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It was long assumed that eukaryotic
precursor mRNAs (pre-mRNAs) are
almost always spliced to generate a linear
mRNA that is subsequently translated to
produce a protein. However, it is now
clear that thousands of protein-coding
genes can be non-canonically spliced to
produce circular noncoding RNAs, some
of which are expressed at much higher
levels than their associated linear
mRNAs. How then does the splicing
machinery decide whether to generate a
linear mRNA or a circular RNA? Recent
work has revealed that intronic repetitive
elements, including sequences derived
from transposons, are critical regulators
of this decision. In most cases, circular
RNA biogenesis appears to be initiated
when complementary sequences from 2
different introns base pair to one
another. This brings the splice sites from
the intervening exon(s) into close prox-
imity and facilitates the backsplicing
event that generates the circular RNA. As
many pre-mRNAs contain multiple
intronic repeats, distinct circular tran-
scripts can be produced depending on
which repeats base pair to one another.
Intronic repeats are thus critical regula-
tory sequences that control the functional
output of their host genes, and poten-
tially cause the functions of protein-cod-
ing genes to be highly divergent across
species.

Although most genetic information is
thought to be expressed as proteins, less
than 2% of the human genome actually
codes for protein. Much (~70%) of our
genome is instead derived from repetitive
elements with LINE-1 (L1) retrotranspo-
sons and Alu elements being particularly
abundant, accounting for ~17% and
10% of the total genomic sequence,
respectively.” During evolution, these
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transposable elements took advantage of
the autonomous retrotransposition activ-
ity of L1 to spread as “selfish” DNA and
expand the size of our genome.”” In addi-
tion, they facilitated genomic rearrange-
ments, insertional mutagenesis events, and
the formation of new exons and genes.
Nevertheless, only ~80-100 L1s are
thought to still be capable of retrotranspo-
sition today.® The other >99.9% of trans-
poson-derived  sequences have been
rendered inactive, which has led some to
suggest they may simply represent rem-
nants of our evolutionary past, or so-called
“junk” DNA. It is, however, becoming
increasingly clear that repetitive elements
perform  multiple critical ~ functions,
including  regulating  transcription,”
mRNA localization,¥  mRNA degrada-
tion,” and mRNA editing.'® Recent work
from multiple groups,“’14 including our
own, has now revealed a novel function
for the many repetitive elements that are
present in introns of protein-coding
genes.'”  Fascinatingly, these intronic
repeats regulate the functional output of
their host genes by facilitating the forma-
tion of circular RNAs.

As their name suggests, circular RNAs
have covalently linked ends and were orig-
inally identified in pathogens, including
viroids (virus-like infectious particles) and
hepatitis & virus.'®'” A handful of circular
RNAs generated via splicing of eukaryotic
genes were subsequently identified in the
1990s, but these transcripts were generally
expressed at low levels (~0.01% the level
of their associated linear mRNA).'8-%°
Because eukaryotic genes contain introns,
their precursor mRNAs (pre-mRNAs)
must be modified such that introns are
removed and exons joined together.
Depending on how a preemRNA is
spliced, different linear or circular RNAs
can be produced, each potentially with its
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own unique function (Fig. 1). If a pre-
mRNA is spliced in the standard way
(namely, exon 1 is joined to exon 2, which
is joined to exon 3, etc.), a linear mRNA
is generated that can subsequently be
translated to produce a protein. If
“backsplicing” instead occurs and a splice
donor is joined to an upstream splice
acceptor (e.g. the end of exon 3 is joined
to the beginning of exon 2), that pre-
mRNA now produces a circular RNA. In
most cases, these transcripts are noncoding
as the start and/or stop codons have been
removed, although artificial circles con-
taining an open reading frame and an
IRES (internal ribosome entry site) can be
translated.”"** Considering that canonical
splicing and backsplicing are in direct
competition with one another,” the pre-
mRNA splicing machinery must be tightly
regulated so that the appropriate mature
RNAs are produced. In some cases, back-
splicing is combined with exon skipping
so that a linear mRNA as well as a circular
RNA comprised of the skipped exon(s)
can be generated from a single pre-
mRNA 20:24.25

With the exception of the first and last
exons of genes, every other exon in the
genome has splicing signals at its 5" and 3’
ends and theoretically can circularize.
However, most exons do not generate cir-
cular RNAs, in part because pre-mRNA
splicing generally occurs co-transcription-
ally. >’ Simply put, most introns are rap-
idly spliced as soon as they are transcribed,
thereby removing the upstream splice
acceptors that are needed for backsplicing
to occur. Nevertheless, it is now clear that
thousands of human genes produce circu-
lar RNAs, sometimes at a level that
exceeds the associated linear mRNA by a
factor of 10.'>%%32 QOver 25,000 circular
RNAs, derived from ~15% of actively
transcribed genes, were recently identified
in a single human cell type.'? These highly
stable transcripts contain almost exclu-
sively exonic sequences and accumulate in
the cytoplasm, but do not generally associ-
ate with ribosomes.’® In at least 2 cases,
circular RNAs function as efficient
sponges for microRNAs, 2334 but most
others contain few microRNA binding
sites and likely have a different function.>

Regardless of their ultimate fate, what
inputs initially determine whether a pre-
mRNA is spliced to generate a linear
mRNA or any of its possible circular
RNAs?

A connection between repetitive ele-
ments and circular RNA biogenesis was
first suggested at the mouse Sry locus,
which efficiently produces a ~1.2-kb cir-
cular RNA comprised of a single exon.”
Remarkably, this exon is flanked by
~50-kb of near perfectly complementary
sequences (>99.7% identity), and com-
plete removal of either of the repeats elim-
inated Sry circular RNA production from
an expression plasmid.*® Smaller deletions
revealed that 400-nt of complementary
intronic repeats were sufficient for Sry cir-
cle biogenesis. This suggested a model in
which the intronic repeats may base pair
to one another, bringing the splice sites
into close proximity to facilitate backsplic-
ing. In support of this idea, the addition
of complementary intronic repeats to in
vitro RNA splicing substrates was found
to promote the formation of circular

RNAs.*”
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Figure 1. Pre-mRNA splicing can generate linear or circular RNAs. If the pre-mRNA splice sites (ss) are joined in the canonical order, a mature linear mRNA
is generated that is subsequently polyadenylated (top). Alternatively, the splicing machinery can backsplice and join a splice donor to an upstream splice
acceptor, generating a circular RNA whose ends are covalently linked (bottom). Here, a circular RNA composed of 2 exons is generated, although back-
splicing can result in the production of circular RNAs that comprise one or many exons.
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However, very few exons are naturally
flanked by repeats as long as those at the
Sty locus. Computational analysis instead
revealed that pairs of Alu elements, which
are ~300-nt in length, are enriched in the
introns flanking human exons that gener-
ate circular RNAs.'*'? In fact, almost
90% of circular RNAs appear to have
complementary Alu elements in their
flanking introns."* To directly determine
if these repeats or other nearby sequences
regulate the production of circular RNAs,
we and others recently mutagenized plas-
mids that express various human circular
RNAs.' 12339 This was most extensively
done with the human ZKSCANT1 locus,
which produces an abundant 668-nt cir-
cular RNA containing exons 2 and 3 in
Surprisingly,
miniature (<90-nt) introns containing
only the splice sites along with short (~30
to 40-nt) inverted repeats were sufficient
to allow the intervening ZKSCANT exons
to efficiently circularize in cells (Fig. 2).

human brain and liver.!!

As expected, mutating the splice sites
completely eliminated ZKSCANT1 circular
RNA  production. Likewise, disrupting

base pairing between the intronic repeats
by mutating several nucleotides in one of
the Alu elements also prevented circulari-
zation. Introducing compensatory muta-
tions into the other repeat did, however,
rescue circular RNA biogenesis. Base pair-
ing between the intronic repeats is thus
necessary for efficient ZKSCANI circular-
ization and similar results were obtained
with the human HIPK3 and EPHB4
genes.11 Notably, several other circular
RNA expression plasmids can weakly gen-
erate circles when no complementary
sequences are present in the flanking
introns.>®%? However, even in these cases,
the presence of inverted repeats drastically
increases (>10-fold) the efficiency of cir-
cular RNA production, indicating that
interactions between flanking introns can
strongly promote circularization. In total,
these data suggest that the Sry circular
RNA biogenesis model is likely applicable
at thousands of human genes, with a short
stretch of base pairing between intronic
repeats appearing to often be sufficient.!!
Importantly, this mechanism appears to
also be commonly used across eukaryotes

as inverted repeats generally flank circular
RNAs in mice and C. elegans."*
Complicating the regulation of circu-
lar RNA biogenesis is the fact that
introns commonly contain muldple
repetitive elements. Depending on how
the complementary sequences base pair
to one another, very different splicing
patterns can result (Fig. 3A)."? When
different
introns (as discussed above), backsplicing
is induced and the intervening exon(s)
form a circular RNA (Fig. 3B). If base

pairing instead occurs between repeats

base pairing occurs across

within a single intron, canonical splicing
occurs and a linear mRNA is produced
(Fig. 3C). The expression of a given cir-
cular RNA can thus be largely controlled
by competition for base pairing between
the various complementary sequences.
The number of repeats, their degree of
homology, and the distance between
them are likely all key determining fac-
tors.“’  Furthermore, this competition
allows multiple circular RNAs to be gen-

erated from a single protein-coding gene
(Fig. 3D).1 2304142
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Figure 2. Minimal intronic elements that are sufficient for ZKSCAN1 circular RNA production. Using extensive mutagenesis, minimal sequences that are
sufficient for generating the circular RNA from exons 2 and 3 of human ZKSCAN1 were defined.'” In the upstream intron, 87 nt are sufficient, which
include 40 nt of an Alu element as well as the 3’ splice site (comprised of a polypyrimidine (Py) tract followed by AG) and branch point sequences. In the
downstream intron, 59 nt are sufficient, which include the 5 splice site and 36 nt of an Alu element. As the 2 Alu elements are highly complementary to
one another, the repeats can base pair and form a hairpin, which promotes backsplicing.
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Figure 3. The presence of multiple intronic repeats allows a variety of mature RNAs to be generated from a single gene. (A) Schematic of a 4-exon gene,
with intronic repeat elements depicted as red arrows. Depending on which repeats base pair to one another (denoted by blue arcs), distinct mature
RNAs are produced. (B) If the repeats flanking exon 2 base pair to one another, backsplicing (denoted in purple) is induced and a circular RNA composed
of exon 2 is generated. (C) If, however, the repeats in the second intron base pair to one another, canonical splicing occurs and a linear mRNA is pro-
duced. (D) If the repeats flanking exon 3 base pair to one another, a circular RNA composed of exon 3 is generated. Finally, base pairing between the first
and last repeats would yield a circular RNA composed of exons 2 and 3 (not shown).

Although base pairing plays a critical
role in circular RNA regulation, it is clear
that more than simple thermodynamics is
at play. We notably found that not all
repeat sequences can support circular
RNA production from plasmids.'" For
example, strengthening the hairpin
between the ZKSCAN1 minimal repeat
elements sometimes actually inhibited cir-
especially low

cularization, when
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complexity sequences (such as poly(A)
tracts) or multiple G-U wobble base pairs
were included. These data suggest that the
cell is somehow able to sense subtle distor-
tions in the hairpin formed between
the intronic repeats, likely in part via dou-
ble-stranded RNA binding proteins. Sup-
porting this idea, ADAR (adenosine
deaminase acting on RNA) enzymes,

which convert adenosines in double-
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stranded regions to inosines, were recently
shown to inhibit the production of over
80 different human circular RNAs."* By
modifying nucleotides within the intronic
repeats, ADAR activity likely causes the
hairpin between the repeats to become
unwound, thereby directly disrupting the
interactions that promote backsplicing.

As the genomic repeat landscape
varies significantly among species (e.g.,
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Alu elements are specific to primates),43
one might expect that distinct circular
RNAs are expressed in different eukar-
yotes. The ultimate function of a gene
could thus be quite different in each
organism, even if the protein-coding
exons are perfectly conserved. This has
interesting  evolutionary  implications
and suggests that insertions of transpos-
able elements into introns may have
played a critical role in modulating the
functions and/or expression of their
host genes. Surprisingly, an analysis of
human and mouse genes with clear
one-to-one orthologs revealed that if a
given human gene produces a circular
RNA, then its mouse ortholog also does
so in 66% of cases.”® The splice sites
used for backsplicing were often found
to be orthologous (~37% of cases) or
partially overlapping (~32%), indicat-
ing that human and mouse circular
RNAs are commonly generated from
the exact same exons.'>?° As the func-
tions for nearly all of these circular
RNAs are not yet known, it is unclear
if and why evolution may have conver-
gently selected for the production of
these particular circular transcripts.

L1 and Alu elements contribute to the
genetic variation among individuals and
some continue to retrotranspose, with L1
being active in the brain®* and new Alu
insertions occurring every ~20 births.*® It
is thus possible that new retrotransposi-
tion insertions into introns could change
the output of a gene from a protein-cod-
ing mRNA to a circular RNA (or vice
versa), thereby dysregulating gene func-
tion. Retrotransposition insertions have
previously been shown to cause various
including hemophilia, cystic
fibrosis, and cancer,® and it will be
insightful to determine if some intronic
insertions may affect circular RNAs to

diseases,

likewise drive various human diseases.
Although repetitive elements appear to
be necessary for the biogenesis of many
circular RNAs, there may be some notable
exceptions. In particular, it appears that
the introns that flank many Drosophila cir-
cular RNAs do not contain complemen-
tary sequences.”” This suggests that
circular RNA biogenesis in flies may often
occur via a distinct mechanism, e.g. via

the binding of splicing factors to both
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flanking introns, as has been proposed at
the Drosophila mbl locus.”> Analogous to
how base pairing between intronic repeats
can bring the intervening splice sites into
close proximity of one another, interac-
tions between proteins that bind
2 separate introns could likewise promote
backsplicing. Although not yet definitively
demonstrated, recent work suggests that
the splicing factor Quaking may bind
flanking introns and promote the produc-
tion of some circular RNAs via such a
mechanism.*®

Considering that repeat sequences
appear to be critical players in the genera-
tion of most circular RNAs in human,
mice, and C. elegans, it would be quite sur-
prising if Drosophila used a completely
distinct mechanism. Nevertheless, cells do
appear to generate a variety of other circles
via unique strategies. For example, a
completely distinct class of circular RNAs
are now known to be generated from the
introns of some protein-coding genes
when  these fail to be
debranched.* In addition, various non-
coding RNAs in archaea are processed to
yield circular RNAs through poorly
understood mechanisms.””

introns

In summary, thousands of protein-cod-
ing genes generate circular RNAs'>?%7?
and we are beginning to understand the
key elements that facilitate their biogene-
sis. Both computational analyses and plas-
mid-based experiments have pointed to a
key role for base pairing between intronic
complementary sequences in promoting
most backsplicing Therefore,
repetitive elements in introns are not sim-

events.

ply “junk” DNA but critical regulatory
sequences that modulate the functional
output of protein-coding genes. With the
development of efficient genome editing
techniques using the CRISPR/Cas9 sys-
tem,”? it will now be important to
directly modify endogenous gene loci and
test the effect of specifically adding or
removing repeat elements. An analogous
approach can be used to identify addi-
tional cis-acting elements, especially those
that may act to slow the splicing of
upstream introns so that backsplicing can
occur. Trans-acting factors that collabo-
rate with the repeats are also beginning to
be identified, and further work will reveal
detailed mechanisms that regulate circular
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RNA expression levels, especially across
different tissues.

The expression of circular RNAs has
recently been reported to generally decrease
in human cancers™ and increase as flies
age,” suggesting that their expression can be
drastically altered and potentially contribute
to pathological states. However, the biologi-
cal functions of most circular RNAs are still
completely unclear. Recently described’
circular RNA expression plasmids will serve
as valuable tools for identifying their cellular
roles as well as their interacting proteins.
Analogous to how bacterial operons func-
tion, it may be that RNA circles often work
in the same pathway as the protein produced
from its parental gene, thereby integrating
noncoding RNAs and proteins into the
same regulatory paradigms. Alternatively,
circular RNAs may allow the formation of
large RNA-protein complexes or even be
translated in some cases. In total, exon circu-
larization represents a new underappreciated
way that the transcriptome is expanded, and
future research will likely continue to pro-
vide many more unexpected insights into
their biogenesis, regulation, and functions.
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