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Abstract

Neurodegenerative diseases (NDs) collectively afflict more than 40 million people worldwide. 

The majority of these diseases lack therapies to slow or stop progression due in large part to the 

challenge of disentangling the simultaneous presentation of broad, multifaceted pathophysiologic 

changes. Present technologies and computational capabilities suggest an optimistic future for 

deconvolving these changes to identify novel mechanisms driving ND onset and progression. In 

particular, integration of highly multi-dimensional omic analytical techniques (e.g., microarray, 

mass spectrometry) with computational systems biology approaches provides a systematic 

methodology to elucidate new mechanisms driving NDs. In this review, we begin by summarizing 

the complex pathophysiology of NDs associated with protein aggregation, emphasizing the shared 

complex dysregulation found in all of these diseases, and discuss available experimental ND 

models. Next, we provide an overview of technological and computational techniques used in 

systems biology that are applicable to studying NDs. We conclude by reviewing prior studies that 

have applied these approaches to NDs and comment on the necessity of combining analysis from 

both human tissues and model systems to identify driving mechanisms. We envision that the 

integration of computational approaches with multiple omic analyses of human tissues, and mouse 

and in vitro models, will enable the discovery of new therapeutic strategies for these devastating 

diseases.
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1 Introduction

Neurodegeneration refers to the progressive death and loss of neurons in the brain, a process 

that begins with dysregulation at the molecular level and leads to gross regional dysfunction 

and eventually clinical disability. Collectively, neurodegenerative disorders affect more than 

40 million people worldwide.1–3 The greatest risk factor for many neurodegenerative 

diseases (NDs) is age,4–6 a fact that highlights the need to develop effective therapeutics for 

our aging global population. Commonly studied NDs include Alzheimer's disease (AD), 

frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), Parkinson's disease 

(PD), and Huntington's disease (HD). These diseases share two primary features that make 

them accessible to the research community. First, all are considered proteinopathies – that is, 

they are believed to stem from pathological protein aggregation (Table 1). Second, each 

disease has variants with known monogenic causes that can be used to model the disease in 

vitro and in vivo in an effort to understand the more common and complex sporadic (no 

family history) form of the disease (with the exception of HD, which is purely a monogenic 

disorder).

Due to the pathological presentation of protein aggregates in the above NDs, the dominant 

paradigm for studying each of these diseases has traditionally focused on identification of 

mechanisms behind protein generation and aggregation, and the direct influence of these 

aggregates on neuronal function.7–11 However, therapies aimed at reducing protein 

processing and clearance for AD have been unsuccessful in clinical trials, and one study 

reported an acceleration of cognitive decline in treated patients.12–14 These results suggest 

that targeting protein aggregation alone may be insufficient to treat NDs.

NDs are pathologically defined by the primary aggregating protein as well as the location of 

the aggregate and neuronal loss.15–18 Nevertheless, protein aggregation represents only one 

portion of a complex, integrated pathophysiology in each of these diseases and is 

commensurate with loss of homeostatic regulation, including immune response, metabolic 

changes, synaptic loss, and neuronal death. Moreover, neurodegeneration is associated with 
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a break-down of the blood-brain barrier (BBB)19 and/or blood spinal cord barrier (BSCB)20 

which enables peripheral immune cells21 to infiltrate the central nervous system (CNS) (Fig. 

1), further contributing to homeostatic dysregulation in the affected tissues.

Due to the complexity of these diseases and the heterogeneity of onset and progression, it 

remains unclear whether neurodegeneration is triggered and driven by protein aggregation 

(causative pathophysiology) or whether protein nucleation and aggregation represent a 

physiological response to a pre-existing homeostatic dysregulation (responsive 

pathophysiology) whereby the aggregation event is possibly an attempt to attenuate the toxic 

effect of the misfolded protein.24–26 Contributing to the debate in AD, extracellular 

(amyloid beta; Aβ) and intracellular (tau) protein aggregation can occur in cognitively 

normal individuals at levels consistent with AD tissues, but without significant neuro-

inflammation or neuronal death.27,28

Disentangling causative pathogenic events from responsive pathology is nearly impossible 

by analyzing postmortem tissue alone. First, pathological protein deposition begins years to 

decades prior to onset of clinical symptoms29,30 and decades before detailed bio-chemical 

measurements are collected from postmortem tissues.31 Second, a multitude of changes 

occur simultaneously during disease progression including cell death and inflammation. 

Each of these pathophysiological traits is expected to evolve throughout disease progression. 

To build temporal and spatial models of progression, researchers often use transgenic mouse 

models to access tissue at different phases of disease. The most commonly used models 

express genetic mutations identified by familial linkage studies in monogenic forms of the 

respective disease (Table 1).

Like in the human disease, mouse models elicit a multitude of simultaneous 

pathophysiologic changes. While in vivo models are essential for modeling the complexity 

of the human diseases, the central challenge of how to isolate causative mechanisms 

remains. The field of systems biology provides a broad collection of multivariate 

computational tools suitable for identifying causative mechanisms based on modern, highly 

multi-dimensional omics datasets. Together, with systems analysis-directed perturbation 

analysis and in vitro models, the field is poised to identify new mechanisms driving NDs.

In this article, we will begin by reviewing some of the key genetic and pathological elements 

of NDs and how these elements interact as a complex system. Second, we will review some 

of the computational analysis tools available for analyzing data from primary human tissues, 

mouse, and cell culture models. We will then review the current literature applying systems 

analysis approaches to NDs, and conclude by emphasizing the need for integrated systems 

analysis of human tissues together with perturbation analysis in model systems to identify 

mechanisms driving NDs.

2 Neurodegenerative Diseases Share Complex Pathophysiology

2.1 Alzheimer's Disease

AD is the most common form of dementia. Symptomatically, it begins with loss of short 

term memory, followed by disorientation and behavioral changes, and ultimately loss of 
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language and motor function.4,49 Pathological onset is marked by the accumulation of 

extracellular Aβ plaques50 in the neocortex, entorhinal cortex, and hippocampus.51 

Microglia and astrocytes are attracted to the plaque locations and express cytokines52,53 

which likely amplify astrocyte recruitment to the location.54 Simultaneous with this immune 

response, neurons in the plaque vicinity show hyper-phosphorylation of microtubule-

associated protein tau.55 Hyper-phosphorylated tau (hp-tau) aggregates to form intracellular 

neurofibrillary tangles (NFTs). It is hypothesized that aggregation of hp-tau depletes the cell 

of functional tau which normally serves to stabilize microtubules and is necessary for neurite 

outgrowth and synaptic function.56 Affected neurons become dystrophic and die.53 Due to 

the role of tau in AD pathogenesis, AD is considered to be a member of a larger family of 

tau aggregate-involving NDs called tauopathies.57

Extracellular deposition of Aβ plaques is the hallmark pathology of AD, leading to the 

hypothesis that the cellular processes that regulate Aβ production, synthesis, or 

accumulation drive pathogenic mechanisms in AD. This hypothesis is supported by the 

finding that certain mutations in the amyloid precursor protein (APP), which creates Aβ 

when cleaved, cause accelerated deposition of Aβ plaques and early-onset familial AD 

(FAD).58,59 Interestingly, a rare coding mutation in APP was recently identified to protect 

against AD and cognitive decline in the elderly.60 Additional FAD pathogenic mutations 

have been identified in presenilin 1 and presenilin 2, members of the γ-secretase complex 

which cleaves APP to form Aβ.59 The convergence of pathology and genetics on the theme 

of increased amyloid production has led to the prominent belief in the Aβ-hypothesis that 

has dominated the field for more than a decade. Nevertheless, a recent report has described 

sporadic AD “mismatch” cases that have pronounced Aβ pathology, yet no cognitive decline 

or neuronal death.28 Taken together, these results suggest that Aβ pathology may be a 

necessary but not sufficient condition for driving cognitive decline and neuronal death. 

Furthermore, monogenic forms of AD may be a more direct result of accumulation of 

amyloid while sporadic forms of the disease are possibly a result of a more complex 

interaction of pathogenic events.

The pathology described above is commensurate with much broader dysregulation that may 

further contribute to neuronal death and pathological progression. Glia exposed to Aβ 

produce reactive oxygen species (ROS)61 that are toxic to neurons62 and certain cytokines 

have been reported to enhance Aβ production.63 In addition, the CNS vasculature becomes 

activated, resulting in endothelial secretion of inflammatory cytokines, matrix 

metalloproteinases, and other species that may be neurotoxic.64 Some research suggests that 

hypoperfusion due to dysfunctional cerebrovasculature may be a mechanism driving 

neuronal death.65 Increased vascular permeability66 may also contribute to bacteria67 and 

immune cell68 migration from the periphery into the CNS, further contributing to the 

homeostatic dysregulation of the affected tissues.

2.2 Frontotemporal Dementia

FTD encompasses a diverse spectrum of clinical deficits, including cognitive, behavioral, 

semantic, and motor dysfunction.69 FTD is the third most common form of dementia after 

Wood et al. Page 4

Integr Biol (Camb). Author manuscript; available in PMC 2016 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



AD and vascular dementia, accounting for approximately 5-10% of diagnosed dementia 

cases.3 FTD often presents with ALS, as discussed in the next section.

FTD is structurally defined by atrophy of the frontal and temporal lobes and reduced glucose 

metabolism.70 In addition to neuronal atrophy, FTD is pathologically defined by 

intracellular inclusions comprised of one of the following proteins: tau, TAR DNA binding 

protein-43 (TDP-43; encoded by the TARDBP gene),71 fused in sarcoma (FUS) protein72, or 

superoxide dismutates-1 (SOD1; primarily found in ALS, but also observed in FTD41). 

Pathological inclusions of each of these proteins are either highly phosphorylated (tau),73 or 

highly ubiquitinated (TDP-43,71 FUS,72,74 SOD175). Many FTD cases consist of hp-tau 

aggregates within neurons and glia,76 and are members of the tauopathy family of NDs.57 

Tau negative cases present primarily with intraneuronal inclusions consisting of highly 

ubiquitinated TDP-4371 or FUS.72

Approximately 25-50% of FTD cases are inherited and are a result of mutations in a number 

of genes (Table 1). Aggregates of tau, TDP-43, and FUS are also found in sporadic forms of 

FTD which, like AD and PD, implicates common pathways of aggregation for proteins and 

genes known to cause monogenic forms of disease. The presence of intracellular inclusions 

in neurons from affected tissues suggest a cell autonomous processes. However, like in AD, 

affected tissues present activated microglia,77 gliosis early in disease,78 increased oxidative 

stress,79 and increased expression of pro-inflammatory cytokines.80 Interestingly, unlike in 

AD, apoptotic glial death has been reported to be correlated with pathological severity in 

FTD.81

2.3 Amyotrophic Lateral Sclerosis

ALS primarily affects neurons in the motor cortex and spinal cord, causing muscle stiffness, 

spasms, weakness, and eventually muscle wasting, typically leading to death within 5-8 

years of symptomatic onset.45,82–86 In addition to neuronal atrophy, ALS is pathologically 

defined by intracellular, highly ubiquinated inclusions comprised of one of the following 

proteins, many of which are also found in FTD: TDP-43,87 FUS72, optineurin (encoded by 

OPTN),42 or SOD1.75,43 While ALS and FTD affect different regions of the brain, many 

patients present initially with one disease and progress to develop features of both diseases. 

Thus, these diseases may be referred to as FTD-ALS (or FTD with Motor Neuron 

Disease).88,89

Approximately 5-10% of ALS cases are inherited,44 and these familial forms are associated 

with mutations in many of the genes connected to familial FTD (Table 1). In contrast to 

FTD, ALS affects motor neurons in the motor cortex and spinal cord.90 A direct mechanism 

linking these aggregates to neuronal death remains absent and a non-cell autonomous 

mechanisms of neuronal death has been suspected.91 Affected tissues in ALS exhibit a 

strong inflammatory response, including an increased number of activated microglia,92,93 

reactive astrocytes,94 and upregulated inflammatory cytokines.92,95,96 We direct the reader 

to the review by McGeer & McGeer97 for an overview of inflammation in ALS. Increased 

oxidative stress98 and widespread metabolic changes99 are believed to further contribute to 

disease pathogenesis. Additionally, a recent report found a breakdown in the blood-spinal 
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cord barrier (BSCB) in ALS associated with a reduction in pericyte numbers, resulting in red 

blood cell invasion into the spinal cord.100

In addition to the role of inflammatory response, a prominent recent theory hypothesizes that 

ALS and FTD are caused by a dysfunctional RNA stress granule response, resulting in 

nuclear stress granule inclusions found in postmortem tissues and mouse models.101 A 

number of ALS/FTD genes (including TARDBP, FUS, OPTN) are functionally implicated in 

RNA binding proteins and stress granule formation, and it is thought that mutations in these 

genes alter the stability and ability of stress granules to respond to cellular stresses.101

2.4 Parkinson's Disease

PD causes motor impairment such as muscle rigidity, tremors and bradykinesia as a result of 

cell death in the substantia nigra. In particular, the degeneration of dopaminergic neurons in 

the substantia nigra over time decreases dopamine release, leading to decreased stimulation 

of the motor cortex by the basal ganglia.102 Pathologically, PD is characterised by cell 

death, gliosis, and the presence of intracellular proteinaceous inclusions called Lewy bodies. 

The development of cognitive impairment can often occur late in disease, although some 

patients manifest with early dementia alongside the onset of motor symptoms (often called 

PD with dementia or dementia with Lewy bodies, DLB).103–105 The primary constituent of 

Lewy bodies is α-synuclein; therefore these NDs are often referred to as 

synucleinopathies.57

Less than ten percent of PD cases are familial forms.46 Kindred studies of familial forms of 

PD have identified rare point mutations, as well as chromosomal multiplications that cause 

familial PD (Table 1).106,107 The most well characterized disease association is the SNCA 

gene locus which encodes the α-synuclein protein. In these cases, age of onset and disease 

severity correlates closely with the expression level of α-synuclein.107

The understanding that Lewy bodies are found within neurons and α-synuclein is expressed 

by neurons led researchers to believe that dopaminergic neuronal death is cell autonomous, 

with α-synuclein acting as an intrinsic trigger of cytotoxicity. As a consequence of this 

belief, research has primarily focused on understanding cellular pathways that influence α-

synuclein aggregation within the neuron and what effect these aggregation events have on 

the health and normal function of neurons.108,109 The more recent discovery of α-synuclein 

as a secreted protein has challenged this neurocentric view of PD. Recent studies have 

demonstrated that α-synuclein is secreted and taken-up by neurons, both in culture and in 

mouse models of PD.110,111 Additionally, α-synuclein has been detected in microglia, 

astrocytes, and oligodendrocytes in a number of synucleinopathies. This suggests that α-

synuclein is not just transmitted by neurons to other neurons through a traditional synaptic 

model, but that α-synuclein may be transmitted to glial cells as well.112–114 Given the role 

that glia play in homeostatic maintenance of neuronal health and signal transduction in 

response to extracellular signals, it is likely that glial dysfunction plays a significant role in 

dopaminergic neuron vulnerability in PD. Furthermore, since glia are an integral component 

of the BBB, glial dysfunction is also believed to be a key contributor to BBB disruption in 

PD.115
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2.5 Huntington's Disease

Symptoms of HD typically begin with subtle changes in mood and personality, then 

progress to include impairment of motor function followed by executive functions. These 

symptoms are associated with severe degeneration in the caudate and putamen and, to a 

lesser extent, in other regions including the substantia nigra, cortex, and hippocampus. See 

the review by Walker for an extensive review of HD symptoms and pathology.116

HD differs from other NDs discussed so far in that it is an autosomal dominant monogenic 

disorder. It is caused by an expansion of the CAG triplet repeat in the N-terminal of the 

huntingtin gene47 from a non-disease level of less than 36 repeats to full penetrance with 

more than 42 repeats.117,118 These repeats result in increased protein oligomerization, which 

is enhanced as the number of repeats increases. The huntingtin protein (htt) is primarily 

expressed in neurons, and at a lower level in glia.119

While the genetic cause of HD is known, the specific mechanisms leading from protein 

aggregation to neuronal death remain unknown. Nuclear and cytoplasmic inclusions of 

aggregated htt are found in neurons from diseased tissues.120 As observed in other NDs, 

affected tissues experience neuroinflammation, including elevated expression of pro-

inflammatory cytokines such as IL-6, CCL2, and TNF-α,121 an increased number of 

activated microglia that correlates with pathological severity,122 and reduced expression of 

brain derived neurotrophic factor (BDNF).123 While the BBB and cerebrovascular function 

has had limited examination in HD, a recent study showed increased vascular densities in 

human HD tissues, and increased cerebral blood volume in the R6/2 mouse model, which 

expresses human htt with greater than 200 CAG repeats under the control of the human HTT 

promoter.124 While this study did not find differences in BBB function in the model, it did 

demonstrate a role for the vasculature in HD.

HD exemplifies the challenge of finding effective therapies for NDs. While the mutation 

causing HD was discovered more than 20 years ago,47 clinically effective therapies remain 

elusive.125 Since HD is monogenic, one approach currently under evaluation is to reduce htt 

expression.125 However, multiple studies emphasize our poor understanding of the 

relationship between htt aggregation and neuronal death. One population of neurons that is 

susceptible to death in HD, cortical pyramidal neurons, present with many intra-nuclear 

inclusions, suggesting that protein aggregation may be neurotoxic. However, medium spiny 

neurons found in the striatum are also prone to death, but rarely present with inclusions,126 

suggesting that htt can cause neuronal death in a non-cell autonomous fashion. Moreover, 

longitudinal MRI analysis reveals that while the CAG repeat length correlates with rate of 

atrophy in specific cortical regions, it does not explain rate of atrophy in the caudate.127 

Taken together, these findings illustrate that the mechanism connecting the CAG repeat to 

neuronal death is complex.

3 Experimental Models of Neurodegernative Diseases

The broad simultaneous changes described for each of the NDs discussed above illustrate 

the difficulty in delineating causal mechanisms from responsive physiology based on 

terminal human tissues alone. As we will discuss further in the following sections, a central 
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means of identifying causal mechanisms is to experimentally perturb the pathological 

physiology which is not possible in the analysis of human tissues. Therefore, the 

incorporation of mouse and culture model systems is essential to identifying novel 

mechanisms that will lead to new therapeutic strategies.

Transgenic mouse models enable the collection of longitudinal data that provide insight into 

early disease development, including mechanisms promoting protein aggregation, immune 

response, synaptic loss, and neuronal death. The ability to harvest tissue rapidly and in a 

tightly controlled experimental setting enables analysis of rapidly decaying proteins, such as 

phospho-proteins, which generally cannot be reliably analyzed in postmortem human 

tissue.128 However, mouse models present limitations which confound their use in isolating 

individual mechanisms of human disease. Specifically, mouse models i) incompletely 

reproduce the pathophysiology observed in the human disease, ii) simultaneously present 

multiple aspects of disease (e.g., protein aggregation, inflammatory response, and cell 

death), similar to the human disease, and iii) are mainly based on gene mutations found in 

familial cases, which may not reflect mechanisms driving sporadic disease cases.

Mouse models each have particular advantages and limitations in reflecting their associated 

human disease (Table 2). Therefore, certain models may be superior for reproducing the ND 

pathophysiology of interest. For example, until the discovery of TDP-43 mutations in FTD 

and ALS, ALS researchers were restricted to the use of SOD1 mice for modeling primarily 

spinal degeneration and dysfunction in ALS. The creation of various mutant TDP-43 lines 

expanded the affected tissue types from the spinal motor neurons affected in SOD1 mice to 

cortical regions, representing a more diverse range of ALS symptoms that are often regarded 

as more relevant to sporadic ALS.129 This model has limitations, however, because pure 

backcrossed lines present abnormalities in peripheral nervous system expression of 

TDP-43. 130

Cell culture-based ND models (e.g. human cell lines, primary neuron and glial cultures, and 

induced pluripotent stem cells; iPSCs) provide complementary capability to mouse models 

for isolating the roles of specific cell types in response to aggregating proteins, or genetic, 

pharmacologic, or other interventions. For example, primary neuron and glial cultures are 

valuable for assessing specific cell type responses to Aβ131,132 Human cell lines,133 and 

emerging iPSC models134–141 may provide further utility for replicating functional changes 

associated with genetic defects that cannot be exogenously applied to cultures. Additionally, 

human cell-derived cultures may not suffer from some of the limitations found in mice, such 

as the lack of endogenous mouse tau aggregation into NFTs.142

Mouse and cell culture models each provide particular value for reproducing specific aspects 

of disease pathophysiology. Integrating broad genomic and proteomic multi-dimensional 

data from these model systems will be central to identifying causative mechanisms driving 

NDs.
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4 Systems Analysis Methodology

The NDs discussed in the previous sections present complex pathophysiology. This suggests 

that multivariate analysis of a broad collection of biological pathways will provide a 

substantial advantage in identifying mechanisms and pathways driving disease.

4.1 Choice of Analysis Methodology

The choice of computational analysis to analyze multivariate data depends on a variety of 

factors including a priori biological knowledge, the number of samples, the number of 

measurements, and the hypothesis or question explored. Systems analysis approaches lie 

along a spectrum that ranges from mechanistic (analysis which applies assumptions based 

on prior biological knowledge)163 to data-driven (analysis of experimental data without 

making specific mechanistic assumptions).164 Mechanistic approaches, such as differential 

reaction equations, require a detailed understanding of the underlying mechanisms and 

require a large number of experimental perturbations to reliably identify parameters.163 

Since knowledge of detailed mechanisms is limited and a large number of perturbations are 

not always possible in vivo, mechanistic approaches are generally less suitable for in vivo 

studies.

For multi-dimensional omics analysis of in vivo or culture experiments, it is common to 

collect a large number of measurements (measurement variables) from a relatively small 

number of samples. For example, microarray datasets typically consist of gene expression 

measurements for tens of thousands of genes from tens to hundreds of samples.165 Mass 

spectrometry measures a similar number of proteins (total and phospho-proteins)166, while 

multiplexed xMAP® immunoassays (Luminex, Austin, TX) are able to measure 1-500 

analytes (e.g., cytokines, total proteins, phospho-proteins), and flow cytometry is able to 

distinguish on the order of a dozen labels.167 See the review by Lyons et al.168 in this issue 

for a detailed review of technologies for systems biology applications. Key questions that 

can be asked when evaluating these datasets include:

• Do the samples differ from one another based on experimental class or quantitative 

phenotype?

• Which measurement variables most strongly discriminate between class or 

phenotype?

• Does measurement variable A drive measurement variable B?

Data-driven approaches for analyzing multi-dimensional data begin with correlation 

approaches such as hierarchical clustering164,169 and multivariate projection approaches, 

including principal component analysis (PCA) and partial least squares (PLS) 

regression.170,171 Correlation approaches assess whether measurement variables are able to 

group samples into classes or along a spectrum based on a phenotypic Y-variable, and 

identify which measurement variables are correlated with class or phenotype. Prior 

knowledge pathway analysis approaches,172 such as gene set enrichment analysis 

(GSEA)173, extend correlation approaches by incorporating prior knowledge about gene co-

regulation to identify clusters of genes that are differentially regulated between classes. 

Finally, Bayesian networks use prior knowledge together with current experimental data to 
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construct a directed network graph that optimizes the probability that variable A causes B 

for every pair of measurement variables. The following sub-sections briefly review the 

methods and application of several prominent systems analysis techniques applied in the ND 

literature.

4.2 Multivariate Projection

Multivariate projection approaches are often used to find a “principal axis” separating 

samples based on either correlation between the measurement variables or correlation 

between the measurement variables and a qualitative or quantitative phenotype. These 

approaches are highly effective when the number of measurement variables is high relative 

to the number of samples.

Principal Component Analysis—A dataset consisting of N samples and M 

measurements variables can be thought of as N data points plotted in an M-dimensional 

space. PCA uses a singular value decomposition174 to identify directions in the data space 

where the M measurements are maximally co-varying across all data points.170 Re-plotting 

the data in terms of the first few maximally co-varying axes (principal components; PCs) 

often yields an enhanced clustering of samples associated with each class, or along a 

biologically meaningful spectrum, that was not immediately apparent from the 

representation in the original M-dimensional measurement space. This re-plotting of the data 

represents a new presentation of the data in a rotated coordinate frame. Each of the PCs 

represents a composite variable that is composed of a weighted sum of the M measurement 

variables. The weight of each of the M measurements in the PC indicates the relative 

importance of that measurement variable in distinguishing the data points. An important 

feature of PCA is that it can often separate meaningful biological variation in the data from 

uncorrelated variation which may be unrelated to the biological question of interest. 

Common sources of noise in in vivo samples include genetic and environmental differences, 

health or cause of death at the time of tissue collection, and inconsistencies in the tissue 

preparation and measurement assay.128

Partial Least Squares—Partial least squares (PLS) regression extends the concept of 

PCA by regressing the M measurement variables for each of the N samples against a 

phenotypic measurement (Y-variable). The Y-variable often represents a quantitative 

assessment of tissue state, pathology, or clinically-relevant endpoints. For example, it could 

represent pathological assessment of disease progression, such as Braak & Braak stage in 

AD,175 or a measurement of glial activation or neuronal density. PLS can also be used to 

regress against a discrete Y-variable that represents sample class, e.g., tissue samples from 

AD patients vs. samples from patients without AD.

PLS approaches are often used in instances where it is not possible to obtain a unique 

solution by directly regressing a large number of independent variables (in this case, M 

measurement variables) against the Y-variable when the number of measurements is larger 

than the number of samples (M>N).176 PLS provides a solution by regressing against the 

first several “principal” components derived from finding the directions of maximum co-

variance of the product of the measurement variables and the Y-variable. The form of this 
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analysis resembles PCA as discussed above, except the “principal” components are referred 

to as latent variables (LVs). Unlike PCA, PLS analysis identifies variation in measurement 

variables that is correlated with the Y-variable. By directly accounting for co-variation 

between the Y- variable and measurement variables, PLS is capable of identifying 

biologically relevant signaling changes that are of a lower magnitude than other sources of 

noise in the system which are uncorrelated with the Y-variable.

Despite the advantage of PLS analysis for identifying Y-correlated changes in the 

measurement variables, it should be used with caution. A key concern with any regression 

analysis is whether the identified regression coefficients represent the underlying biology, or 

whether they are only fitting the small number of samples in the available dataset. This calls 

into question not only the separation of the samples in LV space, but also the weighted 

contribution of each of the M measurements in the LV. It is therefore important to test the 

predictive capability of the model against a validation dataset. For small sample sets, a 

leave-one-out cross validation is often used for validation, where a single sample is left out 

of the regression, then predicted based on the model derived from regressing the remaining 

data points. This process is repeated for all samples.

4.3 Prior Knowledge Pathway Analysis

Correlation approaches, such as PCA or PLS, are effective at determining which 

measurement variables can separate samples into classes. Given the large number of 

measurement variables produced by microarray analysis, mass spectrometry, etc., however, 

correlation analysis often identifies a very large number of differentially regulated genes or 

proteins that strongly distinguish between classes. A key challenge, therefore, is to extract 

biological meaning from the collection of differential measurement variables, many of 

which may not be mechanistically or functionally related. Alternatively, a univariate 

analysis may find correlation between a large number of related genes and a phenotype, but 

none of the correlation may reach the level of significance. Prior knowledge pathway 

analysis attempts to solve these problems by using curated prior knowledge of gene co-

regulation to group measurement variables together.173,177 Prior knowledge is drawn from 

databases that relate genes based on mechanistic connections or functional relationships. 

The Kyoto Encyclopedia of Genes and Genomes (KEGG)178 and the Gene Ontology (GO) 

database179 are prominent databases curating mechanistic and functional relationships, 

respectively.

Many related algorithms have been proposed to incorporate prior knowledge into the 

pathway analysis.172 We briefly summarize two of these here which have been widely 

applied: Gene Set Enrichment Analysis (GSEA) and Association LIst Go AnnoTatOR 

(ALIGATOR). The GSEA algorithm computes an “enrichment” score for a group of genes 

based on how strongly each gene in the group is correlated with a particular class.173 A 

penalty is applied for strongly correlated genes that are not part of the group. By clustering 

genes into groups, GSEA has two major advantages in analyzing highly multi-dimensional 

datasets. First, it reduces a high-dimensional dataset into a smaller number of groups that are 

each composed of biologically related measurements. Second, because the GSEA score for 

each group is a composite value computed from the individual correlation value associated 
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with a large group of functionally related genes, it rejects biological or sampling noise in 

any individual measurement variable. It is therefore able to more stably assess group/

pathway activation across studies than individual measurement variables173. ALIGATOR180 

is primarily targeted at genome wide association (GWA) studies. It first applies an arbitrary 

significance threshold to genes in the GWA study, and checks for overrepresentation of 

functionally related genes based on GO terms.

4.4 Bayesian Network Models

In contrast to correlation approaches and pathway analysis, which are directed at identifying 

how measurement variables or groups of measurement variables change with class, the 

primary goal of Bayesian network (BN) modeling is to identify causal relationships between 

measurement variables. BNs identify whether measurement variables are causally related 

(i.e., does variable A cause variable B?) in a dataset by explicitly integrating imperfect prior 

knowledge and data available from the current dataset.181– 183 In systems biology 

applications, BNs may be used to model relationships between expressed genes or proteins, 

or phosphorylation networks.181,184,185 Additionally, BNs can be extended to include 

temporal information, such as feedback loops.186 For example, these dynamic BNs may be 

particularly useful for analyzing time points drawn from conditioned culture models, or 

post-transgene activation in tetracycline-regulated mouse models (Table 2).

Bayesian networks attempt to identify causal relationships between variables by maximizing 

the a posteriori probability that local network interactions exist given a priori network 

information.182 A priori information may be drawn from mechanistic or ontology databases, 

such as the KEGG and GO databases. The Bayesian network is chosen to maximize the a 

posteriori likelihood that a collection of causal edges exist given imperfect prior knowledge 

about the network and given the dataset being modeled. A key advantage of Bayesian 

network models is that they are able to implicitly account for hidden intermediate variables 

that are not measured.181

Obtaining the network that maximizes the a posteriori probability function requires a search 

algorithm, which is computationally intensive (NP-complete)187 and is not tractable for 

datasets with a larger number of measurement variables. Therefore, heuristic search 

strategies are usually employed. An example heuristic strategy is a “greedy” search that 

starts with an initial collection of network edges and sequentially adds and removes edges 

until the posterior probability is locally maximized.188 The number of edges is exponential 

in the number of measurement variables, so highly multi-dimensional datasets (e.g., from 

microarray) present an intractable search space, even using a heuristic search. One means of 

reducing the search space is to initially identify a smaller collection of candidate edges 

based on a bi-variate statistic, such as correlation, since uncorrelated measurement variables 

will not be causally related.189

For analysis of datasets with a large number of variables, but a small number of samples, 

experimental conditions, or perturbations, a large collection of networks will similarly 

maximize the posterior probability. Many of these networks may share common edges, 

while other edges may appear only in a small subset of these networks. Therefore, an edge 

appearing in any single network may not reflect a true causal relationship. Edges that appear 
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in a majority of networks are more likely to reflect a true causal connection.189 A Markov 

Chain Monte Carlo (MCMC) sampling procedure is the general approach to identifying all 

of the networks, but MCMC sampling is computationally intensive and is not tractable for 

large datasets.181 One proposed methodology, which is far more computationally tractable, 

is to employ a bootstrapping algorithm: a small numerical perturbation is applied to the 

dataset, the network learning procedure is applied, and the existence of the edge is checked 

for. This is repeated m times, and the “confidence” in the edge is computed as the fraction of 

times the edge appeared in the m perturbed networks.181 Of course, experimental 

perturbations are essential to verify that network-predicted edges are, in fact, causal.

4.5 Isolating Causative Factors

Correlative analysis tools, including clustering, multivariate projection, and pathway 

analysis are valuable for identifying which measurement variables or functional groups are 

most strongly correlated with each other, or with disease class or phenotypic measurements. 

They do not, however, provide any guarantee of a causal relationship between 

measurements, or between measurements and a phenotype. Even Bayesian networks, which 

maximize a probability function in an attempt to identify causative relationships based on 

prior information and the data, are not guaranteed to identify causal relationships. The 

question, then, is how do we systematically verify which of the hundreds to tens of 

thousands of measurement variables cause or modulate disease or phenotype?

Whether the initial dataset is from primary human tissues, or a model system, identification 

of causative variables requires perturbation analysis. Most often this will be practical in a 

mouse or culture model system. Initially suspected genes, proteins, phospho-proteins, etc., 

must be perturbed via pharmacologic, genetic, or other intervention, and all variables must 

be acquired under this new perturbation. The new data can then be integrated into the 

analysis to either verify the role of the node being perturbed, or suggest a new candidate 

causative node based on the new data. The identification of causal variables is therefore an 

iterative process.

5 A Review of Systems Studies of Neurodegenerative Diseases

5.1 Analysis of Pathway Enrichment

Systems analysis methodologies have been primarily applied to microarray analysis and 

GWA studies in postmortem human tissues due in part to the recent accessibility of these 

techniques, and the highly multi-dimensional datasets they produce. The key challenge with 

these datasets is identifying meaningful biological differences across the entire genome 

based on a relatively small number of samples. As discussed above, pathway analysis 

methodologies, (e.g. GSEA173 and GO179 enrichment) are valuable tools for analyzing 

composite changes in groups of genes based on prior knowledge of mechanistic or 

functional relationships.

Most basically, pathway analysis can be directly applied to a dataset with control and 

disease classes to identify differential pathway enrichment based on curated pathway 

databases. For example, Holmans et al. used ALIGATOR180 and GSEA applied to GWA 

study data to identify canonical pathways connected to leucocyte/lymphocyte activity and 
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cytokine signaling associated with increased risk of PD.190 Similarly, Neueder & Bates 

applied GO enrichment to a gene expression dataset from HD and control brains, identifying 

increased activation of the complement system.191 It is important to note here that pathway 

analysis alone applied to a differential gene expression dataset is merely correlative, and 

does not provide evidence of causation.

Systems analysis can provide deeper insight when applied to both human tissues and a 

model system that can be perturbed to infer causal relationships. Wexler et al. used GSEA 

and GO enrichment analysis to identify Wnt1 signaling-associated changes in human neural 

progenitor (hNP) cells, and suggest a causal relationship between granulin 

haploinsufficiency and Wnt signaling in inherited FTD.192 The authors began by stimulating 

Wnt1 in hNP cells, finding differential regulation of genes involved in cell survival, 

metabolism, transcriptional and translational regulation, and KEGG pathways for AD, HD, 

and PD, and specifically reduced expression of granulin. They further found that Wnt1 

signaling reduced progranulin expression in hNP cultures and that RNA interference 

hairpins against granulin up-regulated Wnt1 signaling, suggesting that Wnt1 and granulin 

are inversely regulated. Finally, the authors analyzed gene expression data from patients 

with granulin haploinsufficiency FTD, and found that a large number of canonical Wnt 

pathway genes were up-regulated. This study therefore combined analysis from culture and 

human tissues, together with perturbation in cell culture to suggest a causal connection 

between granulin haploinsufficiency FTD and Wnt signaling.

In addition to experimental perturbation, another means of enhancing confidence in the 

causality of a pathway is to identify pathways that are both differentially regulated based on 

gene expression and are implicated based on pathway enrichment of GWA data. A recent 

AD study by the International Genomics of Alzheimer's Disease Consortium used this 

approach to suggest potentially causative pathways in late onset AD.193 This study began by 

applying ALIGATOR and GSEA to GWA data to identify pathways involved in late onset 

AD. It then correlated the GWA pathway analysis with gene expression data to identify 

pathways derived from both modalities, including immune response, endocytosis, and 

cholesterol transport pathways.

To gain an understanding of epigenomic regulation in AD, a recent paper by Gjoneska et 

al.194 profiled gene expression (via RNA-seq) and chromatin binding (via ChIP-seq) in early 

vs. late pathology in the CK-p25 inducible mouse model. This model overexpresses the p25 

subunit of CDK5R1 under the control of the CamKII promoter.195 The authors analyzed 

changes in hippocampal tissues of CK-p25 mice at 2 weeks and 6 weeks after transgene 

induction, representing early vs. late pathology, respectively. The authors combined their 

gene expression and chromatin mark analysis with GO enrichment to identify coordinated 

changes in gene expression and epigenomic regulation. They found that genes associated 

with synaptic plasticity showed consistently decreased expression at both time points and 

reduced chromatin enhancer and promoter marks in associated regulator regions. Similarly, 

genes associated with immune response showed up-regulated expression and increased 

enhancer and promoter marks in associated regulatory regions.
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While these unbiased, transcriptome- and genome-wide approaches have confirmed 

previous hypotheses and highlighted new areas of research, the integration of prior 

knowledge is still biased by what is ‘known’ about the function of certain proteins in certain 

pathways. Researchers should therefore be cautious not to over interpret findings based 

solely on pathway analysis. For example, it is highly likely that inflammation plays a key 

role in neurodegeneration but prior knowledge of canonical inflammatory pathways is 

driven by the experimental history of these proteins in peripheral diseases. The multiple 

functions of proteins and cell-specific functions of proteins may be altered in CNS cell types 

or within the different environment of the CNS.

5.2 Identification of Novel Pathways

Network analysis methodologies, such as BN analysis discussed above, provide a 

framework for identifying correlation and potentially causal relationships between genes and 

proteins. In contrast to pathway analysis, these approaches provide methods for identifying 

novel mechanisms or functional relationships between genes, proteins, etc.

A network analysis-based study by Miller et al. analyzed microarray data from AD tissues 

and age-stratified healthy hippocampal tissues to identify gene expression changes 

associated with aging and changes specific to AD.196 This work relied on a weighted gene 

co-expression analysis (a network analysis based on correlation197) together with 

hierarchical clustering to identify “modules” of highly correlated genes. The analysis 

revealed PSEN1 expression as a central node that is highly co-expressed with myelin 

expressing genes. This relationship was associated with AD, but not normal aging, and 

suggests that PSEN1 may affect oligodendrocyte function. The analysis also found that 

YWHAZ, which encodes a protein involved in signaling and regulation of cell cycle,198 was 

a central node in both AD and normal aging. YWHAZ was previously not connected to either 

AD or normal aging.

Using a PCA of microarray data from the frontal cortex of late-onset AD patients and age-

matched controls, a more recent study by Zhang et al.199 identified a PC composed of genes 

associated with microglial activation that was highly correlated with multiple measures of 

neuropathology. Starting with this subset of genes, the authors derived a microglial Bayesian 

network and generated cis-eQTLs (expression quantitative trait loci) as prior knowledge to 

identify causal driving nodes within the proposed network. This network model identified 

microglial activation submodules associated with the complement cascade, toll-like receptor 

signaling, cytokine signaling, histocompatibility complex, and the Fc-receptor system. This 

network analysis identified TYROBP as a central gene regulated in AD. The authors then 

validated their model by overexpressing TYROBP in a mouse microglial cell line and 

demonstrated that the microglial gene expression (measured via RNA-seq) network shifted 

to be more consistent with the network found in human AD samples.

A temporal study of HD by Xu et al. used microarray analysis of a tetracycline-regulated 

HD94 Huntington's mouse model (Table 2) at multiple points after transgene induction 

together with a temporal regression approach to find genes that were differentially regulated 

post-induction.200 The authors separately regressed gene expression values for time points 

from the HD94 model and transactivator controls against a temporal regression model to 
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identify genes that had the most significantly different temporal profiles. Interestingly, some 

genes showed strong differential expression during the first two-weeks post-induction, but 

not later; others showed differential expression 6 weeks-post induction, but not earlier. 

These findings provide evidence for the temporal complexity of NDs and highlight the need 

to gather temporal understanding of molecular pathology as this understanding may alter 

future therapeutic approaches.

There is clear value to combining multiple omics modalities (e.g., GWA, gene expression, 

protein expression, etc.) to identify relationships that are not identifiable based on a single 

modality. For example, one article by Chen et al.201 combined genetic defect information 

from the Online Mendelian Inheritance in Man database (OMIM)202 database with genetic 

defect information from the Online Predicated Human Interaction Database203 to identify 

proteins, including β-catenin, that were connected with multiple AD-associated genes. 

Another report, by Krauthammer et al., mined published articles to build a molecular 

interaction network based on proteins, genes, mRNA, and other molecules.204 The authors 

validated the approach by using the network to identify proteins associated with four known 

AD genes, APOE, APP, PSEN1, PSEN2, and predicting other AD-associated genes 

including MAPT. Finally, Caberlotto et al.205 formulated a network analysis by combining 

gene expression, SNP, molecular drug targets, and protein-protein interaction data to 

identify genes that are strongly associated with multiple known AD genes. The authors 

identified AMP-activated protein kinase as being strongly connected to multiple known AD 

risk factor genes.

Due to the large number of interactions examined using genome-wide databases, literature 

surveys, and analytical techniques, there is potential for false-positive associations to be 

drawn from the network analyses. There are multiple ways to address this limitation. As we 

will discuss later, experimental perturbation in model disease systems is essential for 

verifying whether computation-predicted associations hold in the context of the ND under 

study. However, to determine whether protein interactions can physically occur, it is 

possible to incorporate direct protein-protein interaction data from yeast 2-hybrid (Y2H)206 

screens. For example, Liu et al.,207 combined gene co-expression, co-citation data mining, 

Y2H data and other data sources to build a Bayesian network. The authors used the network 

to predict genes associated with APOE, APP, PSEN1 and PSEN2, identifying multiple 

previously known AD-associated genes, and some previously unknown genes. Similarly, 

Soler-López et al.208 built a protein-protein interaction network based on multiple protein 

interaction databases, including Human Protein Reference Database (HPRD), and a gene co-

expression database to identify proteins connected to multiple causative AD genes. The 

authors then used a Y2H protein interaction screen to test network predictions, eliminating 

some false positives, and identified programmed cell death 4 (PDCD4) as being connected 

with PSEN2 and APOE.

5.3 Integration of Multi-ND Data

As discussed previously, the pathophysiologic overlap between the various NDs is 

substantial. In addition to protein aggregation, each ND shares similarities that include 

microglial and astrocyte activation, cytokine elevation, increased ROS, and broad metabolic 
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changes. The BBB/BSCB loses integrity, and peripheral immune cells may migrate into the 

affected CNS tissues. Given the broad similarities among NDs, despite different sources and 

mechanisms of pathological protein aggregation, it is conceivable that different APs trigger 

a similar mechanism driving neuronal vulnerability. These common mechanisms could exist 

between diseases, despite specific genes and pathways being associated with each disease, 

because of different regulatory networks in specific brain regions (i.e., substantia nigra vs 

entorhinal cortex). If a common mechanism is shared between some or all of these diseases, 

it could be associated with loss of homeostatic regulation, increase of neurotoxic regulation, 

or even a signaling event that leads to apoptotic or autophagic neuronal death.

While multi-ND analyses have been few, several groups have analyzed data to investigate 

pathway activation and identify novel genes and proteins connected with multiple NDs. For 

example, a report by Ramanan & Saykin209 reviewed AD and PD GWA study data, 

identifying that specificity protein 1 (encoded by SP1) and Jun/Fos transcription factors 

were commonly modified in both diseases. A report relying on protein interaction data by 

Limviphuvadh, et al.210 used a literature survey to create protein-protein interaction 

networks for AD, PD, ALS, HD, detatorubral-pallidoluysian atrophy, and prion disease. The 

authors identified common proteins involved in apoptosis and mitogen-activated protein 

kinase (MAPK) signaling. Combining genetic and protein data, a report by Nguyen et al.211 

integrated genetic defect information from the OMIM database202 with an interaction 

network built from the Interologous Interaction Database (i2d).203 The authors used these 

data together with GO annotations to compare biological pathways connected to gene 

mutations in nine NDs, including all of the NDs described in this review, identifying the 

Toll-like receptor pathway as being commonly connected to multiple NDs.

Finally, a recent report by Caberlotto et al. has suggested a role for autophagy in 

neurodegenerative disease by combining data from a broad collection of NDs.212 The 

authors created a protein interaction network based on known genetic defects in multiple 

NDs, and the known and predicted targets of existing drugs from every stage of the drug 

discovery pipeline. They built a network by combining genetic defect information from 

OMIM202 with protein interaction information from the i2d. The network combined data for 

AD, FTD, HD, Lewy body dementia, progressive supranuclear palsy, corticobasal dementia, 

Pick's disease, Prion disease, and ALS with Parkinsonism to identify a collection of proteins 

that may be affected in many of these diseases. The result was identification of autophagy-

associated proteins, including Akt, BCL2, ATG5 that were mutated in AD, FTD, and ALS 

with Parkinsonism. This finding supports a growing interest in the role of autophagy in 

NDs.213 Therapeutic modulation of autophagy has been proposed for a number of NDs and 

is currently under evaluation in a number of labs and clinical trials.214 While most research 

has focused on the ability of autophagy to enhance clearance of aggregate-prone proteins, 

recent findings linking autophagy to healthy immune regulation could enhance the 

therapeutic value of autophagy modulation for chronic degenerative disorders.215

The above studies demonstrate the value of systems analysis for broadly characterizing 

similarities between multiple NDs and suggest that multiple mechanisms may be shared 

among NDs. The development of tools to easily analyze data from multiple NDs will make 

the exploration and analysis of multi-ND data more accessible to the community. One such 
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tool is the NeuroDNet216 platform which provides a toolset for analyzing proteins that 

interact with 300 genes connected to 12 NDs based on data from multiple protein-protein 

interaction databases.

6 Model Systems and Perturbations are Necessary to Identify Causal 

Relationships

A critical consideration for each disease is deciding how to deconvolve the multitude of 

simultaneous changes to identify the driving neurodegenerative mechanisms. Systems 

analysis of primary human tissues yields many novel insights, as discussed above. However, 

analysis of terminal tissues alone provides only correlations, or at best suggests causative 

relationships, between measurement variables or between measurement variables and 

disease phenotypes. Even looking early in disease onset in a mouse model, a multivariate 

analysis may identify a large number of correlates with disease, making it difficult to isolate 

potentially causative pathways and mechanisms.

The power of systems analysis for identifying driving mechanisms is unlocked when we 

integrate multiple physiologic perturbations171,217 – a methodology which is not feasible to 

apply in humans. Therefore, it is essential to rely on an integrated systems analysis of data 

from human tissues, mouse models, and culture models to isolate causative factors. The 

work by Wexler et al.192 discussed above, employed perturbations in culture, together with a 

systems analysis, to identify pathway activation downstream of Wnt signaling in FTD. 

Culture based systems analysis is valuable for isolating many aspects of disease. However, 

culture models lack many aspects of ND pathology, and will be insufficient to elucidate the 

complete disease when used alone.

Perturbations have rarely been applied to inform systems analysis of in vivo models. One 

study by Lau et al. employed pharmacologic perturbations in a mouse model to inform a 

systems analysis that identified the role of immune cells in TNF-α induced apoptosis in the 

intestinal epithelium.218 This work illustrates the efficacy of combining in vivo perturbation 

with systems analysis to identify physiologic mechanisms. A similar application to mouse 

models of NDs will result in computational models that more accurately reflect the 

underlying biology driving disease in these models. Mouse models possessing human genes 

that cause ND are available for each of the diseases discussed here (Table 2). Models 

possessing inducible transgenes provide particular functionality for observing kinetics of 

gene/protein expression during disease onset in adult animals without sampling changes 

related to development. These models may therefore prove more useful for understanding 

sporadic forms of disease.

As discussed previously, mouse models do have limitations. They are characterized in terms 

of specific mirrored disease pathology, as summarized in Table 2, but fail to capture the 

entire human disease. Systems analysis of highly multi-dimensional omics techniques 

provides the capability to further characterize these models, not just in terms of pathological 

indicators, but in terms of broader network changes. Comparison of these network changes 

with analysis of human tissues will enable us to isolate portions of the network (e.g., 

signaling, metabolism, etc.), that shift similarly in the mouse and human disease. Finally, 
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mouse models are well complemented by human-derived culture models, and can be used 

together to elucidate complex human disease.

7 Conclusion

Application of systems analysis methodology to NDs is a fledgling field and is, to date, 

represented by a limited number of studies. Given the simultaneous onset and presentation 

of multiple aspects of ND pathophysiology, the structured computational methodologies 

available from systems biology will surely be an essential asset in deciphering the 

mechanisms driving these diseases. Integrated analysis of human tissues together with 

mouse and culture models holds the prospect of, first, identifying model limitations in 

reflecting the human disease at the systems level. Second, systematic integration of 

perturbation and time point analysis from models provides the ability to identify causative 

pathways and mechanisms that drive disease at the systems level. Finally, the striking 

similarities in pathophysiologic presentation among NDs, despite differences in the specific 

AP, aggregate localization, and regional degeneration, suggest that comparative analysis 

among diseases may identify common changes responsible for neuronal death. Ultimately, 

new understandings derived through these experimental and analytical approaches may in 

turn lead to novel therapeutic strategies for these devastating diseases.

Acknowledgments

This review was supported in part by the National Institutes of Health under grant number 5R01AG040530. S.D.S 
was supported by the National Science Foundation Graduate Research Fellowship under grant number 
DGE-1122374 and the Barbara J. Weedon Fellowship.

References

1. Prince M, Prina M, Guerchet M. World Alzheimer Report 2013 Journey of Caring: An Analysis of 
Long-Term Care for Dementia. 2013

2. Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, Marshall FJ, 
Ravina BM, Schifitto G, Siderowf A, Tanner CM. Neurology. 2007; 68:384–386. [PubMed: 
17082464] 

3. Abbott A. Nature. 2011; 475:S2–S4. [PubMed: 21760579] 

4. Fargo K, Bleiler L. Alzheimers Dement. 2014; 10:e47–92. [PubMed: 24818261] 

5. Niccoli T, Partridge L. Curr Biol. 2012; 22:741–752.

6. Reeve A, Simcox E, Turnbull D. Ageing Res Rev. 2014; 14:19–30. [PubMed: 24503004] 

7. Tanzi RE, Bertram L. Cell. 2005; 120:545–555. [PubMed: 15734686] 

8. Igaz LM, Kwong LK, Lee EB, Chen-Plotkin A, Swanson E, Unger T, Malunda J, Xu Y, Winton MJ, 
Trojanowski JQ, Lee VMY. J Clin Invest. 2011; 121:726–738. [PubMed: 21206091] 

9. Periquet M, Fulga T, Myllykangas L, Schlossmacher MG, Feany MB. J Neurosci. 2007; 27:3338–
3346. [PubMed: 17376994] 

10. Landles C, Bates GP. EMBO Rep. 2004; 5:958–963. [PubMed: 15459747] 

11. Spires-Jones TL, Stoothoff WH, de Calignon A, Jones PB, Hyman BT. Trends Neurosci. 2009; 
32:150–9. [PubMed: 19162340] 

12. Doody RS, Raman R, Farlow M, Iwatsubo T, Vellas B, Joffe S, Kieburtz K, He F, Sun X, Thomas 
RG, Aisen PS, Siemers E, Sethuraman G, Mohs R. N Engl J Med. 2013; 369:341–50. [PubMed: 
23883379] 

13. Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, Sabbagh M, Honig LS, 
Porsteinsson AP, Ferris S, Reichert M, Ketter N, Nejadnik B, Guenzler V, Miloslavsky M, Wang 

Wood et al. Page 19

Integr Biol (Camb). Author manuscript; available in PMC 2016 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



D, Lu Y, Lull J, Tudor IC, Liu E, Grundman M, Yuen E, Black R, Brashear HR. N Engl J Med. 
2014; 370:322–33. [PubMed: 24450891] 

14. Doody RS, Thomas RG, Farlow M, Iwatsubo T, Vellas B, Joffe S, Kieburtz K, Raman R, Sun X, 
Aisen PS, Siemers E, Liu-Seifert H, Mohs R. N Engl J Med. 2014; 370:311–21. [PubMed: 
24450890] 

15. Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Dickson DW, Duyckaerts C, Frosch MP, 
Masliah E, Mirra SS, Nelson PT, Schneider JA, Thal DR, Trojanowski JQ, Vinters HV, Hyman 
BT. Acta Neuropathol. 2012; 123:1–11. [PubMed: 22101365] 

16. Cairns NJ, Bigio EH, Mackenzie IRA, Neumann M, Lee VMY, Hatanpaa KJ, White CL, 
Schneider JA, Grinberg LT, Halliday G, Duyckaerts C, Lowe JS, Holm IE, Tolnay M, Okamoto 
K, Yokoo H, Murayama S, Woulfe J, Munoz DG, Dickson DW, Ince PG, Trojanowski JQ, Mann 
DMA. Acta Neuropathol. 2007; 114:5–22. [PubMed: 17579875] 

17. Dickson DW, Braak H, Duda JE, Duyckaerts C, Gasser T, Halliday GM, Hardy J, Leverenz JB, 
Del Tredici K, Wszolek ZK, Litvan I. Lancet Neurol. 2009; 8:1150–1157. [PubMed: 19909913] 

18. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP. J Neuropathol Exp 
Neurol. 1985; 44:559–577. [PubMed: 2932539] 

19. Desai BS, Monahan AJ, Carvey PM, Hendey B. Cell Transplantation. 2007; 16:285–299. 
[PubMed: 17503739] 

20. Garbuzova-Davis S, Rodrigues MCO, Hernandez-Ontiveros DG, Louis MK, Willing AE, 
Borlongan CV, Sanberg PR. Brain Res. 2011; 1398:113–125. [PubMed: 21632035] 

21. Rezai-Zadeh K, Gate D, Town T. J Neuroimmune Pharmacol. 2009; 4:462–475. [PubMed: 
19669892] 

22. Zlokovic BV. Nat Rev Neurosci. 2011; 12:723–739. [PubMed: 22048062] 

23. Schulz J. Neurodegenerative Disease: Neurobiology, Pathogenesis and Therapeutics. 2005:80–93.

24. Lee H, Zhu X, Nunomura A, Perry G, Smith MA. Curr Alzheimer Res. 2006; 3:75–80. [PubMed: 
16472207] 

25. Dewey CM, Cenik B, Sephton CF, Johnson BA, Herz J, Yu G. Brain Res. 2012; 1462:16–25. 
[PubMed: 22405725] 

26. Quilty MC, King AE, Gai WP, Pountney DL, West AK, Vickers JC, Dickson TC. Exp Neurol. 
2006; 199:249–256. [PubMed: 16310772] 

27. Price JL, Morris JC. Ann Neurol. 1999; 45:358–368. [PubMed: 10072051] 

28. Perez-Nievas BG, Stein TD, Tai HC, Dols-Icardo O, Scotton TC, Barroeta-Espar I, Fernandez-
Carballo L, De Munain EL, Perez J, Marquie M, Serrano-Pozo A, Frosch MP, Lowe V, Parisi JE, 
Petersen RC, Ikonomovic MD, López OL, Klunk W, Hyman BT, Gómez-Isla T. Brain. 2013; 
136:2510–2526. [PubMed: 23824488] 

29. Bateman RJ, Xiong C, Benzinger TLS, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ, Xie 
X, Blazey TM, Holtzman DM, Santacruz A, Buckles V, Oliver A, Moulder K, Aisen PS, Ghetti B, 
Klunk WE, McDade E, Martins RN, Masters CL, Mayeux R, Ringman JM, Rossor MN, Schofield 
PR, Sperling RA, Salloway S, Morris JC. N Engl J Med. 2012; 367:795–804. [PubMed: 
22784036] 

30. Jack CR, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, Shaw LM, Vemuri P, 
Wiste HJ, Weigand SD, Lesnick TG, Pankratz VS, Donohue MC, Trojanowski JQ. Lancet Neurol. 
2013; 12:207–216. [PubMed: 23332364] 

31. Sperling, Ra; Aisen, PS.; Beckett, La; Bennett, Da; Craft, S.; Fagan, AM.; Iwatsubo, T.; Jack, CR.; 
Kaye, J.; Montine, TJ.; Park, DC.; Reiman, EM.; Rowe, CC.; Siemers, E.; Stern, Y.; Yaffe, K.; 
Carrillo, MC.; Thies, B.; Morrison-Bogorad, M.; Wagster, MV.; Phelps, CH. Alzheimer's Dement. 
2011; 7:280–292. [PubMed: 21514248] 

32. Bertram L, Tanzi RE. J Clin Invest. 2005; 115:1449–1457. [PubMed: 15931380] 

33. Li YJ, Scott WK, Hedges DJ, Zhang F, Gaskell PC, Nance Ma, Watts RL, Hubble JP, Koller WC, 
Pahwa R, Stern MB, Hiner BC, Jankovic J, Allen Fa, Goetz CG, Mastaglia F, Stajich JM, Gibson 
Ra, Middleton LT, Saunders AM, Scott BL, Small GW, Nicodemus KK, Reed AD, Schmechel 
DE, Welsh-Bohmer Ka, Conneally PM, Roses AD, Gilbert JR, Vance JM, Haines JL, Pericak-
Vance Ma. Am J Hum Genet. 2002; 70:985–993. [PubMed: 11875758] 

Wood et al. Page 20

Integr Biol (Camb). Author manuscript; available in PMC 2016 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



34. Kamboh MI, Barmada MM, Demirci FY, Minster RL, Carrasquillo MM, Pankratz VS, Younkin 
SG, Saykin aJ, Sweet Ra, Feingold E, DeKosky ST, Lopez OL. Mol Psychiatry. 2012; 17:1340–6. 
[PubMed: 22005931] 

35. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina 
V, Dowzell K, Williams A, Jones N, Thomas C, Stretton A, Morgan AR, Lovestone S, Powell J, 
Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Morgan K, Brown 
KS, Passmore Pa, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith aD, Love S, Kehoe 
PG, Hardy J, Mead S, Fox N, Rossor M, Collinge J, Maier W, Jessen F, Schürmann B, van den 
Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frölich L, Hampel H, Hüll M, 
Rujescu D, Goate AM, Kauwe JSK, Cruchaga C, Nowotny P, Morris JC, Mayo K, Sleegers K, 
Bettens K, Engelborghs S, De Deyn PP, Van Broeckhoven C, Livingston G, Bass NJ, Gurling H, 
McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Tsolaki M, Singleton AB, 
Guerreiro R, Mühleisen TW, Nöthen MM, Moebus S, Jöckel KH, Klopp N, Wichmann HE, 
Carrasquillo MM, Pankratz VS, Younkin SG, Holmans Pa, O'Donovan M, Owen MJ, Williams J. 
Nat Genet. 2009; 41:1088–1093. [PubMed: 19734902] 

36. Shen L, Bagyinszky E, Youn YC, An SSA, Kim S. Toxicol Environ Health Sci. 2013; 5:113–130.

37. Neary D, Snowden J, Mann D. Lancet Neurol. 2005; 4:771–780. [PubMed: 16239184] 

38. Rosso SM, Donker Kaat L, Baks T, Joosse M, de Koning I, Pijnenburg Y, de Jong D, Dooijes D, 
Kamphorst W, Ravid R, Niermeijer MF, Verheij F, Kremer HP, Scheltens P, van Duijn CM, 
Heutink P, van Swieten JC. Brain. 2003; 126:2016–22. [PubMed: 12876142] 

39. Hodges JR, Davies R, Xuereb J, Kril J, Halliday G. Neurology. 2003; 61:349–354. [PubMed: 
12913196] 

40. Chow TW, Miller BL, Hayashi VN, Geschwind DH. Arch Neurol. 1999; 56:817–822. [PubMed: 
10404983] 

41. Katz JS, Katzberg HD, Woolley SC, Marklund SL, Andersen PM. Amyotroph Lateral Scler. 2012; 
13:567–569. [PubMed: 22670877] 

42. Maruyama H, Morino H, Ito H, Izumi Y, Kato H, Watanabe Y, Kinoshita Y, Kamada M, Nodera 
H, Suzuki H, Komure O, Matsuura S, Kobatake K, Morimoto N, Abe K, Suzuki N, Aoki M, 
Kawata A, Hirai T, Kato T, Ogasawara K, Hirano A, Takumi T, Kusaka H, Hagiwara K, Kaji R, 
Kawakami H. Nature. 2010; 465:223–226. [PubMed: 20428114] 

43. Chen S, Sayana P, Zhang X, Le W. Mol Neurodegener. 2013; 8:28. [PubMed: 23941283] 

44. Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, Burrell JR, Zoing MC. 
Lancet. 2011; 377:942–955. [PubMed: 21296405] 

45. Howard R, Orrell R. Postgrad Med J. 2002; 78:736–741. [PubMed: 12509691] 

46. Thomas B, Flint Beal M. Hum Mol Genet. 2007; 16:183–194.

47. Macdonald ME, Ambrose CM, Duyao MP, Myers RH, Lin C, Srinidhi L, Barnes G, Taylor SA, 
James M, Groot N, Macfarlane H, Jenkins B, Anderson MA, Wexler NS, Gusella JF, Bates GP, 
Baxendale S, Hummerich H, Kirby S, North M, Youngman S, Mott R, Zehetner G, Sedlacek Z, 
Poustka A, Frischauf AM, Lehrach H, Buckler AJ, Church D, Doucettestamm L, Odonovan MC, 
Ribaramirez L, Shah M, Stanton VP, Strobel SA, Draths KM, Wales JL, Dervan P, Housman DE, 
Altherr M, Shiang R, Thompson L, Fielder T, Wasmuth JJ, Tagle D, Valdes J, Elmer L, Allard M, 
Castilla L, Swaroop M, Blanchard K, Collins FS, Snell R, Holloway T, Gillespie K, Datson N, 
Shaw D, Harper PS. Cell. 1993; 72:971–983. [PubMed: 8458085] 

48. Langbehn DR, Brinkman RR, Falush D, Paulsen JS, Hayden MR. Clin Genet. 2004; 65:267–277. 
[PubMed: 15025718] 

49. Holtzman DM, Morris JC, Goate AM. Sci Transl Med. 2011; 3:77sr1. [PubMed: 21471435] 

50. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Proc Natl Acad 
Sci U S A. 1985; 82:4245–4249. [PubMed: 3159021] 

51. Thal DR, Rüb U, Orantes M, Braak H. Neurology. 2002; 58:1791–1800. [PubMed: 12084879] 

52. Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A, Rozkalne A, 
Koenigsknecht-Talboo J, Holtzman DM, Bacskai BJ, Hyman BT. Nature. 2008; 451:720–724. 
[PubMed: 18256671] 

53. Dickson DW. J Neuropathol Exp Neurol. 1997; 56:321–339. [PubMed: 9100663] 

Wood et al. Page 21

Integr Biol (Camb). Author manuscript; available in PMC 2016 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



54. Dorf ME, Berman MA, Tanabe S, Heesen M, Luo Y. J Neuroimmunol. 2000; 111:109–121. 
[PubMed: 11063828] 

55. Ingelsson M, Fukumoto H, Newell KL, Growdon JH, Hedley-Whyte ET, Frosch MP, Albert MS, 
Hyman BT, Irizarry MC. Neurology. 2004; 62:925–931. [PubMed: 15037694] 

56. Johnson GVW, Stoothoff WH. J Cell Sci. 2004; 117:5721–5729. [PubMed: 15537830] 

57. Bayer TA. Eur Neuropsychopharmacol. 2015; 25:713–724. [PubMed: 23642796] 

58. Murrell J, Farlow M, Ghetti B, Benson MD. Science. 1991; 254:97–99. 80. [PubMed: 1925564] 

59. Zekanowski C, Styczyńska M, Pepłońska B, Gabryelewicz T, Religa D, Ilkowski J, Kijanowska-
Haładyna B, Kotapka-Minc S, Mikkelsen S, Pfeffer A, Barczak A, Łuczywek E, Wasiak B, 
Chodakowska-Zebrowska M, Gustaw K, Łaczkowski J, Sobów T, Kuźnicki J, Barcikowska M. 
Exp Neurol. 2003; 184:991–6. [PubMed: 14769392] 

60. Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S, Stefansson H, Sulem P, 
Gudbjartsson D, Maloney J, Hoyte K, Gustafson A, Liu Y, Lu Y, Bhangale T, Graham RR, 
Huttenlocher J, Bjornsdottir G, Andreassen OA, Jönsson EG, Palotie A, Behrens TW, Magnusson 
OT, Kong A, Thorsteinsdottir U, Watts RJ, Stefansson K. Nature. 2012; 488:96–99. [PubMed: 
22801501] 

61. Block ML, Zecca L, Hong JS. Nat Rev Neurosci. 2007; 8:57–69. [PubMed: 17180163] 

62. Brown GC, Bal-Price A. Mol Neurobiol. 2003; 27:325–355. [PubMed: 12845153] 

63. Ringheim GE, Szczepanik AM, Petko W, Burgher KL, Zhu SZ, Chao CC. Mol Brain Res. 1998; 
55:35–44. [PubMed: 9645958] 

64. Grammas P, Sanchez A, Tripathy D, Luo E, Martinez J. Cleve Clin J Med. 2011; 78:S50–S53. 
[PubMed: 21972332] 

65. De La Torre JC. Lancet Neurol. 2004; 3:184–190. [PubMed: 14980533] 

66. Biron KE, Dickstein DL, Gopaul R, Jefferies WA. PLoS One. 2011; 6 Article no: e23789. 

67. Balin BJ, Appelt DM. J Am Osteopat Assoc. 2001; 101:S1–6.

68. Gate D, Rezai-Zadeh K, Jodry D, Rentsendorj A, Town T. J Neural Transm. 2010; 117:961–970. 
[PubMed: 20517700] 

69. McKhann GM, Albert MS, Grossman M, Miller B, Dickson D, Trojanowski JQ. Arch Neurol. 
2001; 58:1803. [PubMed: 11708987] 

70. Foster NL, Heidebrink JL, Clark CM, Jagust WJ, Arnold SE, Barbas NR, DeCarli CS, Turner RS, 
Koeppe RA, Higdon R, Minoshima S. Brain. 2007; 130:2616–2635. [PubMed: 17704526] 

71. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, 
Grossman M, Clark CM, Mccluskey LF, Miller BL, Masliah E, Mackenzie IR, Feldman H, Feiden 
W, Kretzschmar HA, Trojanowski JQ, Lee VM. Science. 2006; 314:130–133. [PubMed: 
17023659] 

72. Neumann M, Rademakers R, Roeber S, Baker M, Kretzschmar Ha, Mackenzie IRa. Brain. 2009; 
132:2922–31. [PubMed: 19674978] 

73. Alonso ADC, Mederlyova A, Novak M, Grundke-Iqbal I, Iqbal K. J Biol Chem. 2004; 279:34873–
34881. [PubMed: 15190058] 

74. Deng HX, Zhai H, Bigio EH, Yan J, Fecto F, Ajroud K, Mishra M, Ajroud-Driss S, Heller S, Sufit 
R, Siddique N, Mugnaini E, Siddique T. Ann Neurol. 2010; 67:739–748. [PubMed: 20517935] 

75. Cheroni C, Peviani M, Cascio P, DeBiasi S, Monti C, Bendotti C. Neurobiol Dis. 2005; 18:509–
522. [PubMed: 15755678] 

76. Lee VMY, Goedert M, Trojanowski JQ. Annu Rev Neurosci. 2001; 24:1121–159. [PubMed: 
11520930] 

77. Cagnin A, Rossor M, Sampson EL, MacKinnon T, Banati RB. Ann Neurol. 2004; 56:894–897. 
[PubMed: 15562429] 

78. Kersaitis C, Halliday GM, Kril JJ. Acta Neuropathol. 2004; 108:515–523. [PubMed: 15368070] 

79. Castellani R, Smith MA, Richey PL, Kalaria R, Gambetti P, Perry G. Brain Res. 1995; 696:268–
271. [PubMed: 8574681] 

80. Sjögren M, Folkesson S, Blennow K, Tarkowski E. J Neurol Neurosurg Psychiatry. 2004; 
75:1107–1111. [PubMed: 15258209] 

Wood et al. Page 22

Integr Biol (Camb). Author manuscript; available in PMC 2016 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



81. Broe M, Kril J, Halliday GM. Brain. 2004; 127:2214–2220. [PubMed: 15282215] 

82. Ghatak NR, Campbell WW, Lippman RH, Hadfield MG. Anterior horn changes of motor neuron 
disease associated with demyelinating radiculopathy. 1986; 45

83. Hughes JT. Adv Neurol. 1982; 36:61–74. [PubMed: 7180695] 

84. Kawamata T, Akiyama H, Yamada T, McGeer PL. Am J Pathol. 1992; 140:691–707. [PubMed: 
1347673] 

85. Ekblom J, Jossan SS, Oreland L, Walum E, Aquilonius SM. J Neural Transm Suppl. 1994; 
41:253–258. [PubMed: 7931234] 

86. Murayama S, Inoue K, Kawakami H, Bouldin TW, Suzuki K. Acta Neuropathol. 1991; 82:456–
461. [PubMed: 1785258] 

87. Neumann M, Sampathu D, Kwong L. Science. 2006; 314:130–133. 80. [PubMed: 17023659] 

88. Lomen-Hoerth C, Anderson T, Miller B. Neurology. 2002; 59:1077–1079. [PubMed: 12370467] 

89. Achi EY, Rudnicki Sa. Neurol Res Int. 2012; 2012 Article no: 806306. 

90. Pasinelli P, Brown RH. Nat Rev Neurosci. 2006; 7:710–723. [PubMed: 16924260] 

91. Ilieva H, Polymenidou M, Cleveland DW. J Cell Biol. 2009; 187:761–772. [PubMed: 19951898] 

92. Henkel JS, Engelhardt JI, Siklós L, Simpson EP, Kim SH, Pan T, Goodman JC, Siddique T, Beers 
DR, Appel SH. Ann Neurol. 2004; 55:221–235. [PubMed: 14755726] 

93. Turner MR, Cagnin A, Turkheimer FE, Miller CCJ, Shaw CE, Brooks DJ, Leigh PN, Banati RB. 
Neurobiol Dis. 2004; 15:601–609. [PubMed: 15056468] 

94. Barbeito LH, Pehar M, Cassina P, Vargas MR, Peluffo H, Viera L, Estévez AG, Beckman JS. 
Brain Res Brain Res Rev. 2004; 47:263–274. [PubMed: 15572176] 

95. Rentzos M, Nikolaou C, Rombos A, Boufidou F, Zoga M, Dimitrakopoulos A, Tsoutsou A, 
Vassilopoulos D. Amyotroph Lateral Scler. 2007; 8:283–287. [PubMed: 17852013] 

96. Elliott JL. Brain Res Mol Brain Res. 2001; 95:172–178. [PubMed: 11687290] 

97. McGeer PL, McGeer EG. Muscle Nerve. 2002; 26:459–70. [PubMed: 12362410] 

98. Barber SC, Mead RJ, Shaw PJ. Biochim Biophys Acta - Mol Basis Dis. 2006; 1762:1051–1067.

99. Dodge JC, Treleaven CM, Fidler Ja, Tamsett TJ, Bao C, Searles M, Taksir TV, Misra K, Sidman 
RL, Cheng SH, Shihabuddin LS. Proc Natl Acad Sci U S A. 2013; 110:10812–7. [PubMed: 
23754387] 

100. Winkler EA, Sengillo JD, Sullivan JS, Henkel JS, Appel SH, Zlokovic BV. Acta Neuropathol. 
2013; 125:111–120. [PubMed: 22941226] 

101. Li YR, King OD, Shorter J, Gitler AD. J Cell Biol. 2013; 201:361–372. [PubMed: 23629963] 

102. Purves, D.; Augustine, GJ.; Fitzpatrick, D.; Hall, WC.; LaMantia, AS.; McNamara, JO.; White, 
LE. Neuroscience. 4th. Sinaur Associates, Inc.; Sunderland, MA: 2008. 

103. Emre M, Aarsland D, Brown R, Burn DJ, Duyckaerts C, Mizuno Y, Broe GA, Cummings J, 
Dickson DW, Gauthier S, Goldman J, Goetz C, Korczyn A, Lees A, Levy R, Litvan I, McKeith I, 
Olanow W, Poewe W, Quinn N, Sampaio C, Tolosa E, Dubois B. Mov Disord. 2007; 22:1689–
1707. [PubMed: 17542011] 

104. Ballard C, Ziabreva I, Perry R, Larsen JP, O'Brien J, McKeith I, Perry E, Aarsland D. Neurology. 
2006; 67:1931–1934. [PubMed: 17159096] 

105. Apaydin H, Ahlskog JE, Parisi JE, Boeve BF, Dickson DW. Arch Neurol. 2002; 59:102–112. 
[PubMed: 11790237] 

106. Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, Levecque C, 
Larvor L, Andrieux J, Hulihan M, Waucquier N, Defebvre L, Amouyel P, Farrer M, Destée A. 
Lancet. 2004; 364:1167–1169. [PubMed: 15451224] 

107. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna 
T, Dutra A, Nussbaum R, Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C, Cookson 
MR, Muenter M, Baptista M, Miller D, Blancato J, Hardy J, Gwinn-Hardy K. Science. 2003; 
302:841. [PubMed: 14593171] 

108. Waxman EA, Giasson BI. Biochim Biophys Acta - Mol Basis Dis. 2009; 1792:616–624.

109. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, 
Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Johnson WG, 

Wood et al. Page 23

Integr Biol (Camb). Author manuscript; available in PMC 2016 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL, Reports E, Lavedant C, 
Leroyt E, Papapetropoulos T, Di G, Golbe L. Science. 1997; 276:2045–2048. 80. [PubMed: 
9197268] 

110. Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD, Ntzouni M, Margaritis LH, 
Stefanis L, Vekrellis K. J Neurosci. 2010; 30:6838–6851. [PubMed: 20484626] 

111. Danzer KM, Kranich LR, Ruf WP, Cagsal-Getkin O, Winslow AR, Zhu L, Vanderburg CR, 
McLean PJ. Mol Neurodegener. 2012; 7:42. [PubMed: 22920859] 

112. Papp MI, Kahn JE, Lantos PL. J Neurol Sci. 1989; 94:79–100. [PubMed: 2559165] 

113. Hishikawa N, Hashizume Y, Yoshida M, Sobue G. Neuropathol Appl Neurobiol. 2001; 27:362–
372. [PubMed: 11679088] 

114. Braak H, Sastre M, Del Tredici K. Acta Neuropathol. 2007; 114:231–241. [PubMed: 17576580] 

115. Cabezas R, Avila M, Gonzalez J, El-Bachá RS, Báez E, García-Segura LM, Jurado Coronel JC, 
Capani F, Capani F, Cardona-Gomez GP, Barreto GE. Front Cell Neurosci. 2014; 8:211. 
[PubMed: 25136294] 

116. Walker FO. Lancet. 2007; 369:218–28. [PubMed: 17240289] 

117. Rubinsztein DC, Leggo J, Coles R, Almqvist E, Biancalana V, Cassiman JJ, Chotai K, Connarty 
M, Crauford D, Curtis A, Curtis D, Davidson MJ, Differ AM, Dode C, Dodge A, Frontali M, 
Ranen NG, Stine OC, Sherr M, Abbott MH, Franz ML, Graham CA, Harper PS, Hedreen JC, 
Hayden MR. Am J Hum Genet. 1996; 59:16–22. [PubMed: 8659522] 

118. Brinkman RR, Mezei MM, Theilmann J, Almqvist E, Hayden MR. Am J Hum Genet. 1997; 
60:1202–1210. [PubMed: 9150168] 

119. Singhrao SK, Thomas P, Wood JD, MacMillan JC, Neal JW, Harper PS, Jones AL. Exp Neurol. 
1998; 150:213–222. [PubMed: 9527890] 

120. DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N. Science. 1997; 
277:1990–1993. [PubMed: 9302293] 

121. Silvestroni A, Faull RLM, Strand AD, Möller T. Neuroreport. 2009; 20:1098–1103. [PubMed: 
19590393] 

122. Pavese N, Gerhard A, Tai YF, Ho AK, Turkheimer F, Barker RA, Brooks DJ, Piccini P. 
Neurology. 2006; 66:1638–1643. [PubMed: 16769933] 

123. Zuccato C, Ciammola A, Rigamonti D, Leavitt BR, Goffredo D, Conti L, MacDonald ME, 
Friedlander RM, Silani V, Hayden MR, Timmusk T, Sipione S, Cattaneo E. Science. 2001; 
293:493–498. [PubMed: 11408619] 

124. Lin CY, Hsu YH, Lin MH, Yang TH, Chen HM, Chen YC, Hsiao HY, Chen CC, Chern Y, Chang 
C. Exp Neurol. 2013; 250:20–30. [PubMed: 24036415] 

125. Sampaio C, Borowsky B, Reilmann R. Mov Disord. 2014; 29:1419–1428. [PubMed: 25216371] 

126. Sieradzan KA, Mann DM. Neuropathol Appl Neurobiol. 2001; 27:1–21. [PubMed: 11298997] 

127. Rosas HD, Reuter M, Doros G, Lee SY, Triggs T, Malarick K, Fischl B, Salat DH, Hersch SM. 
Mov Disord. 2011; 26:1691–1697. [PubMed: 21611979] 

128. Espina V, Mueller C, Edmiston K, Sciro M, Petricoin EF, Liotta LA. Proteomics - Clin Appl. 
2009; 3:874–882. [PubMed: 20871745] 

129. Wegorzewska I, Bell S, Cairns NJ, Miller TM, Baloh RH. Proc Natl Acad Sci U S A. 2009; 
106:18809–18814. [PubMed: 19833869] 

130. Hatzipetros T, Bogdanik LP, Tassinari VR, Kidd JD, Moreno AJ, Davis C, Osborne M, Austin A, 
Vieira FG, Lutz C, Perrin S. Brain Res. 2014; 1584:59–72. [PubMed: 24141148] 

131. Wu HY, Hudry E, Hashimoto T, Kuchibhotla K, Rozkalne A, Fan Z, Spires-Jones T, Xie H, 
Arbel-Ornath M, Grosskreutz CL, Bacskai BJ, Hyman BT. J Neurosci. 2010; 30:2636–2649. 
[PubMed: 20164348] 

132. Johnstone M, Gearing AJ, Miller KM. J Neuroimmunol. 1999; 93:182–193. [PubMed: 10378882] 

133. Choi SH, Kim YH, Hebisch M, Sliwinski C, Lee S, D/'Avanzo C, Chen H, Hooli B, Asselin C, 
Muffat J, Klee JB, Zhang C, Wainger BJ, Peitz M, Kovacs DM, Woolf CJ, Wagner SL, Tanzi 
RE, Kim DY. Nature. 2014; 515:274–278. [PubMed: 25307057] 

134. Zhang D, Pekkanen-Mattila M, Shahsavani M, Falk A, Teixeira AI, Herland A. Biomaterials. 
2014; 35:1420–1428. [PubMed: 24290439] 

Wood et al. Page 24

Integr Biol (Camb). Author manuscript; available in PMC 2016 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



135. Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, Hefferan MP, Van Gorp S, Nazor 
KL, Boscolo FS, Carson CT, Laurent LC, Marsala M, Gage FH, Remes AM, Koo EH, Goldstein 
LSB. Nature. 2012; 482:216–20. [PubMed: 22278060] 

136. Muratore CR, Rice HC, Srikanth P, Callahan DG, Shin T, Benjamin LNP, Walsh DM, Selkoe DJ, 
Young-Pearse TL. Hum Mol Genet. 2014; 23:3523–3536. [PubMed: 24524897] 

137. Bilican B, Serio A, Barmada SJ, Nishimura AL, Sullivan GJ, Carrasco M, Phatnani HP, 
Puddifoot CA, Story D, Fletcher J, Park IH, Friedman BA, Daley GQ, Wyllie DJA, Hardingham 
GE, Wilmut I, Finkbeiner S, Maniatis T, Shaw CE, Chandran S. Proc Natl Acad Sci. 2012; 
109:5803–5808. [PubMed: 22451909] 

138. Serio A, Bilican B, Barmada SJ, Ando DM, Zhao C, Siller R, Burr K, Haghi G, Story D, 
Nishimura AL, Carrasco Ma, Phatnani HP, Shum C, Wilmut I, Maniatis T, Shaw CE, Finkbeiner 
S, Chandran S. Proc Natl Acad Sci U S A. 2013; 110:4697–702. [PubMed: 23401527] 

139. Byers B, Lee H, Reijo Pera R. Curr Neurol Neurosci Rep. 2012; 12:237–242. [PubMed: 
22538490] 

140. Zhang N, An MC, Montoro D, Ellerby LM. PLoS Curr. 2010:1–11.

141. The HD iPSC Consortium. Cell Stem Cell. 2012; 11:264–78. [PubMed: 22748968] 

142. Andorfer C, Kress Y, Espinoza M, De Silva R, Tucker KL, Barde YA, Duff K, Davies P. J 
Neurochem. 2003; 86:582–590. [PubMed: 12859672] 

143. Jankowsky JL, Slunt HH, Ratovitski T, Jenkins NA, Copeland NG, Borchelt DR. Biomol Eng. 
2001; 17:157–165. [PubMed: 11337275] 

144. Garcia-Alloza M, Robbins EM, Zhang-Nunes SX, Purcell SM, Betensky RA, Raju S, Prada C, 
Greenberg SM, Bacskai BJ, Frosch MP. Neurobiol Dis. 2006; 24:516–524. [PubMed: 17029828] 

145. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G. Science. 
1996; 274:99–102. [PubMed: 8810256] 

146. Sasaki A, Shoji M, Harigaya Y, Kawarabayashi T, Ikeda M, Naito M, Matsubara E, Abe K, 
Nakazato Y. Virchows Arch. 2002; 441:358–367. [PubMed: 12404061] 

147. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, 
Akbari Y, LaFerla FM. Neuron. 2003; 39:409–421. [PubMed: 12895417] 

148. Tran HT, LaFerla FM, Holtzman DM, Brody DL. J Neurosci. 2011; 31:9513–9525. [PubMed: 
21715616] 

149. Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, Guimaraes A, DeTure M, 
Ramsden M, McGowan E, Forster C, Yue M, Orne J, Janus C, Mariash A, Kuskowski M, Hyman 
B, Hutton M, Ashe KH. Science. 2005; 309:476–481. [PubMed: 16020737] 

150. Spires TL, Orne JD, SantaCruz K, Pitstick R, Carlson GA, Ashe KH, Hyman BT. Am J Pathol. 
2006; 168:1598–1607. [PubMed: 16651626] 

151. Wils H, Kleinberger G, Janssens J, Pereson S, Joris G, Cuijt I, Smits V, Ceuterick-de Groote C, 
Van Broeckhoven C, Kumar-Singh S. Proc Natl Acad Sci U S A. 2010; 107:3858–3863. 
[PubMed: 20133711] 

152. Mitchell JC, McGoldrick P, Vance C, Hortobagyi T, Sreedharan J, Rogelj B, Tudor EL, Smith 
BN, Klasen C, Miller CCJ, Cooper JD, Greensmith L, Shaw CE. Acta Neuropathol. 2013; 
125:273–288. [PubMed: 22961620] 

153. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, 
Kwon YW, Deng HX. Science. 1994; 264:1772–1775. [PubMed: 8209258] 

154. Dobrowolny G, Giacinti C, Pelosi L, Nicoletti C, Winn N, Barberi L, Molinaro M, Rosenthal N, 
Musarò A. J Cell Biol. 2005; 168:193–199. [PubMed: 15657392] 

155. Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, 
Mucke L. Science. 2000; 287:1265–1269. [PubMed: 10678833] 

156. Rockenstein E, Mallory M, Hashimoto M, Song D, Shults CW, Lang I, Masliah E. J Neurosci 
Res. 2002; 68:568–578. [PubMed: 12111846] 

157. Amschl D, Neddens J, Havas D, Flunkert S, Rabl R, Römer H, Rockenstein E, Masliah E, 
Windisch M, Hutter-Paier B. BMC Neurosci. 2013; 14:6. [PubMed: 23302418] 

158. Chesselet MF, Richter F, Zhu C, Magen I, Watson MB, Subramaniam SR. Neurotherapeutics. 
2012; 9:297–314. [PubMed: 22350713] 

Wood et al. Page 25

Integr Biol (Camb). Author manuscript; available in PMC 2016 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



159. Jackson-Lewis, V.; Lester, D.; Kozina, E.; Przedborski, S.; Smeyne, RJ. Movement Disorders. 
Second. LeDoux, MS., editor. Academic Press; Boston: 2015. p. 287-306.DOI: http://dx.doi.org/
10.1016/B978-0-12-405195-9.00017-2

160. Slow EJ, van Raamsdonk J, Rogers D, Coleman SH, Graham RK, Deng Y, Oh R, Bissada N, 
Hossain SM, Yang YZ, Li XJ, Simpson EM, Gutekunst CA, Leavitt BR, Hayden MR. Hum Mol 
Genet. 2003; 12:1555–1567. [PubMed: 12812983] 

161. Yamamoto A, Lucas JJ, Hen R. Cell. 2000; 101:57–66. [PubMed: 10778856] 

162. Martín-Aparicio E, Yamamoto A, Hernández F, Hen R, Avila J, Lucas JJ. J Neurosci. 2001; 
21:8772–8781. [PubMed: 11698589] 

163. Aldridge BB, Burke JM, Lauffenburger Da, Sorger PK. Nat Cell Biol. 2006; 8:1195–1203. 
[PubMed: 17060902] 

164. Janes, Ka; Yaffe, MB. Nat Rev Mol Cell Biol. 2006; 7:820–828. [PubMed: 17057752] 

165. Miller MB, Tang YW. Clin Microbiol Rev. 2009; 22:611–633. [PubMed: 19822891] 

166. Dephoure N, Zhou C, Villén J, Beausoleil Sa, Bakalarski CE, Elledge SJ, Gygi SP. Proc Natl 
Acad Sci U S A. 2008; 105:10762–10767. [PubMed: 18669648] 

167. Autissier P, Soulas C, Burdo TH, Williams KC. Cytom Part A. 2010; 77:410–419.

168. Lyons J, Herring CA, Banerjee A, Simmons AJ, Lau KS. Integr Biol. 201510.1039/C5IB00030K

169. D'haeseleer P. Nat Biotechnol. 2005; 23:1499–1501. [PubMed: 16333293] 

170. Eriksson L. MKS Umetrics AB. Multi-and megavariate data analysis. 2006

171. Janes KA, Kelly JR, Gaudet S, Albeck JG, Sorger PK, Lauffenburger DA. J Comput Biol. 2004; 
11:544–561. [PubMed: 15579231] 

172. Jin L, Zuo X, Su W, Zhao X, Yuan M, Han L, Zhao X, Chen Y, Rao S. Genomics Proteomics 
Bioinformatics. 2014; 12:210–220. [PubMed: 25462153] 

173. Subramanian A, Subramanian A, Tamayo P, Tamayo P, Mootha VK, Mootha VK, Mukherjee S, 
Mukherjee S, Ebert BL, Ebert BL, Gillette Ma, Gillette Ma, Paulovich A, Paulovich A, Pomeroy 
SL, Pomeroy SL, Golub TR, Golub TR, Lander ES, Lander ES, Mesirov JP, Mesirov JP. Proc 
Natl Acad Sci U S A. 2005; 102:15545–50. [PubMed: 16199517] 

174. Strang, G.; Aarikka, K. Introduction to applied mathematics. Vol. 16. Wellesley-Cambridge 
Press; Wellesley, MA: 1986. 

175. Braak H, Braak E. Acta Neuropathol. 1991; 82:239–259. [PubMed: 1759558] 

176. Geladi P, Kowalski BR. Anal Chim Acta. 1986; 185:19–32.

177. Khatri P, Sirota M, Butte AJ. PLoS Comput Biol. 2012; 8 Article no: e1002375. 

178. Kanehisa M, Goto S. Nucleic Acids Res. 2000; 28:27–30. [PubMed: 10592173] 

179. Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, Lewis S, Marshall 
B, Mungall C, Richter J, Rubin GM, Blake JA, Bult C, Dolan M, Drabkin H, Eppig JT, Hill DP, 
Ni L, Ringwald M, Balakrishnan R, Cherry JM, Christie KR, Costanzo MC, Dwight SS, Engel S, 
Fisk DG, Hirschman JE, Hong EL, Nash RS, Sethuraman A, Theesfeld CL, Botstein D, Dolinski 
K, Feierbach B, Berardini T, Mundodi S, Rhee SY, Apweiler R, Barrell D, Camon E, Dimmer E, 
Lee V, Chisholm R, Gaudet P, Kibbe W, Kishore R, Schwarz EM, Sternberg P, Gwinn M, 
Hannick L, Wortman J, Berriman M, Wood V, de la Cruz N, Tonellato P, Jaiswal P, Seigfried T, 
White R. Nucleic Acids Res. 2004; 32:D258–D261. [PubMed: 14681407] 

180. Holmans P, Green EK, Pahwa JS, Ferreira MAR, Purcell SM, Sklar P, Owen MJ, O'Donovan 
MC, Craddock N. Am J Hum Genet. 2009; 85:13–24. [PubMed: 19539887] 

181. Friedman N, Linial M, Nachman I, Pe'er D. J Comput Biol. 2000; 7:601–20. [PubMed: 
11108481] 

182. Charniak E. AI Mag. 1991; 12:50.

183. Larjo A, Shmulevich I, Lähdesmäki H. Methods Mol Biol. 2013; 939:35–45. [PubMed: 
23192539] 

184. Sachs K, Perez O, Pe'er D, Lauffenburger DA, Nolan GP. Science. 2005; 308:523–529. [PubMed: 
15845847] 

185. Mitra R, Müller P, Qiu P, Ji Y. Cancer Inform. 2014; 13:79–89. [PubMed: 25574129] 

Wood et al. Page 26

Integr Biol (Camb). Author manuscript; available in PMC 2016 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.1016/B978-0-12-405195-9.00017-2
http://dx.doi.org/10.1016/B978-0-12-405195-9.00017-2


186. Larjo A, Shmulevich I, Lähdesmäki H. Methods Mol Biol. 2013; 939:35–45. [PubMed: 
23192539] 

187. Chickering, D. Learning from Data SE - 12. Fisher, D.; Lenz, HJ., editors. Vol. 112. Springer; 
New York: 1996. p. 121-130.

188. Pe'er D. Sci STKE. 2005; 2005:l4.

189. Friedman N, Nachman I, Peér D. Proceedings of the Fifteenth conference on Uncertainty in 
artificial intelligence. 1999; 0:206–215.

190. Holmans P, Moskvina V, Jones L, Sharma M, Vedernikov A, Buchel F, Sadd M, Bras JM, 
Bettella F, Nicolaou N, Simón-sánchez J, Mittag F, Gibbs JR, Schulte C, Durr A, Guerreiro R, 
Hernandez D, Brice A, Stefánsson H, Majamaa K, Gasser T, Heutink P, Wood NW, Martinez M, 
Singleton AB, Nalls MA, Hardy J, Morris HR, Williams NM. Hum Mol Genet. 2013; 22:1039–
1049. [PubMed: 23223016] 

191. Neueder A, Bates GP. BMC Med Genomics. 2014; 7:60. [PubMed: 25358814] 

192. Wexler EM, Rosen E, Lu D, Osborn GE, Martin E, Raybould H, Geschwind DH. Sci Signal. 
2011; 4:ra65–ra65. [PubMed: 21971039] 

193. IGAP. Alzheimer's Dement. 2014:1–14.

194. Gjoneska E, Pfenning AR, Mathys H, Quon G, Kundaje A, Tsai LH, Kellis M. Nature. 2015; 
518:365–369. [PubMed: 25693568] 

195. Cruz JC, Tseng HC, Goldman JA, Shih H, Tsai LH. Neuron. 2003; 40:471–483. [PubMed: 
14642273] 

196. Miller JA, Oldham MC, Geschwind DH. J Neurosci. 2008; 28:1410–1420. [PubMed: 18256261] 

197. Zhang B, Horvath S. Stat Appl Genet Mol Biol. 2005; 4 Article 17. 

198. Fu H, Subramanian RR, Masters SC. Annu Rev Pharmacol Toxicol. 2000; 40:617–647. [PubMed: 
10836149] 

199. Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J, Podtelezhnikov Aa, Zhang C, Xie T, Tran 
L, Dobrin R, Fluder E, Clurman B, Melquist S, Narayanan M, Suver C, Shah H, Mahajan M, 
Gillis T, Mysore J, MacDonald ME, Lamb JR, Bennett Da, Molony C, Stone DJ, Gudnason V, 
Myers AJ, Schadt EE, Neumann H, Zhu J, Emilsson V. Cell. 2013; 153:707–20. [PubMed: 
23622250] 

200. Xu XL, Olson JM, Zhao LP. Hum Mol Genet. 2002; 11:1977–1985. [PubMed: 12165559] 

201. Chen JY, Shen C, Sivachenko AY. Pac Symp Biocomput. 2006:367–378. [PubMed: 17094253] 

202. Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Nucleic Acids Res. 2005; 
33:D514–D517. [PubMed: 15608251] 

203. Brown KR, Jurisica I. Bioinformatics. 2005; 21:2076–2082. [PubMed: 15657099] 

204. Krauthammer M, Kaufmann CA, Gilliam TC, Rzhetsky A. Proc Natl Acad Sci U S A. 2004; 
101:15148–15153. [PubMed: 15471992] 

205. Caberlotto L, Lauria M, Nguyen TP, Scotti M. PLoS One. 2013; 8 Article no: e78919. 

206. Kohalmi, S.; Reader, LV.; Samach, A.; Nowak, J.; Haughn, G.; Crosby, W. Plant Molecular 
Biology Manual SE - 6. Gelvin, S.; Schilperoort, R., editors. Springer; Netherlands: 1998. p. 
95-124.

207. Liu B, Jiang T, Ma S, Zhao H, Li J, Jiang X, Zhang J. Biochem Biophys Res Commun. 2006; 
349:1308–1314. [PubMed: 16973128] 

208. Soler-López M, Zanzoni A, Lluís R, Stelzl U, Aloy P. Genome Res. 2011; 21:364–376. [PubMed: 
21163940] 

209. Ramanan VK, Saykin AJ. Am J Neurodegener Dis. 2013; 2:145–75. [PubMed: 24093081] 

210. Limviphuvadh V, Tanaka S, Goto S, Ueda K, Kanehisa M. Bioinformatics. 2007; 23:2129–2138. 
[PubMed: 17553855] 

211. Nguyen TP, Caberlotto L, Morine MJ, Priami C. Biomed Res Int. 2014; 2014:686505. [PubMed: 
24551850] 

212. Caberlotto L, Nguyen TP. BMC Syst Biol. 2014; 8:65. [PubMed: 24908109] 

213. Nixon, Ra. Nat Med. 2013; 19:983–97. [PubMed: 23921753] 

214. Harris H, Rubinsztein DC. Nat Rev Neurol. 2011; 8:108–117. [PubMed: 22187000] 

Wood et al. Page 27

Integr Biol (Camb). Author manuscript; available in PMC 2016 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



215. Valdor R, Macian F. Pharmacol Res. 2012; 66:475–83. [PubMed: 23063674] 

216. Vasaikar SV, Padhi AK, Jayaram B, Gomes J. BMC Neurosci. 2013; 14:3. [PubMed: 23286825] 

217. Janes KA, Albeck JG, Gaudet S, Sorger PK, Lauffenburger DA, Yaffe MB. Science. 2005; 
310:1646–1653. [PubMed: 16339439] 

218. Lau KS, Cortez-Retamozo V, Philips SR, Pittet MJ, Lauffenburger DA, Haigis KM. PLoS Biol. 
2012; 10 Article no: e1001393. 

Wood et al. Page 28

Integr Biol (Camb). Author manuscript; available in PMC 2016 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Insight, Innovation, and Integration

Effective therapeutic strategies remain absent for a broad collection of neurodegenerative 

diseases (NDs) associated with pathological protein aggregation. In this review, we first 

provide insight into the pathophysiology of these NDs viewed as complex, dysregulated 

systems. We emphasize that many pathophysiological features are shared between NDs, 

despite differences in the location and identity of protein aggregates. We then review 

tools available from the field of systems biology for isolating mechanisms driving ND 

onset and progression. Finally, we comment on current literature applying systems 

biology methodologies to elucidate NDs, and remark on importance of integrating data 

and analysis from human tissues and model systems to identify new therapeutic targets.
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Figure 1. 
NDs are associated with broad physiologic responses in the CNS. A primary feature 

common to many NDs is the neuronal expression of intra- and/or extra-cellular aggregating 

protein (AP). Intra-neuronal APs, including α-synuclein, tau, the huntingtin protein, and 

superoxide dismutates-1 (SOD1), harm neurons directly by interfering with cellular 

processes, including microtubule and synaptic function.7–11 Extracellular APs, including 

amyloid-β, α-synuclein, and tau not only affect neurons, but stimulate responses from 

supporting cells (e.g., astrocytes and oligodendrocytes), and immune cells (e.g., astrocytes, 

and microglia). The supportive and immune cell response leads to production of reactive 

oxygen species (ROS) that are directly deleterious to neuron survival.22 Cytokines and other 

factors may also be directly harmful to neurons23 and promote BBB/BSCB leakiness.19,20,22 

Combined with enhanced cytokine production, the leaky BBB/BSCB enhances peripheral 

monocyte and leukocyte infiltration, contributing to homeostatic dysregulation.21,22 This 

figure was created using cell art adapted from Servier Medical Art (http://www.servier.com/

Powerpoint-image-bank).
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