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Abstract

Two different studies were conducted to assess the accuracy and precision of an algorithm
developed for automatic reconstruction of the cerebral cortex from T1-weighted magnetic
resonance (MR) brain images. Repeated scans of three different brains were used to quantify the
precision of the algorithm, and manually selected landmarks on different sulcal regions throughout
the cortex were used to analyze the accuracy of the three reconstructed surfaces: inner, central, and
pial. We conclude that the algorithm can find these surfaces in a robust fashion and with subvoxel
accuracy, typically with an accuracy of one third of a voxel, although this varies with brain region
and cortical geometry. Parameters were adjusted on the basis of this analysis in order to improve
the algorithm’s overall performance.
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Introduction

Many brain mapping procedures require automated methods to find and mathematically
represent the cerebral cortex in volumetric MR images. Such reconstructions are used for
characterization and analysis of the two-dimensional (2-D) geometry of the cortex— e.g.,
computing curvatures (Cachia et al., 2001; Zeng et al., 1999), geodesic distances (Cachia et
al., 2002; Rettmann et al., 2002), thickness and volume (Fischl and Dale, 2000; MacDonald
et al., 2000; Miller et al., 2000; Magnotta et al., 1999; Kruggel and von Cramon, 2000;
Tosun et al., 2001; Crespo-Facorro et al., 1999; Kim et al., 2000; Jones et al., 2000; Kabani
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et al., 2001; Yezzi and Prince, 2003; Lerch and Evans, 2005), segmenting sulci and gyri
(Cachia et al., 2002; Rettmann et al., 2002; Behnke et al., 2003), surface flattening (Carman
et al., 1995; Drury et al., 1996; Timsari and Leahy, 2000), and spherical mapping (Fischl et
al., 1999; Tosun et al., 2004b; Angenent et al., 1999).

The cerebral cortex is a thin, folded sheet of gray matter (GM). As illustrated in Fig. 1, the
cortical GM is bounded by the cerebrospinal fluid (CSF) on the outside, and by the white
matter (WM) on the inside. The boundary between GM and WM forms the inner surface,
and the boundary between GM and CSF forms the pial surface. It is useful to define the
central surface as well; it lies at the geometric center between the inner and pial surfaces,
representing an overall 2-D approximation to the three dimensional (3-D) cortical sheet.
Many approaches have been proposed in the literature for the reconstruction of these
surfaces from MR brain images (Mangin et al., 1995; Teo et al., 1997; Davatzikos and
Bryan, 1996; Sandor and Leahy, 1997; Joshi et al., 1999; Dale et al., 1999; Zeng et al., 1999;
Xu et al., 1999; MacDonald et al., 2000; Kriegeskorte and Goebel, 2001; Shattuck and
Leahy, 2002). These approaches mostly differ in their ability to capture the convoluted
cortical geometry, reconstruction accuracy, and robustness against imaging artifacts. We
have developed a 3-D reconstruction method, called Cortical Reconstruction Using Implicit
Surface Evolution (CRUISE), for automatic reconstruction of these three nested cortical
surfaces from T1-weighted volumetric axially acquired MR brain images (Han et al., 2001b,
2004).

This paper presents two different studies — a repeatability analysis and a landmark accuracy
study — characterizing the precision and accuracy of CRUISE algorithms. The goal of these
studies is to evaluate the performance of CRUISE (in accuracy and precision) and to suggest
optimal parameters for CRUISE algorithms. We note that a preliminary version of this work
has appeared as a conference paper (Tosun et al., 2004a). The organization of this paper is as
follows. CRUISE: cortical reconstruction using implicit surface evolution briefly describes
the CRUISE algorithms and the relation between its parameters and the location of the
reconstructed surfaces. The precision and accuracy analysis is described in Repeatability
analysis and Landmark accuracy study on inner and pial surfaces, respectively. Based on the
results reported in Landmark accuracy study on inner and pial surfaces, Parameter
adjustment and evaluation describes an approach to adjust the parameters used in CRUISE
algorithms. The paper is summarized and suggestions for future work are given in
Discussion and future work.

CRUISE: cortical reconstruction using implicit surface evolution

The general approach we use to find cortical surfaces from MR image data is described in
Xu et al. (1999). As described in Han et al. (2001a,b, 2002, 2003), several improvements to
this initial approach have been made over the past several years. CRUISE is the current
embodiment of this basic approach together with the improvements, and is described in Han
et al. (2004). CRUISE is a data-driven method combining a robust fuzzy segmentation
method, an efficient topology correction algorithm, and a geometric deformable surface
model. The algorithm has been targeted toward and evaluated on the Baltimore Longitudinal
Study of Aging MR imaging studies (Resnick et al., 2000). A given data set comprises a
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volumetric SPGR series (Wang and Rieder, 1990) acquired axially on a GE Signa 1.5 T
scanner with the following parameters: TE =5, TR = 35, FOV = 24, flip angle = 45°, slice
thickness = 1.5, gap = 0, matrix = 256 x 256, NEX = 1. Thus, the native voxel size is 0.9375
mm % 0.9375 mm x 1.5 mm. We now briefly describe CRUISE, the algorithm whose
performance is evaluated in subsequent sections of this paper.

The first processing step in CRUISE is to re-slice the image volume to horizontal cross-
sections parallel to the plane passing through the anterior and posterior commissures,
followed by the skull-stripping process to remove the cerebellum, extracranial tissue, and
brain stem (at the level of the diencephalon) as described in (Talairach and Tournoux, 1988;
Goldszal et al., 1998). In particular, removal of extracranial tissue was accomplished by a
sequential application of morphological operators, thresholding, seeding, region growing,
and manual editing, as follows. First, the brain tissue was detached from the surrounding
dura by a 3-D morphological erosion operator with a spherical structuring element of radius
2 mm. Then, a 3-D seeded region growing extracted the brain tissue. The tissue lost in the
erosion step was recaptured by a 3-D morphological dilation operator with a spherical
structuring element of radius 4 mm. Since the CSF/dura interface is difficult to determine
reliably with the SPGR pulse sequence, a limitation of these automated steps is that an
undetermined amount of sulcal CSF is typically removed. In addition, some manual editing
was necessary to extract the sagittal sinus anteriorly and posteriorly, to eliminate
extracranial tissues mesial to the temporal lobes, to remove portions of the dura posteriorly,
and to edit out the cerebellum and brainstem. These steps required some manual interaction
including identification of the anterior and posterior commissures. The remaining image
volume is then resampled to obtain isotropic voxels each having size 0.9375 mm x 0.9375
mm x 0.9375 mm using cubic B-spline interpolation in order to simplify numerical
implementation, make subsequent processing less sensitive to orientation, and avoid
computational errors due to non-isotropic voxels.

The next step in processing this “skull-stripped” MR image volume is to apply a fuzzy
segmentation algorithm (Pham and Prince, 1999; Pham, 2001), yielding three membership
function image volumes representing the fractions of WM, GM, and CSF within each image
voxel, denoted by pwm, Hem, and esg, While compensating for intensity inhomogeneity
artifacts inherent in MR images, and smoothing noise. A sample axial cross-section from a
T1-weighted MR image volume and a skull-stripped MR image volume are shown in Figs.
2a-b, and cross-sections of the computed membership functions are shown in Figs. 2c—e.

Fig. 3 illustrates idealized, one-dimensional (1-D) profiles of the membership functions,
Uwm, Hem, and Hese, along a line passing through cortical gray matter. From left to right,
these profiles indicate the presence of first white matter, then gray matter, then cerebrospinal
fluid. Here, a is a threshold that is used to locate the interface defined between WM and GM
tissues. Ideally, GM/ WM interface voxels contain both WM and GM, and the voxels inside
the GM/WM interface have larger WM fraction than GM fraction. Therefore, an isosurface
of the WM membership function at an isolevel a = 0.5 provides a good approximation to the
GM/ WM interface. It is apparent from Fig. 2c, however, that such an isosurface will include
non-cortical surfaces such as the subcortical interfaces near the brainstem and within the
ventricles.
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To prevent undesirable parts of the WM membership isosurface from being generated, an
automatic method called AutoFill (Han et al., 2001a) is used to edit g in order to fill the
concavities corresponding to the ventricles and the subcortical GM structures such as the
putamen and caudate nucleus with white matter. The AutoFill-edited white matter
membership is denoted by u\;\,M, an example of which is shown in Fig. 2f The largest
triangle mesh surface of the o = 0.5 isosurface of u\;VM is a close approximation to the
GM/WM interface within each cortical hemisphere, and it connects the two hemispheres
across the corpus callosum at the top and through the brainstem at the bottom. A graph-
based topology correction algorithm (GTCA) (Han et al., 2002) followed by a topology-
preserving geometric deformable surface model (TGDM) (Han et al., 2003) is used to
estimate a topologically correct and slightly smoothed “inner surface” on the GM/WM
interface, as shown in Figs. 4a and 4d. The smooth, artificial surface on the bottom of the
brain is caused by AutoFill editing.

The inner surface serves as an initial surface for finding both the central surface that lies at
the geometric center of the GM tissue and the pial surface that lies at the GM/CSF tissue
interface. These surfaces are difficult to find due to the effect of partial volume averaging,
which makes adjacent GM banks within narrow sulci barely distinguishable. In particular,
within each sulcal fold, two GM banks separated by CSF should be clearly defined; but
evidence of CSF is often missing in tight sulci. To compensate for this effect, CRUISE uses
anatomically consistent enhancement (ACE) (Xu et al., 2000; Han et al., 2001b), which
automatically edits the gray matter membership function, creating thin (artificial) CSF
separations within sulci. An ACE-edited gray matter membership function, denoted by p{;M,
is shown in Fig. 2g. This image shows sulcal CSF where the original GM membership
function (Fig. 2d) does not.

The ACE-edited GM membership function is used in two ways to find the central and pial
surfaces. First, a generalized gradient vector flow (GGVF) external force (Xu et al., 1999) is
computed directly from u(;M, as if it were an edge map itself. A TGDM deformable surface
is then initialized at the inner surface and is driven toward the central surface using the
GGVF forces. This yields a central surface, as shown in Figs. 4b and 4e. To find the pial
surface, it is observed that the p = 0.5 isosurface of u\;\,M + u(;M (shown in Fig. 2h) is a very
good approximation to the pial surface. Accordingly, a region-based TGDM deformable
surface model (Han et aI 2001b) is used to drive the central surface toward the p = 0.5
isosurface of pywm + uGM yielding an estimate of the pial surface, as shown in Figs. 4c and
4f,

Connectivity consistent marching cubes (CCMC) algorithm described in (Han et al., 2003) is
used to compute the isosurfaces from the results of each deformable model. When surfaces
are computed using geometric deformable models such as TGDM, they contain no self-
intersections. Also, in the TGDM deformable surface models described above, an extra
constraint is used to ensure that the central surface is outside the inner surface and the pial
surface is outside the central surface. Thus, the three cortical surfaces shown in Figs. 4a — f
contain no self intersections, and they are properly nested with no mutual intersections. Figs.
4g — i show the contours of these nested cortical surfaces superposed on skullstripped MR
image cross-sections. Visual inspection reveals excellent fidelity of both the inner and
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central surfaces, with occasional large errors on the pial surface. It is the goal of the present
paper to give quantitative measures to the accuracy and precision of CRUISE on
reconstructing these three nested surfaces.

Repeatability analysis

The first study is focused on the robustness of CRUISE against imaging noise and artifacts
to assess the precision on reconstructing the nested surfaces. This is accomplished by
conducting a repeatability study using three subjects each scanned twice within a short time
interval during which the subject was repositioned in the scanner. Ideally, our surfaces
should be reproduced with high precision in successive scans of the same subject’s brain.
For longitudinal analysis, repeatability is a critical feature of a cortical reconstruction
algorithm, since detection of subtle changes is the main objective. The goal of the
repeatability analysis is to measure the differences in surface reconstruction from repeated
scans of the same subject, and to identify the regions where large differences are observed.
A preliminary repeatability analysis was reported in Han et al. (2004); the present paper
provides a complete description of the analysis and provides additional results.

Surface masking

CRUISE was applied to each of the six MR image data sets (the original and repeat scan MR
images of the three individual subjects) to generate six sets of nested cortical surfaces.
Surfaces reconstructed from the MR image data sets are represented by triangle meshes
comprising approximately 300,000 vertices each. Our aim is to measure how well CRUISE
can reproduce the cortical geometry despite changes in patient position and the introduction
of different MR noise and artifacts in the repeat scan. Therefore, surface elements that do
not correspond to cortex are ignored in the analysis.

Surface elements that do not belong to cortex reside on the artificial surface created by
AutoFill joining the hemispheres below the corpus callosum (see Figs. 2c and 2f and Figs.
4d - f). Accordingly, we formed a mask for each MR image data set marking the regions
that were modified by AutoFill. The modified regions were identified automatically by
subtracting the original WM membership function py from the AutoFill-edited WM
membership function p\;VM. A binarized version of this difference volume was then used to
identify the triangle mesh vertices not corresponding to cortical geometry. Vertices so
identified are excluded from the entire analysis given below, from 3-D surface alignment to
distance analysis, including all statistical performance analysis.

3-D surface alignment

We are interested in shape differences between the two repeat scans; a rigid body difference
should not matter. Therefore, the repeat scan surface Wis first aligned with the original
surface V in order to remove a shift or rotation that inevitably took place between the two
scans. Although a 3-D volumetric registration approach could be used to align the original
and repeat scan volumetric MR image data sets, since our primary objective is to measure
differences between the surfaces, a 3-D surface registration approach is used instead to
avoid possible surface differences due to the volume registration errors. Specifically, we use
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a global 3-D rigid body surface-based registration algorithm based on iterative closest point
algorithm (ICP) (Besl and McKay, 1992). At each iteration, ICP first finds the closest point
correspondences between the point sets, and then finds a rigid body transformation of one
point set in order to minimize the average distance of the corresponding points. These steps
are repeated until convergence. The reason that we applied ICP to directly align the surfaces
instead of using a volume registration method is because here we are interested in
comparing the shapes of the estimated cortical surfaces. Directly aligning the surfaces
removes the possibility that errors we report would be, in part, due to errors in volume
registration. ICP is an iterative method for aligning two point sets.

The surfaces V and W are represented by vertices — {;}  in Vand {w; };”il inW-
connected by triangular surface elements. Ordinarily, ICP ignores the fact that V and W are
surfaces when creating correspondences. Instead, it finds a mapping -#(i) that gives the point
Wyi)EW corresponding to the closest vertex v; € V. Accordingly, the pair [vj, wq] forms a
correspondence pair, and ICP finds the rigid body transformation Z(:) of points in W that
minimizes the average distance between correspondences, given by

1 N
F@#V, W)= llvi = Z(ws@)l, @
i=1

where ||-|| gives the length of a vector.

Our modification to ICP acknowledges the fact that VV and W are triangulated surfaces rather
than simple point sets. This means that the closest point to v; € V on W may not be a vertex,
but may instead be a point on a triangular element defined by the vertices in W. This
situation is illustrated in Fig. 5. In our modification to ICP, correspondence pairs are
identified by projection operators. In particular, we identify the closest point to v; € V on the
surface W by the projection 2\(Vv;), where 2\n() is the projection (onto W) operator.
Similarly, the closest point to w; € Won the surface V is given by 2\(wj), where (") is the
projection (onto V) operator. This identification yields the correspondence pairs [v;, Zyw(Vi)],
i=1,...,Nand [wj, Zv(W)],j = 1, ..., M. In order to reduce possible directional bias, we
define the modified ICP objective function in a bilateral fashion, as follows

1
X

SV, W)=
PV W)=

N M
(Z”vl - '@%(VV) (Uz)||+Z||<@(U’J) - yv (%(wﬂ)\\) 2

The fact that W is being moved under a rigid body transformation is reflected in this
expression by the use of the rigid body transformation operator Z2(')

One additional aspect should be clarified. Each cortical segmentation produces three cortical
surfaces - inner, central, and pial - and all three should be aligned before computing shape
differences. It is possible to align each surface separately using modified ICP; but we elected
to align them all together in one larger modified ICP algorithm. To achieve this, it is
necessary to modify the projection operators so that they yield points on corresponding
surfaces. For example, if v; represents an inner vertex, the projection #\\(v;) yields a point
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on the inner surface of the model W. We have modified ICP for this nested surface
approach.

Distance measures

Results

After the nested surface model W has been transformed into alignment with V, we are in
position to quantify the distance between the two surfaces. One good measure of this
distance is the modified ICP objective function, Eq. (2). We use Eq. (2) as a measure of
absolute distance (AD) between two surfaces V and Z2(W), where Wiis aligned with a
(optimal, after ICP) rigid body transformation 2.

To provide a thorough analysis on the absolute distance measure, two distance measures
defined from one surface to the other are used. The first distance function “W -distance” is

defined on the mesh nodes {%(wj)}jil of the surface ZR(W), as the norm of the difference
vector between correspondence pair [ (W), 2\ (£(W)), ] = 1,...,M. In an analogous

fashion, the second distance function “V-distance” is defined on the mesh nodes {v;}2’ | of
the surface V, as the norm of the difference vector between correspondence pair [vj,
2 w1, 1 =1,...,N. W-distance and V-distance measures are illustrated in Fig. 5.

W-distance and V-distance measures are small when the surfaces are very similar and grow
larger as the surfaces become dissimilar. Differences in the smoothness of the two surfaces
could conceivably make W-distance and V-distance measures substantially different
(although we do not expect this in a repeatability analysis, where the CRUISE algorithm
uses the same parameters in each trial). It is useful to identify a signed distance (SD)—for
example, to see whether one surface is always inside the other. To provide a signed distance,
the inner product of the difference vector with the outward normal vector of the surface on
which the distance measure is defined is computed. If the inner product is positive, then the
signed distance is positive, and if the inner product is negative, then the signed distance is
negative.

In Table 1, statistics of the combined distance measure (incorporating both W-distance and
V-distance) are reported, and W-distance measures on the nested cortical surfaces of the
three subjects are displayed in Fig. 6. No specific pattern was observed on any of the nested
surfaces of the three individual subjects analyzed in this study.

Overall, the mean signed distances for any surface are just a few hundredths of a mm. This
indicates that the corresponding surfaces are well aligned and there are no gross geometric
errors between the two scans. The overall mean absolute distances are in the range 0.23 —
0.33 mm, which is slightly less than one third of a voxel size. We conclude that CRUISE has
sub-voxel precision on locating the nested cortical surfaces. Smaller means and standard
deviations are observed on the central surface compared with those for the inner and pial
surfaces. This adds strength to the claim that the central surface can be found in a more
robust fashion (Xu et al., 1999).

Neuroimage. Author manuscript; available in PMC 2015 September 29.



1duosnue Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Tosun et al.

Page 8

Although the average and the standard deviations are reasonably small, there are regions
where the aligned surfaces are separated by large distances. Table 1 indicates the percentage
of analyzed surface (ignores “AutoFill-edited WM points™) where the absolute distance is
larger than 1.0 and 2.0 mm. This is between 1.7 and 3.7% of the surface where AD > 1.0
mm and 0.2-0.5% of the surface where AD > 2.0 mm, which is small, but of concern in
longitudinal analysis where the sought changes might be in the neighborhood of these small
percentages. We analyzed many of these regions manually, and found that large separations
can occur because of differences in skull-stripping, AutoFill editing, topology correction,
and ACE editing. Skull stripping is particularly problematic because user interaction can
erroneously remove GM or leave dura, which can affect the positioning of all three surfaces,
particularly the central and pial surfaces. The remaining sources of errors are noise spikes
present in one data set but not the other and subtle differences in partial volume averaging
due to the slight positioning differences between the two scans. ACE-related differences are
only present on the central and pial surfaces.

Landmark accuracy study on inner and pial surfaces

Accurate representation of the cerebral cortex is crucial in characterization and analysis of
the geometry of the cortex. In this section, we evaluate the reconstruction accuracy of
CRUISE in addition to its robustness against imaging artifacts. A landmark accuracy study
on the central surface using a set of 50 manually selected central surface landmarks — 5 on
each hemisphere of 5 brains — was reported in our previous work (Han et al., 2004; Xu et al.,
1999). The distance from each landmark to the central surface estimated by our algorithm
served as a measure of accuracy. Overall, the mean landmark error was 0.51 mm with a
standard deviation of 0.41 mm, illustrating subvoxel accuracy in our reconstruction of the
central surface (see Han et al., 2004).

The focus of the landmark accuracy study presented in this paper is to quantify the accuracy
of the inner and pial surfaces estimated by the CRUISE algorithm. In addition, we assess
how the accuracy varies both across the surface as well as within different cortical
geometries. Twelve raters! participated in this study. Each rater identified a series of
landmarks at the GM/WM and GM/CSF tissue interfaces on the skull-stripped MR brain
image volumes. The landmarks effectively yield a rater implied surface at the corresponding
cortical layer. Throughout this study, we refer to these surfaces as the implied surfaces and
the estimated (inner and pial) surfaces generated by CRUISE as the reference surfaces. To
quantify the level of agreement between the reference and implied surfaces, we define a
landmark offset measure as the signed minimum distance from a given landmark to the
corresponding reference surface, using negative and positive values to indicate the landmark
point being inside or outside the reference surface, respectively. Fig. 7 illustrates the
landmark offset from a given landmark to the reference surface. These measures will be
used to quantify the accuracy of the estimated inner and pial surfaces and to infer any
systematic bias of CRUISE in either the inward or outward directions.

1Three of the raters have expertise on analyzing MR brain images.
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The CRUISE reference surfaces are defined primarily by the 0.5 isolevels of the p\;\,M and
uéM + u\;\,M functions as described in CRUISE: cortical reconstruction using implicit
surface evolution. Thus, in addition to the landmark offset measurement, the values of
surface defining membership function at the landmarks (u\;VM for the inner surface, and p\;\,M
+ UéM for the pial surface) could provide insight into a systematic bias of the CRUISE
estimated surfaces. For example, if the membership values at the landmarks were
consistently higher than 0.5 for both inner and pial surfaces, this would indicate an outward
bias of the CRUISE estimated surfaces. This is made clear by referring back to Fig. 3.
Consider the isosurfaces that would be generated at higher pywm and pgm + pWM isolevel
values—i.e., a > 0.5 and > 0.5 respectively. The isosurfaces estimated at these isolevels
would give an inner surface and a pial surface inside the surfaces estimated at a = 0.5 and 5
= 0.5 indicating an outward bias of the CRUISE estimated surfaces. We are particularly
interested in these measures because a and p are easily changed to improve the performance
of CRUISE.

The landmark accuracy study consisted of three steps. First, we conducted an analysis of
both the landmark offsets and the membership function values at the landmarks. This
analysis quantifies the accuracy of the CRUISE estimated surfaces as well as any systematic
bias. In the second step, we selected new threshold values of a and p according to the
observed landmark offset and membership function values. These values were selected so
that they best fit the raters’ data from step one. In the third step, we repeated the landmark
accuracy study with the new thresholds. The following is a complete description of the
landmark picking procedure, the analysis, and the results.

Interactive program for landmark picking

Our initial landmark accuracy study on the central surface (Han et al., 2004; Xu et al., 1999)
included only one rater who picked a single landmark in each region-of-interest at integer
number coordinates. Since the landmarks were manually picked, there is always uncertainty
about the validity of the result as the level of measured errors approaches the inherent
variability of the rater. To minimize this uncertainty, we designed a new landmark accuracy
study for the inner and pial surfaces with an extended number of landmarks and raters, using
two different MR brain image volumes. Landmarks are located on the GM/WM and
GMY/CSF interfaces in six cortical regions where each region is defined by a cortical sulcus.
These include the sylvian fissure (SYLV), superior frontal (SF), superior temporal (ST),
cingulate (CING), and parieto-occipital (PO) sulci of each cortical hemisphere, and the
central (CS) sulcus of the left hemisphere. These sulcal regions are colored on the right
hemisphere of one cortical surface in Fig. 8. Within each region, landmarks are defined on
the three cortical geometries—"sulcal fundus”, “sulcal bank”, and “gyral crown”. Sulcal
fundus points lie along the bottom of a cortical fold, sulcal bank points lie along the sides of
a fold, and gyral crown points lie along the top of a fold, as illustrated in Fig. 1.

A visualization program was written using Open Visualization Data Explorer 4.2.0, IBM
Visualization Software to pick landmarks inside a region-of-interest box on the pre-selected
axial cross-sections of the raw MR image volume. We chose to pick landmarks by viewing
axial cross-sections, the orientation on which the MR images were acquired. A total of 66

Neuroimage. Author manuscript; available in PMC 2015 September 29.



1duosnue Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Tosun et al.

Data

Page 10

axial cross-sections were pre-selected, each corresponding to one of the eleven sulcal
regions, one of the three cortical geometries, and one of the tissue interfaces. The purpose of
the visualization program is to provide a standard way of picking the landmarks so that a
statistical analysis approach could be used to compare the data of different raters. The
interface had two primary displays. The first display, shown in Fig. 9(a), provided the
information required to pick the landmarks on that axial cross-section. This included
information on which tissue interface the landmarks should be selected, the number of
landmarks to select, and the cortical geometry type. In addition, a counter was incremented
after each landmark selection indicating the number of picks remaining. A blue box outlined
a 10 voxel x 10 voxel region in which the rater was required to pick the landmarks. In the
second primary display, shown in Fig. 9(b), an enlarged view around the 10 voxel x 10
voxel outlined by the blue box from the first display was shown. The interface allowed the
rater to adjust several parameters including the center and size of the enlarged view in the
second display as well as the colormap scaling to improve the contrast between different
cortical tissues. The rater was able to select between two possible colormaps—Iinear or
logarithmic. In the linear map, each colormap level corresponds to a constant intensity range
in the image. The second colormap utilizes logarithmic scaling providing more contrast at
low intensities. Each landmark was selected in this second primary display with a right
mouse click and the selected point was marked in red in all displays. In order to get a sense
of the location of the point in 3-D, the two orthogonal cross-sections through this point were
also displayed, as shown in Figs. 9c — d. The landmark was automatically recorded as the
physical position of the selected point with floating number coordinates and landmarks
identified by a given rater were forced to be at least 0.50 mm apart from each other. The
rater also had the flexibility of removing any of the previously recorded landmarks. All
raters were asked to use the same linux workstation with fixed monitor settings, but
encouraged to vary the brightness and contrast colormap table as desired. This encouraged
raters to concentrate on picking landmarks on the desired tissue interface, and not simply to
pick intensity edges that they might observe on a static display with fixed lighting
conditions.

Twelve raters participated in the landmark accuracy study and the study was carried out
using two different MR image volumes. First six raters picked landmarks on both image
volumes and the remaining raters picked landmarks on only the first image volume. Ten
landmarks were picked on each of 66 pre-selected axial cross-sections. Each rater picked a
total of 330 landmarks equally distributed across the different sulcal regions and different
geometry groups on each cortical tissue interface. It took approximately 1 h and 30 min per
brain to pick the landmarks, with a substantial portion of this time required for adjusting the
parameters of the colormap scaling function for the best contrast.

Two measures were computed in this study—landmark offset and surface defining

member ship function value (SDMFV). The SDMFV at each landmark point is defined as the
value of the AutoFill-edited WM membership function, p\;VM, for the inner surface and the
sum of the ACE-edited GM and AutoFill-edited WM membership functions, péM + p\;\,M,
for the pial surface. To measure the landmark offset, first the minimum absolute distance
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(AD) from landmark point to the corresponding reference surface is computed, and then the
absolute distance measurement is signed according to the sign convention illustrated in Fig.
7, which gives the signed distance (SD) from the landmark point to the corresponding
reference surface.

The landmark offset measure calculation requires finding the closest point on the reference
surface to the landmark point. Since each landmark point is categorized by the sulcal region
in which it is picked, we restricted the distance calculation in the sulcal region of interest. To
identify the reference surface points in the sulcal regions analyzed in this study, we utilized
the sulcal segmentation method described in Rettmann et al. (2002), and the assisted sulcal
labeling program described in Rettmann et al. (2005). Presumably the 10 voxel x 10 voxel
box provided to the rater in each preselected axial cross-section includes only points within
a given sulcal region, however, due to the highly convoluted nature of the cortex in 3-D, the
landmark point and its corresponding closest point might not be in the same sulcal region.
For less than 2.0% of the landmark points, the closest point on the corresponding reference
surface had a non-matching sulcal label. reference surface either had a non-sulcal region
label or had a different sulcal region label than the given landmark point’s. These landmark
points were excluded from the entire analysis presented below.

Data analysis

We first tested the effects of variable intensity inhomogeneity and colormap scaling by
comparing the algorithm versus rater across the two different subjects, the three different
cortical geometries (sulcal fundus, sulcal bank, and gyral crown), and eleven different sulcal
regions. In this study, we analyzed the GM/ WM and GM/CSF interface data separately.

Statistical analyses were performed using R version 2.0.0 (The R Development Core Team,
2003). The effects of “rater”, “subject”, “sulcus”, and “geometry” on dependent SD and
SDMFV measures were analyzed in a series of multivariate analyses of variance
(MANOVA), with “subject”, “sulcus”, and “geometry” used as nested grouping factors and
“rater” as a repeated factor. The first MANOVA focused on the effects of “rater”, “subject”,
“sulcus™, and “geometry” on SD and SDMFV measures. Bartlett’s test showed statistically
significant (1% level) evidence against the null hypothesis that the covariance matrices are
homogeneous. Two-tailed hypotheses were tested using Pillai’s trace criteria since it is
robust to violations of assumptions concerning homogeneity of the covariance matrix.
MANOVA revealed a significant effect of “rater”, “sulcus”, and “geometry”, but “subject”
failed to reach significance for both GM/WM and GM/CSF interface data. The threshold for

significance was set at P < 0.01.

We conducted follow-up univariate analyses using Type Il sums of squares to elucidate
these effects. The second MANOVA focused on the effects of “rater”, “subject”, “sulcus”,
and “geometry” on the dependent measures of raters 1-6. Results revealed no significant
effect of “subject”, but group differences in “rater”, “sulcus”, and “geometry”. A third
MANOVA focused on the effects of “rater”, “sulcus”, and “geometry” on the dependent
measures of raters 7-12, and revealed significant group differences. Significant differences
in the performance of the algorithm relative to rater across different aspects of the cortical
geometry and across different sulcal regions may reflect variability in noise, intensity
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inhomogeneity, abnormalities in the original MR brain volume, and colormap scaling
function for the different brain features. On the other hand, the absence of an effect for
“subject” reflects the intra-rater consistency of picking landmarks in different MR images. A
final MANOVA focused on the dependent SD and SDMFV measures of each rater
separately and tested the effects of “sulcus”, “geometry”, and, if applicable, “subject”. The
results revealed significant “sulcus” and “geometry” group differences, but not significant
group difference of “subject” for both GM/WM and GM/CSF interface data of the raters 1,
2,and 3.

Landmark offset on the inner surface

The landmark offset statistics on the inner surface for different sulcal regions and different
cortical geometries are shown in Table 2. The overall mean landmark offset is —0.34 mm
with a standard deviation of 0.63 mm, which can be interpreted as about one third mm
accuracy on the inner surface estimation. Only 15% of the landmarks are farther than 1.0
mm from the estimated inner surfaces, and about 1.0% of the landmarks are farther than 2.0
mm from the estimated inner surfaces, indicating that gross errors are not common.

In addition to variance on SD measure with cortical geometry and position, we looked at the
correlation between SD measure and the inner cortical surface orientation relative to the
normal direction of axial cross-sections. For each landmark point, the relative orientation of
the inner cortical surface was quantified using the angle between the inner cortical surface
patch around the closest surface point to that landmark point and the axial cross-section on
which the landmark point was selected. The correlation coefficient between SD measures
and the relative inner cortical surface orientation is —0.164. This statistically significant
negative correlation (P <0.01) indicates that the accuracy is better when the local surface
patch is perpendicular to the axial cross-section. This could indicate that raters are able to
better localize interfaces that are perpendicular to the viewing plane. It is also possible that
this is related to the underlying data resolution, which is poorest in (approximately) the
direction orthogonal to our axial cross sections.

Landmark offset on the pial surface

The landmark offset statistics on the pial surface are also shown in Table 3. The overall
mean landmark offset is —0.32 mm with a standard deviation of 0.49 mm, and only 8% of
the landmarks are farther than 1.0 mm from the estimated pial surfaces. Smaller standard
deviations of the pial surface landmark offsets compared with inner surface landmark offsets
indicate a higher stability for the pial surface. The higher stability on the pial surface could
be due to the ACE-processing in the CRUISE algorithm (see CRUISE: cortical
reconstruction using implicit surface evolution). In ACE-processed regions, ACE is more
dominant than the membership isolevel criterion in defining the surface location (Han et al.,
2003). A smaller mean landmark offset and standard deviation is observed at the ACE-
processed regions as compared with the mean landmark offset and standard deviation of the
regions not processed by ACE (see Table 3). This suggests that the GM/CSF interface
defined by ACE is more in accordance with the rater implied surfaces. A study similar to the
one described in the previous section was carried out to assess the correlation between the
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SD measure and the relative orientation of the pial cortical surface but the estimated
correlation coefficient (0.040) is not statistically significant.

Consistent negative mean landmark offsets (more pronounced on the sulcal fundus regions
for both the GM/WM and GM/CSF interface data) and the mean SDMFVs greater than 0.5
(reported in Tables 4 and 5) may be interpreted as an outward bias of CRUISE. To address
this observation, a simple parameter adjustment study is described in Parameter adjustment
and evaluation.

Parameter adjustment and evaluation

In Landmark accuracy study on inner and pial surfaces, we reported the landmark offsets on
the inner and pial surfaces. We observed consistent negative mean landmark offsets on both
the inner and pial surfaces, which indicates an outward bias of CRUISE. Based on the
observed SDMFV at the landmarks (cf. Tables 4 and 5), we wanted to estimate the o and
thresholds that best fit the landmark data and repeat the landmark accuracy analysis with the
surfaces estimated with the new a and  thresholds. For this purpose, we needed to divide
the landmark data into two groups; the first group (training data) was used to estimate the
new a and 3 thresholds, and the second group (test data) was used to repeat the analysis to
quantify any such improvement.

We wanted the training data to represent both MR brain images and all possible cortical
geometry and sulcus factors used in the analysis presented in Landmark accuracy study on
inner and pial surfaces. Only the first six raters picked landmarks on both MR brain images,
hence, the training data should be a subset of these raters’ data. The grouping was based on
the intra-rater consistency on picking landmarks reported in Landmark accuracy study on
inner and pial surfaces. Therefore, data of the raters 1, 2, and 3 formed the training data, and
the rest of the data were used to test the new a and 3 thresholds.

SDMPFV statistics for the training data are reported in Table 6. Although we observed that
the a and B thresholds should be functions of the cortical geometry — i.e., the ideal
thresholds are different for different parts of the brain — in this study, we chose a simpler
approach and set a and j3 to the observed mean SDMFV, and repeated our previous analysis
with these thresholds.

The average of p\;\/M measure at the GM/WM landmarks of the training group is 0.69. The
inner surface was estimated using the new a = 0.69 threshold and the repeated landmark
offset statistics for the GM/WM landmarks of the test group are given in Table 7. For
comparison reasons, we also included the landmark offset statistics of the test group for the
inner surface estimated using a = 0.5. Although the landmark offset measure is improved by
55% in the sulcal fundus region and by 92% in the sulcal bank region, we see a degradation
of landmark offset measure in the gyral crown region. The average inner surface accuracy
over all cortical geometries is 0.04 mm.

The TGDM to estimate the central surfaces was initialized at the inner surface estimated by
a = 0.69 threshold and the new central surfaces were used as the initial condition for the
TGDM with the new f3 threshold to estimate the new pial surfaces (see CRUISE: cortical
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reconstruction using implicit surface evolution). 3 threshold was set to the average of p\;\,M +
uéM measure at the GM/CSF landmarks of the training group; = 0.55. The statistics of the
landmark offset measure on the new pial surfaces are reported in Table 8 with the landmark
offset measure statistics on the old pial surfaces for comparison purposes. By adjusting the
threshold, 10%-41% improvement on the landmark offset measure is observed on different
geometry groups. A sample axial cross-section from the first MR image volume with
surfaces estimated with the original and the new a and f thresholds are shown in Fig. 10.
Based on the visual inspection, a better performance has been achieved both on the inner
and pial surfaces with the use of the new threshold values; however, the new threshold
values have no substantial effect on the central surface estimation.

By setting B threshold to the average of u\;\,M + u(;M measure over all training group
landmarks, we make the assumption that the pial surface is determined solely by the
isosurface of the u\;\,M + u(;M function everywhere in the cortex. However, it is quite evident
from difference between the average U\;VM + u(;M measure on regions not edited by ACE and
regions edited by ACE (cf. Table 6) that the ACE stopping criterion is more dominant than
the isolevel criterion. To address this issue, we explored two approaches. First, since the
raters selected landmarks on the original MR image volumes without any ACE editing,
instead of the uWM + pGM measure, we used the pywm + Ugm measure and set the § threshold
to its average at the training landmarks; f = 0.65 as reported in Table 6. 18%-58%
improvement is observed on different geometry regions. The results are reported in Table 8.
We observed perfect accuracy in the regions edited by the ACE algorithm with this new
threshold adjustment. In the second approach, we only used the training group landmarks on
the regions not edited by the ACE algorithm, but still used the u\;\,M + u(;M measure. This
time, the B threshold is set to 0.69 (see Table 6), and the resultant landmark offset measure
statistics are given in Table 8. This threshold adjustment yields 24%-76% improvement on
the landmark offset measure and the average pial surface accuracy over all cortical
geometries is 0.09 mm.

Different percentile improvements on the different geometry groups, and occasional
degradation support the claim that the o and B thresholds should be defined as functions of
the cortical geometry. In future work, we will investigate the features that can be extracted
from the membership functions so that the a and 3 can be defined as functions of cortical
geometry, but still yield topologically correct nested cortical surfaces.

In order to see the effect of the a and p thresholds on estimating the central surface, we
repeated the landmark accuracy study reported in (Han et al., 2004) on the new central
surfaces estimated by using the new thresholds. Slight differences were observed on the
reported values, but no substantial improvement or change was noted. These results show
the robustness of the central surface reconstruction with respect to the o and 3 thresholds,
which supports our previous claim about the stability of the central surface and how well it
captures the geometry of the cortex compared with the inner and pial surfaces (Xu et al.,
1999).
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The repeatability analysis on the nested cortical surfaces was also carried out using the new
thresholds. Although slight differences were observed in the reported values, no substantial
improvement or change was noted.

Discussion and future work

The purpose of this work was to evaluate the accuracy and precision of the CRUISE
algorithms developed for the automatic reconstruction of the nested surfaces of the cerebral
cortex from MR image volumes. This was accomplished by conducting two different
studies. Our first conclusion is that the nested cortical surfaces — inner, central, and pial —
can be found in a robust fashion using the CRUISE algorithms. Second, the three nested
cortical surfaces can be found with subvoxel accuracy, typically with an accuracy of one
third of a voxel. In this work, the performance of the CRUISE algorithm was tested on a
single BLSA data set. The MR acquisition protocol that is used in the BLSA is based on a
well-established MR pulse sequence that is very common in neuroscience research, and is
capable of being implemented on all MR scanners. Although performance will differ when
the algorithm is applied to data having different acquisition protocols, we believe that
acquisition parameters can be adjusted on modern scanners to achieve equal or superior
performance to that described herein. Currently, we utilize “rater implied surfaces”, derived
from rater selected landmarks, to quantify the accuracy of CRUISE. In future work, we plan
to create a nested surface truth model from the visible human cyrosection and MR image
data (Spitzer et al., 1996), and validate our methods against these data.

The nested surfaces can be reliably used for analysis of the cortex geometry; however, the
reported accuracy levels can be of concern in longitudinal analysis since the sought changes
might be in the neighborhood of the observed errors. A simple experiment to improve
CRUISE by selecting new threshold values which were more in accordance with the rater
implied surfaces was presented in Parameter adjustment and evaluation. Our statistics on SD
and SDMFV suggest that the positioning of tissue interfaces with respect to the membership
function values varies spatially. In future research, we expect to show that a variable
threshold scheme — e.g., varying a and  thresholds as functions of cortical geometry or
position — will provide even higher accuracy in the CRUISE reconstruction algorithm.
Alternative segmentation methods may also yield new ways to further improve CRUISE.
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Fig. 1.

A cartoon drawing illustrating the definition of the three nested cortical surfaces—"inner”,
“central”, and “pial”—and the definition of the three cortical geometries—"sulcal fundus”,

“sulcal bank”, and “gyral crown”.
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Fig. 2.
Cross-sectional view of (a) T1-weighted MR image volume; (b) skull-stripped MR image

volume; (c) WM membership pywm; (d)A GM membership ugm; (€) CSF membgrship UCSE;
(F) AutoFill-edited WM membership pwm; (9) ACE-edited GM membership pgpm; (h) sum
of AutoFill-edited WM membership and ACE-edited GM membership pwm + Hgm-
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Fig. 3.

One-dimensional (1-D) profiles of WM, GM and CSF membership functions.
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Fig. 4.

Tc?pologically correct cortical surfaces of a sample brain: (a) inner surface top view; (b)
central surface top view; (c) pial surface top view; (d) inner surface bottom view; (e) central
surface bottom view; (f) pial surface bottom view. Estimated surfaces displayed as contours
superposed on the skull-stripped MR image (g) axial, (h) coronal, and (i) sagittal cross-
sections. (inner: magenta, central: blue, and pial: yellow.)
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V-distance

W-distance
Surface V

Fig. 5.
Illustration of the ICP “correspondence pairs”, and the distance measures.
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Fig. 6.

W?distance measure (in mm) on (a) inner, (b) central, and (c) pial surfaces of the three
subjects. (Surface points masked out (see Surface masking) are colored in white, all
distances above 1 mm are colored in red, and the distance in the range [0 mm-1 mm] are
colored by a colormap linearly from dark blue to red.)
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Reference surface

+ values
(outside)

- values
(inside)

Fig. 7.
Illustration of the “landmark offset”.
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frontal
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Fig. 8.

The location of the sulcal regions labeled on (a) the lateral surface and (b) the medial surface

of one cortical surface.
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Pick 10 "Banks” points
on GM/WM interface

Axial view - Right Sylvian

Fig. 9.
Interactive program for landmark picking: (a) an example axial cross-section, (b) enlarged

view around designated region for landmark picking, and (c—d) orthogonal cross-sections
through the last selected point.
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Fig. 10.
A sample MR image cross-section with (a) inner, (b) central, and (c) pial surfaces of the first

subject (blue (o =0.5and = 0.5), red (o = 0.69 and 3 = 0.55)).
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Membership Values (p\;\,M) at GM/WM Interface Landmarks (mean + stdev)

Subject | Subject Il Both Subjects

(12raters) (6raters) (12 raters)
Sulcus
LCS 0.70+0.21 0.80+0.18 0.74%0.20
LSYLV 058+0.30 0.73+0.22 0.63+0.28
LST 062+025 0.65+024 0.63+0.25
LSF 0.61+0.20 0.64+0.23 0.62+0.21
LCING 0.48+0.24 0.63+0.23 0.52+0.25
LPO 0.75+0.18 0.75+0.19 0.75+0.18
RSYLV 0.70+0.21 081019 0.73%£0.21
RST 0.72+0.20 0.65+0.26 0.70+0.23
RSF 061+019 0.72+0.20 0.64+0.20
RCING 0.70+£0.19 0.71+0.24 0.70%£0.21
RPO 0.68+0.25 0.67+0.22 0.68+0.24
Geometry
Sulcal fundus 0.71+0.22 0.76+0.20 0.73+0.21
Sulcal bank 0.67+0.22 0.68+0.22 0.67+0.22
Gyral crown 057+0.25 0.68+0.25 0.61+0.25
All 0.65+0.23 0.70+0.23 0.67+0.23
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Membership values (suprM + p(;M) at GM/CSF Interface Landmarks (mean + stdev)

Subject | Subject I1 Both subjects

(12raters) (6raters) (12 raters)
Sulcus
LCS 0.70+0.19 0.62+0.25 0.68+0.22
LSYLV 0.60+0.22 0.60+0.23 0.60+0.23
LST 0.74+0.15 065+0.29 0.71+0.21
LSF 0.71+0.23 0.54+0.28 0.66+0.26
LCING 0.60+0.20 0.64+0.24 0.62+0.22
LPO 0.79+0.15 0.65+0.26 0.75+0.20
RSYLV 0.77+0.14 0.67+0.24 0.73%£0.18
RST 0.66+0.21 0.64+0.23 0.66+0.22
RSF 064+0.22 066+0.25 0.65+0.23
RCING 0.72+0.19 0.62+0.28 0.68+0.23
RPO 0.70+0.18 0.60+0.27 0.67£0.22
Geometry
Sulcal fundus 0.76 £0.19 0.68+0.24 0.73+0.21
Sulcal bank 0.68+0.19 0.60+0.25 0.65+0.22
Gyral crown 064+021 061+028 0.63+0.23
nonACE 0.71+0.19 0.71+022 0.71%0.21
ACE 068+0.21 052+0.26 0.63+0.24
All 0.70+£0.20 0.63+0.26 0.67+0.22
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