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Abstract

We consider a multistage cancer model in which cells are arranged in a d-dimensional integer 

lattice. Starting with all wild-type cells, we prove results about the distribution of the first time 

when two neutral mutations have accumulated in some cell in dimensions d ≥ 2, extending work 

done by Komarova [12] for d = 1.
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1 Introduction

The accumulation of mutations is important not only for cancer initiation, progression, and 

metastasis, but also for the emergence of acquired resistance against chemotherapeutics, 

radiation therapy, or targeted drugs. For this reason there is a large and growing literature on 

the waiting time τk until some cell has acquired k prespecified mutations. In all the models 

we consider, type i individuals mutate to type (i + 1) at rate ui+1. The dynamics considered 

have most often been studied in multi-type Moran models with a homogeneously mixing 

population of constant size. Here we will concentrate on how results change when one 

considers a spatial Moran models, and as is the case for much earlier work we will 

concentrate on the behavior of τ2.

We suppose that cells of type 0 and type 1 have relative fitness 1 and λ. Since we will only 

consider the waiting time for the first type 2, the relative fitness of type 2’s is not important. 

In this work we will consider situation in which λ is so close to 1 that the mutations are 

essentially neutral. For cancer applications, this is a restrictive assumption, and it will be 

removed in the companion paper (part II) by Durrett, Foo and Leder [6]. However, the 

current result applies to the important case of tumor suppressor genes. In that case, when 

both copies of the gene are inactivated trouble develops, but while there is one working copy 

the cell can function normally.

We begin by recalling results for the Moran model in a homogeneously mixing population 

of size N. Here and in what follows the mutation rates ui and selection coefficient λ depend 

on N, even though this is not indicated in the notation, and we write aN ≪ bN if aN/bN → 0 
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as N → ∞. The next result made its first appearance on page 16230 of Nowak et al [17]. 

Since then it has appeared in print a number of times: [14], [18], [10], [11], and in Nowak’s 

excellent book [16] on Evolutionary Dynamics.

Theorem 1

In the neutral case of the Moran model, λ = 1, if we assume that

(1)

and let u1, u2 → 0 then we have

The same conclusion holds if .

Durrett and Schmidt [7] applied these ideas to study regulatory sequence evolution and to 

expose flaws in Michael Behe’s arguments for intelligent design. Durrett, Schmidt, and 

Schweinsberg [8], see also Schweinsberg [19], generalized this result to cover τk.

The conditions in the result may look mysterious but they can be derived by simple 

reasoning. Here and throughout the paper and f(u) ~ g(u) means f(u)/g(u) → 1 as u → 0. 

Suppose first that λ = 1.

(A1) If we start the Moran model with k ≪ N type 1’s and the rest type 0, then the 1’s 

behave like a critical branching process. The time needed for the 1’s to die out is 

O(k) and the number of type-1 births before they die out is O(k2). Thus we 

expect the first type 2 to occur in a type 1 family that reaches size 

, and hence has  births. The condition 

 in (1) guarantees k1 ≪ N.

(A2) Since the voter model is a martingale, the probability a type-1 mutation creates a 

family that reaches size  is . More to the point a simple computation 

(consider what happens at the first jump) shows that the probability a type-1 

family gives rise to a type-2 before it dies out is . Since mutations to type 

1 occur at times of a rate Nu1 Poisson process and with probability  give 

rise to a type 2, it follows that if ρ2 is the birth time of the type-1 mutant that 

first gives rise to a type 2 then

To complete the proof we need to show that τ2 − ρ2 ≪ ρ2, and for this we need 

the condition N ≪ 1/u1 in (1).
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(A3) By the discussion of (A1), the first mutation will occur in a family that reaches a 

size . If , then computations with Girsanov’s formula 

show that (in the limit u2 → 0) the behavior of the Moran model, while it is 

, is indistinguishable from the case with no drift.

The assumption of a homogeneously mixing cell populations simplifies calculations 

considerably, but is not realistic for solid tumors. For this reason, Komarova [12] considered 

a spatial model, which is very similar to one introduced much earlier by Williams and 

Bjerknes [20]. Due to work of Bramson and Griffeath [2, 3], the second model is known to 

probabilists as the biased voter model.

In the usual formulation of the biased voter model, each site on the d-dimensional integer 

lattice  can be in state 0 or 1 indicating the presence of a cell with relative fitness 1 or λ > 

1. Cells give birth at a rate equal to their fitness, and the offspring replaces a nearest 

neighbor chosen at random. When λ = 1 this is the voter model which was introduced 

independently by Clifford and Sudbury [4] and Holley and Liggett [9]. For a summary of 

what is known see Liggett [15].

In the biased voter model births drive the process. In Komarova’s version cells die at rate 1 

and are replaced by a copy of a nearest neighbor chosen with probability proportional to its 

fitness. A site with ni neighbors in state i makes

In d = 1 if the set of sites in state 1 is an interval [ℓ, r] with ℓ < r then any site that can 

change has n1 = n0 = 1 so Komarova’s model is a time change of the biased voter model. In 

d ≥ 2 this is not exactly true. However, we are interested in values of λ = 1 + s where s = 

0.02 or even less, so we expect the two models to have very similar behavior. In any case, 

the difference between the two models is much less than their difference from reality, so we 

will choose to study the biased voter, whose duality with branching coalescing random walk 

(to be described below) gives us a powerful tool for doing computations.

Since we want a finite cell population we will restrict our process to be a subset of (−L/2, 

L/2]d. Komarova [12] uses “Dirichlet boundary conditions”, i.e., she assumes her space is an 

interval with no cells outside, but this is awkward because the set of type 1 cells may reach 

one end of the interval and then no further changes happen at that end. To avoid this, we will 

use periodic boundary conditions, i.e., we consider (  mod L)d. The resulting toroidal 

geometry is a little strange for studying cancer. However, using (  mod L)d has the 

advantage that the space looks the same seen from any point. Our results will show that for 

the parameter values the first type 2 will arise when the radius of the set of sites occupied by 

1’s is ≪ L so the boundary conditions do not matter.

Durrett and Moseley Page 3

Ann Appl Probab. Author manuscript; available in PMC 2015 September 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Let  be the set of cells equal to 1 in the voter model with no mutations from 0 to 1 on 

starting from a single type 1 at 0. Let | | be the number of cells in , and let

(2)

This quantity, which is defined for the voter model without mutation, calculates the 

probability, which depends on the dimension d, that a mutation to type 1 gives rise to a type 

2 before its family dies out. To see why this is true note that the integral  gives the 

total number of man-hours in the type 1 family, and conditional on this the number of 

mutations that will occur is Poisson with mean .

Since mutations to type 1 in a population of N cells occur at rate Nu1 this suggests that

(3)

As we will explain in a moment, there is a constant γd so that νd ~ γdhd(u2) as u2 → 0 where

(4)

To state the result we need one more definition:

(5)

Theorem 2

In the neutral case of the biased voter model, λ = 1, if we assume

(6)

then there are constants λd given in (12) and (13) so that as u1, u2 → 0

The same conclusion holds if |λ − 1| ≪ hd(u2).

In d = 1 this result was proved by Komarova [12], see her equation (62) and assumption 

(60), then change notation u1 → u, u2 → u1. See also her survey paper [13]. Note that when 

d ≥ 3 the order of magnitude of the waiting time and the assumptions are the same as in 
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Theorem 1. In d = 2 there are logarithmic corrections to the behavior in Theorem 1, so only 

in the case of d = 1 (which is relevant to cancer in the mammary ducts) does space make a 

substantial change in the waiting time.

The reasons for the conditions in Theorem 2 are the same as in Theorem 1.

(B1) We will see that the mutation to type-2 will occur in a type-1 family that reaches 

size k = O(1/hd(u2)). The left hand assumption in (6) implies that k ≪ N, so the 

type 2 mutant arises before the 1’s reach fixation.

(B2) Let ρ2 be the time of the first type 1 mutation that begins the family that 

eventually leads to a type 2. Since mutations to type 1 occur at rate Nu1 and lead 

to a type 2 with probability νd, it is easy to see that

so to prove the result we need to show that with high probability τ2 − ρ2 ≪ ρ2. 

As the reader will see, this is guaranteed by the right-hand assumption in (6).

(B3) As in the discussion of Theorem 1, once we know that the mutation to type-2 

will occur in a type-1 family that reaches size k = O(1/hd(u2)), it follows that if |

λ − 1| ≪ hd(u2) then (in the limit u2 → 0) the behavior of the size of the biased 

voter | | is, while it is O(1/hd(u2)), indistinguishable from the case with no 

drift.

2 The Key to the Proof

The size of the voter model, when , is a time change of symmetric simple random 

walk, with jumps happening at two times the size of the boundary | |, which is the 

number of nearest neighbor pairs with  and . The one dimensional case is easy 

because when  the boundary . The key to the study of the process in d ≥ 2 is 

the observation that there are constants βd so that

(7)

where  means that when | | is large,  is close to 1 with high 

probability.

The intuition behind this result is that the voter model is dual to a collection of coalescing 

random walks, so in d ≥ 3 neighbors of points in  will be unoccupied with probability ≈ 

βd, the probability two simple random walks started at 0 and e1 = (1, 0, … 0) never hit. In 

dimension d = 2, the recurrence of random walks implies that when  is large, most 

neighbors of points in  will be occupied, but due to the fat tail of the recurrence time sites 

will be vacant with probability ~β2/log k, where β2 = π.

Durrett and Moseley Page 5

Ann Appl Probab. Author manuscript; available in PMC 2015 September 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Before we try to explain why (7) is true, we will list an important consequence. Let Tk be the 

first time . Let

Lemma 1

Let  be the unbiased voter model (i.e., λ = 1) starting from a single occupied site.

(8)

where ⇒ indicates convergence in distribution of the stochastic processes and the limit has

where Bt is a one dimensional Brownian motion. In d = 1 the process is stopped when it hits 

0. In d ≥ 2, 0 is an absorbing boundary so we don’t need to stop the process.

In d = 1 this result is trivial. If one accepts (7) then (8) can be proved easily by computing 

infinitesimal means and variances and using standard weak convergence results. In d ≥ 2, (7) 

and (8) are almost consequences of work of Cox, Durrett, and Perkins [5]. They speed up 

time at rate an, scale space by , and assign each point occupied in the voter model 

mass 1/n to define a measure-valued diffusion Xn which they prove converges to super-

Brownian motion. See their Theorem 1.2. (Their scaling is a little different in d = 2 but this 

makes no difference to the limit.)

Let  be the fraction of sites adjacent to x in state 0 at time s (with the prime indicating 

that we multiply this by log n in d = 2, see page 196). A key step in the proof in [5] is to 

show, see (I1) on page 202, that for nice test functions ϕ

(9)

where  denote the integral of the function f against the measure . The result in (9) 

shows that when we integrate in time and average in space (multiplying by a test function to 

localize the average) then (7) is true.

From the convergence of the measure valued diffusion Xn to super-Brownian motion, (8) 

follows by considering the total mass. Earlier we said (8) is almost a consequence of [5], 
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since they start their process from an initial measure (i.e., O(n) initial 1’s) while consider a 

single occupied site and condition on reaching nε. However, this defect can be remedied by 

citing the work of Bramson, Cox, and LeGall [1], who have a result, Theorem 4 on page 

1012 that implies (8) in d ≥ 2.

The result in (8) is enough for Section 3, but for the calculations in Section 4 we will need a 

version of (7). In that section we will compute under the assumption that if 

(10)

If one wants to give a rigorous proof of the estimates there, then small values of k, can be 

treated with the inequalities

and one can control large values of k using (9) and estimates such as (J1) and (J2) on page 

208 of [5]. We will assume (10) in order to avoid getting bogged down in technicalities.

3 Proof, part I

Let  be the probability defined in (2) ignoring mutations to type 2 that occur before Tnε. 

The size of the voter model, | |, is a martingale, so if we let P1 to denote the law of the 

voter model starting from one occupied site P1(Tnε < ∞) = 1/nε. Applying (8) now,

(11)

where T0 = min{t : Yt = 0}, Eε is the expected value for (Yt|Y0 = ε). We have

so if we set n = 1/hd(u2) then (4) implies nanu2 → 1 and using (11) gives

Thus the type-2 mutation will occur in a family that reaches sizes O(1/hd(u2)), and we must 

assume 1/hd(u2) ≪ N.
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If we ignore the time to reach size 1/hd(u2), the time needed to generate the type-2 mutation 

is, by (8), of order

where we have written a(n) for an for readability. Thus for (B2) we need a(1/hd(u2)) ≪ 

1/Nu1hd(u2), which means N ≪ gd(u2)/u1.

The next order of business is to compute νd. Stochastic calculus (or calculations with 

infinitesimal generators) tells us that

is the unique function on [0, ∞) with values in [0, 1], v(0) = 1 and

In d = 1 all solutions have the form:

where Ai and Bi are Airy functions

Since Bi is unbounded and Ai is decreasing on [0, ∞), we take β = 0 and set α = 32/3Γ(2/3) 

to satisfy the boundary condition, v(0) = 1. Letting ε → 0 we conclude that

(12)

In d ≥ 2, , and we have

(13)
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4 Proof, part II: Missing details for λ = 1

In the previous section we have calculated the probability  that a type 1 family reaches 

size ε/hd(u2) and then gives rise to a type 2. To let ε → 0 and prove Theorem 2 we need to 

consider the possibility of a mutation to type 2 in a family that (i) never reaches size nε, or 

(ii) will reach nε but hasn’t yet. To have a convenient name we will call these small families. 

Families of the first kind arise at rate Nu1(1 − 1/nε) and families of the second kind arise at 

rate Nu1/nε. We will now calculate the expected rate at which type-2’s are born from these 

small families. In the proof of Theorem 2, we will let ε → 0 slowly as n → ∞ so we can and 

will assume nε → ∞.

Consider the voter model  starting from a single 1 at the origin at time 0. Let Vk be the 

total time spent at level k, i.e., |{ }| and let Nk be the total number of returns to level 

k before leaving the interval (0, nε). Recalling our assumption in (10), we let q(k) the rate 

jumps occur at level k.

Let Sk be the embedded discrete time chain, which is a simple random walk, and let 

.

(14)

where the bar indicates conditioning on T0 < Tnε. A similar argument shows that

(15)

where the hat indicates conditioning on Tnε < T0.

The three conditional probabilities we need can be computed using facts about simple 

random walk that follow from the fact that it is a martingale.

(16)

For the next two we note that the first step has to be in the correct direction for these events 

to happen.

(17)
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(18)

Thus the expected total man-hours  for a family that will die out before reaching 

size nε is

(19)

and in families that have yet to reach size nε,

(20)

The next result shows that the contribution of small families are indeed negligible. Note that 

in all three cases the order of magnitude of the contributions from small families is the same 

as the overall rate, but contains a constant that → 0 as ε → 0.

Lemma 2

The expected total man-hours in small families is

Proof—In one dimension, q(k) = 2. The sum in (19) is dominated by

Thus, families of the first kind produce type 2’s at rate ≤ Nu1u2(nε)2/12. The expression in 

(20) is dominated by

Thus, families of the second kind produce type-2’s at rate ≤ Nu1u2(nε)2/6. Adding the last 

two conclusions gives the result for d = 1.

In d ≥ 3, (10) implies q(k) = 2dβdk, so (19) becomes
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The sum is bounded above by the integral

so with our choice of , families of the first kind produce type 2’s at rate bounded 

above by . Setting q(k) = 2dβdk, (20) becomes

The sum is bounded above by the integral

Thus, families of the second kind produce type-2’s at . Adding the 

last two conclusions gives the result for d ≥ 3.

In d = 2, (10) implies q(k) = 4β2k/log k, so (19) becomes

Each term in the sum is bounded above by log(nε), so the sum is less than nε log nε. Since 

, families of the first kind produce type 2’s at rate bounded above by

Taking q(k) = 4β2k/log k, (20) becomes
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The sum is bounded above by

Thus families of the second kind produce type 2’s at rate bounded above by

Adding the last two conclusions gives the result for d = 2 and completes the proof.

5 Proof, part III: Almost neutral mutations

In the biased voter model, whose law we denote by Pλ, jumps occur at rate 1 + λ times the 

size of the boundary. To compensate for this we need to run the unbiased (λ = 1) voter at 

rate (1 + λ)/2. If we do this, call the resulting law P̃0, and let ωT is a realization of  run up 

to time T then the Radon-Nikodym derivative

where n+ and n− are the number of up jumps in ωt when 0 ≤ t ≤ T.

If  then the difference 0 ≤ n+ − n− = O(K). Since under P̃
0, | | is a time 

change of simple random walk, we see that the total number of jumps n+ + n− = O(K2). 

Taking K = 1/hd(u2) and assuming |λ − 1| ≪ hd(u2), when u2 is small the Radon Nikodym 

derivative is

The last result implies that (8) extends to almost neutral mutations, and the computations in 

Section 2 are valid. To extend the part of the proof in Section 3, we need to check that (16)–

(18) are true asymptotically for almost neutral mutations. To do this we recall that if a < x < 

b
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(21)

When 0 ≤ a < x ≤ b = O(1/hd(u2)) and |λ − 1| ≪ hd(u2) we have

To show that the sums come out the same we need the following uniform version which 

follows from (21). If |λ − 1|hd(u2) → 0 then for any C fixed
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