottom view. Estimated surfaces displayed as contours 

superposed on the skull-stripped MR image (g) axial, (h) coronal, and (i) sagittal cross-

sections. (inner: magenta, central: blue, and pial: yellow.)
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Fig. 5. 
Illustration of the ICP “correspondence pairs”, and the distance measures.
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Fig. 6. 
W-distance measure (in mm) on (a) inner, (b) central, and (c) pial surfaces of the three 

subjects. (Surface points masked out (see Surface masking) are colored in white, all 

distances above 1 mm are colored in red, and the distance in the range [0 mm–1 mm] are 

colored by a colormap linearly from dark blue to red.)
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Fig. 7. 
Illustration of the “landmark offset”.
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Fig. 8. 
The location of the sulcal regions labeled on (a) the lateral surface and (b) the medial surface 

of one cortical surface.
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Fig. 9. 
Interactive program for landmark picking: (a) an example axial cross-section, (b) enlarged 

view around designated region for landmark picking, and (c–d) orthogonal cross-sections 

through the last selected point.
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Fig. 10. 
A sample MR image cross-section with (a) inner, (b) central, and (c) pial surfaces of the first 

subject (blue (α = 0.5 and β = 0.5), red (α = 0.69 and β = 0.55)).
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Table 4

Membership Values (μ̂
WM) at GM/WM Interface Landmarks (mean ± stdev)

Subject I
(12 raters)

Subject II
(6 raters)

Both Subjects
(12 raters)

Sulcus

LCS 0.70 ± 0.21 0.80 ± 0.18 0.74 ± 0.20

LSYLV 0.58 ± 0.30 0.73 ± 0.22 0.63 ± 0.28

LST 0.62 ± 0.25 0.65 ± 0.24 0.63 ± 0.25

LSF 0.61 ± 0.20 0.64 ± 0.23 0.62 ± 0.21

LCING 0.48 ± 0.24 0.63 ± 0.23 0.52 ± 0.25

LPO 0.75 ± 0.18 0.75 ±0.19 0.75 ± 0.18

RSYLV 0.70 ± 0.21 0.81 ± 0.19 0.73 ± 0.21

RST 0.72 ± 0.20 0.65 ± 0.26 0.70 ± 0.23

RSF 0.61 ± 0.19 0.72 ± 0.20 0.64 ± 0.20

RCING 0.70 ± 0.19 0.71 ± 0.24 0.70 ± 0.21

RPO 0.68 ± 0.25 0.67 ± 0.22 0.68 ± 0.24

Geometry

Sulcal fundus 0.71 ± 0.22 0.76 ± 0.20 0.73 ± 0.21

Sulcal bank 0.67 ± 0.22 0.68 ± 0.22 0.67 ± 0.22

Gyral crown 0.57 ± 0.25 0.68 ± 0.25 0.61 ± 0.25

All 0.65 ± 0.23 0.70 ± 0.23 0.67 ± 0.23
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Table 5

Membership values (subμ̂WM + μ̂GM) at GM/CSF Interface Landmarks (mean ± stdev)

Subject I
(12 raters)

Subject II
(6 raters)

Both subjects
(12 raters)

Sulcus

LCS 0.70 ± 0.19 0.62 ± 0.25 0.68 ± 0.22

LSYLV 0.60 ± 0.22 0.60 ± 0.23 0.60 ± 0.23

LST 0.74 ± 0.15 0.65 ± 0.29 0.71 ± 0.21

LSF 0.71 ± 0.23 0.54 ± 0.28 0.66 ± 0.26

LCING 0.60 ± 0.20 0.64 ± 0.24 0.62 ± 0.22

LPO 0.79 ± 0.15 0.65 ± 0.26 0.75 ± 0.20

RSYLV 0.77 ± 0.14 0.67 ± 0.24 0.73 ± 0.18

RST 0.66 ± 0.21 0.64 ± 0.23 0.66 ± 0.22

RSF 0.64 ± 0.22 0.66 ± 0.25 0.65 ± 0.23

RCING 0.72 ± 0.19 0.62 ± 0.28 0.68 ± 0.23

RPO 0.70 ± 0.18 0.60 ± 0.27 0.67 ± 0.22

Geometry

Sulcal fundus 0.76 ± 0.19 0.68 ± 0.24 0.73 ± 0.21

Sulcal bank 0.68 ± 0.19 0.60 ± 0.25 0.65 ± 0.22

Gyral crown 0.64 ± 0.21 0.61 ± 0.28 0.63 ± 0.23

nonACE 0.71 ± 0.19 0.71 ± 0.22 0.71 ± 0.21

ACE 0.68 ± 0.21 0.52 ± 0.26 0.63 ± 0.24

All 0.70 ± 0.20 0.63 ± 0.26 0.67 ± 0.22
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