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The transcription factor Pancreatic and Duodenal Homeobox-1 (PDX-1) plays a major role in the development and
function of pancreatic b¡cells and its mutation results in diabetes. In adult b¡cells, glucose stimulates transcription of
the insulin gene in part by regulating PDX-1 expression, stability and activity. Glucose is also thought to modulate
PDX-1 nuclear translocation but in vitro studies examining nucleo-cytoplasmic shuttling of endogenous or ectopically
expressed PDX-1 in insulin-secreting cell lines have led to conflicting results. Here we show that endogenous PDX-1
undergoes translocation from the cytoplasm to the nucleus in response to glucose in dispersed rat islets but not in
insulin-secreting MIN6, HIT-T15, or INS832/13 cells. Interestingly, however, we found that a PDX-1-GFP fusion protein
can shuttle from the cytoplasm to the nucleus in response to glucose stimulation in HIT-T15 cells. Our results suggest
that the regulation of endogenous PDX-1 sub-cellular localization by glucose is observed in primary islets and that care
should be taken when interpreting data from insulin-secreting cell lines.

Introduction

The worldwide prevalence of type 2 diabetes (T2D) has
reached epidemic proportions as a result of abundant nutrient
supply and sedentary lifestyle. T2D is characterized by fasting
hyperglycaemia resulting from insufficient insulin secretion
from pancreatic b¡cells and peripheral insulin resistance.
The transcription factor Pancreatic and Duodenal Homeo-
box-1 (PDX-1) is a homeodomain protein that activates insu-
lin gene transcription as well as other pancreas-specific genes
and plays a critical role in both pancreatic development and
adult b¡cell function (reviewed in1). Complete PDX-1 defi-
ciency results in pancreatic agenesis in mice2 and humans,3

whereas b¡cell specific disruption or heterozygous mutations
result in T2D.4 In humans, mutations in pdx-1 are associated
with the development of maturity-onset diabetes of the young
type 4 (MODY 4), a monogenic form of T2D characterized
by impaired b¡cell function.5,6 Other mutations in human

pdx-1 were shown to be associated with the development of
adult-onset forms of T2D.7-9

Glucose induces post-translational modifications of PDX-1.
These include O-GlcNAcylation,10,11 SUMOylation12 and phos-
phorylation13-25 that regulate PDX-1 protein stability,18,19,26 its
transactivation potential,27 its interaction with co-factors such as
the histone acetyl transferase p300,28 and its binding to the A
boxes on the insulin gene promoter10,11,29 to trigger insulin gene
transcription. The PDX-1 homeodomain contains a basic amino
acid sequence, RRMKWKK, that also serves as a nuclear localiza-
tion signal for PDX-1 nuclear import.30 The interest in the regu-
lation of PDX-1 nucleo-cytoplasmic shuttling stems from the
observation that b¡cell dysfunction in islets from T2D patients
correlates with the exclusion of PDX-1 from the nucleus.31,32

Similar results were obtained in rodent models of metabolic
stress, such as in db/db mice,32 high fat diet in mice,31,33 ZDF
rats34 nutrient infusion in rats,35 and in vitro oxidative and glu-
colipotoxic stress.35-38 Glucose16,35 and other factors promoting
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insulin secretion and b-cell survival, including GLP-1,31,39,40

TGF-b,41 nitric oxide42 and insulin15,43 increase nuclear PDX-1.
The glucose-dependent shuttling of PDX-1 from the cytoplasm
to the nucleus was established in vivo in glucose-infused rats35

and in vitro in cultured human islets.16 In contrast, studies using
a number of insulin-secreting cell lines showed that PDX-1 is
localized to the nuclear periphery,21,25,44 or restricted to the
nucleus26,30 regardless of the glucose concentration. Since insu-
lin-secreting cells are commonly used as in vitro models for
studying the regulation of b-cell gene expression, this study
aimed to determine whether PDX-1 nucleo-cytoplasmic shut-
tling is differently regulated by glucose in primary rat islets vs.
the commonly used insulin-secreting MIN6, HIT-T15 and
INS832/13 cell lines.

Results and Discussion

Glucose promotes the translocation of PDX-1 from the
cytoplasm to the nucleus in dispersed rat islets

We first assessed PDX-1 nucleo-cytoplasmic shuttling by
immunocytochemistry in dispersed rat islets exposed for 1, 6
and 24 h to increasing glucose concentrations (0.5 to
16.7 mM). After 1 h of treatment at 0.5 or 2.8 mM glucose,
PDX-1 abundance was similar in the cytoplasmic and nuclear
compartments (Fig. 1A and D). This distribution did not
change after 6 and 24 h of low glucose exposure (Fig. 1B, C
and D). Although not significant, there was a tendency for an
increase in nuclear PDX-1 in the presence of 5 mM glucose in
most cells as shown in Figure 1. After exposure to 16.7 mM

Figure 1. Glucose induces PDX-1 nuclear translocation in dispersed rat islets. PDX-1 (green), insulin (red) and nuclei (DAPI, blue) were visualized by
fluorescence microscopy (£20). Dispersed rat islets were exposed 1 h (A), 6 h (B) and 24 h (C) to increasing glucose concentrations as indicated. (D)
Quantification of nuclear/cytoplasmic ratio of 4 replicate experiments. Results are expressed as mean § SEM. *P � 0.05: 16.7 vs 0.5 mM glucose at all
time points. Scale bar, 10 mm.
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glucose, however, PDX-1 was located predominantly in the
nucleus already after 1 h and the distribution remained nuclear
after 6 and 24 h (Fig. 1; p � 0.05 at 16.7 vs. 0.5 mM glucose
for all 3 time points). These results demonstrate that in dis-
persed rat islets, PDX-1 undergoes a cytoplasmic to nuclear shift
in response to increasing glucose concentrations. These results
are similar to previous reports in human islets ex vivo16 and in
glucose-infused rats in vivo.35

PDX-1 subcellular localization is not regulated by glucose in
MIN6 cells

To determine whether insulin-secreting cells respond simi-
larly to glucose as dispersed rat islets, the murine insulinoma
MIN6 cell line was exposed for 1, 6 and 24 h to increasing glu-
cose concentrations (0.5 to 16 mM) and endogenous PDX-1
sub-cellular localization was assessed as described above. PDX-1
immunostaining was already predominantly detected in the
nucleus at 0.5 and 2 mM glucose and this pattern was main-
tained at 5, 11 and 16 mM glucose at all time points examined
(Fig. 2). Even after 24 h of exposure to a low glucose

concentration (0.5 mM) which started to trigger cell death (as
shown by the presence of pyknotic nuclei (Fig. 2C)), PDX-1
was largely nuclear. We asked whether the constitutive nuclear
localization of Pdx-1 in MIN6 was due to glucose hyper-respon-
siveness. To test this we analyzed glucose-stimulated insulin
secretion over the same range of glucose concentrations (Suppl.
Fig. 1A) and observed that glucose dose-dependently stimulates
insulin secretion in MIN6 cells in a similar manner as in iso-
lated islets, as previously published.45 Nuclear localization of
Pdx-1 in MIN6 cells is consistent with our previous observa-
tion26 and in accordance with another reported study using an
exogenous PDX-1-GFP fusion protein.30 However, other stud-
ies using MIN6 cells reported endogenous PDX-1 in the cyto-
plasm at low glucose levels and an increase in the nucleo-
cytoplasmic ratio in the presence of high glucose.15,16,34 In
some cases the discrepancy with our data may be due to differ-
ences in experimental approaches. For example, Macfarlane
et al.16 measured the localization of specific PDX-1 isoforms by
Western blotting. Rafiq et al.14 found that increasing glucose
levels from 3 to 30 mM led to a small increase in the nuclear

Figure 2. PDX-1 is predominantly localized in the nucleus in MIN6 cells independent of the glucose concentration. PDX-1 (green), insulin (red) and
nuclei (DAPI, blue) were visualized by fluorescence microscopy (£20). MIN6 cells were exposed 1 h (A), 6 h (B) and 24 h (C) to increasing glucose concen-
trations as indicated. Arrows indicate pyknotic nuclei. (D) Quantification of nuclear/cytoplasmic ratio of 3 replicate experiments. Results are expressed as
mean § SEM. Scale bar, 10 mm.
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fraction of endogenous PDX-1. Although this differs from our
results, we did not test glucose concentrations above the physio-
logical range.

Glucose regulates exogenous but not endogenous PDX-1
nuclear translocation in HIT-T15 cells

To investigate the nucleo-cytoplasmic shuttling of PDX-1
in another rodent insulin-secreting cell line, hamster HIT-T15
cells were exposed for 1, 6 and 24 h to increasing glucose con-
centrations (0.1 to 11 mM). The glucose concentration range
was chosen based on results from insulin secretion assays
which revealed a dose-dependent but left-shifted (0.1–
16 mM) increase in insulin secretion (Suppl. Fig. 1B), as pre-
viously observed.46 Similar to our observation in MIN6 cells
(Fig. 2), PDX-1 was predominantly localized in the nucleus of
HIT-T15 cells following exposure to low glucose (0.1 mM) at
all time points, and increasing the glucose concentration had
no detectable effect on PDX-1 localization (Fig. 3A-D). As

numerous studies have described the shuttling of ectopically
expressed PDX-1 fusion proteins from the cytoplasm or
nuclear periphery to the nucleoplasm in response to increasing
glucose concentrations,14,21,34,44 we tested whether this could
be detected in HIT-T15 cells under the same conditions used
to study endogenous PDX-1. Similar to our previous results,38

and unlike the endogenous protein (Fig. 3A-D), exogenous
PDX-1 was predominantly expressed at the nuclear periphery
and in the cytoplasm of HIT-T15 at low glucose concentra-
tions and translocated to the nucleus in response to high glu-
cose (Fig. 3E-F). This indicates that the mechanisms
controlling glucose-dependent PDX-1 nuclear translocation
are functional in HIT-T15 cells but are not operative with the
endogenous protein. We speculate that nuclear import/export
or retention signals, such as HDAC1 and HDAC225 and
Importin b 1,34 may become saturated by overexpression of
exogenous PDX-1 resulting in accumulation of the protein in
the cytoplasm/nuclear periphery.

Figure 3. In HIT-T15 cells, endogenous PDX-1 is localized to the nucleus independent of the glucose concentration, whereas ectopically expressed PDX-1
shuttles from the cytoplasm to the nucleus in a glucose-dependent manner. PDX-1 (green), insulin (red) and nuclei (DAPI, blue) were visualized by fluo-
rescence microscopy (£20). HIT-T15 cells were exposed 1 h (A), 6 h (B) and 24 h (C) to increasing glucose concentrations as indicated. (D) Quantification
of nuclear/cytoplasmic ratio of 3 replicate experiments. Results are expressed as mean § SEM. (E) HIT-T15 cells were transfected with pcDNA3.1-PDX-1-
GFP plasmid and exposed for 24 h to 0.1 or 5 mM glucose. PDX-1 (GFP, green) and nuclei (DAPI, blue) were visualized by confocal microscopy. (F) Quan-
tification of nuclear/cytoplasmic ratio of 3 replicate experiments. Results are expressed as mean§ SEM. **P � 0.01. Scale bar, 10 mm.
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PDX-1 subcellular localization is not regulated by glucose in
INS832/13 cells

As both MIN647 and HIT-T1548 cell lines were established by
expression of the SV40 T antigen in islets, we wanted to exclude
the possibility that T antigen transformation interferes with glu-
cose-dependent nucleo-cytoplasmic shuttling of PDX-1. We ana-
lyzed PDX-1 localization in response to glucose in a clonal
derivative of the X-ray-induced rat insulinoma INS-1 cells,49

INS832/13, that was selected for its glucose-stimulated insulin
secretory responsiveness.50 INS832/13 cells were exposed for 1, 6
and 24 h to increasing glucose concentrations (0.5 to 16 mM).
The glucose concentration range was chosen based on results from
insulin secretion assays which revealed a dose-dependent (0.1–
16 mM) increase in insulin secretion (Suppl. Fig. 1C), as previ-
ously described.50 Similar to our observation in MIN6 (Fig. 2)
and HIT-T15 (Fig. 3) cells, PDX-1 was predominantly localized
in the nucleus of INS832/13 cells following exposure to low glu-
cose (0.5 mM) at all time points, and increasing the glucose con-
centration had no significant effect on PDX-1 localization
(Fig. 4). Although a report by Sayo et al.41 found that glucose

increased nuclear PDX-1 in the parental INS-1 cells, our data are
not inconsistent as glucose also increased total cellular PDX-1 and
the shuttling of PDX-1 was not addressed in that study.

PDX-1 localization is affected by oxidative stress in dispersed
rat islets, MIN6 and INS832/13 cells but not in HIT-T15 cells

PDX-1 is excluded from the nucleus of b cells in islets isolated
from rats infused with glucose C Intralipid,35 from db/db mice or
mice fed a high fat – high sucrose diet31 and in ZDF rats51 and in
vitro in islets exposed to glucose and palmitate.37 Reactive oxygen
species are thought to be the main trigger as oxidative stress leads
to PDX-1 nuclear exclusion in HIT-T15 cells37 and anti-oxidant
treatment of ZDF rats restores PDX-1 nuclear localization.46 To
investigate whether PDX-1 nucleo-cytoplasmic shuttling remains
sensitive to oxidative stress, we exposed dispersed rat islets
(Fig. 5A) or MIN6, INS832/13 and HIT-T15 cells (Fig. 5B) to
50 mM H2O2 in the presence of 16.7 mM glucose for 1 h and
examined PDX-1 localization. As a positive control for PDX-1
nuclear exclusion, palmitate prevented glucose-induced PDX-1
nuclear import in isolated rat islets (compare Fig. 5A to Fig. 1C)

Figure 4. PDX-1 is predominantly localized in the nucleus in INS832/13 cells independent of the glucose concentration. PDX-1 (green), insulin
(red) and nuclei (DAPI, blue) were visualized by fluorescence microscopy (£20). INS832/13 cells were exposed 1 h (A), 6 h (B) and 24 h (C) to increasing
glucose concentrations as indicated. (D) Quantification of nuclear/cytoplasmic ratio of 3 replicate experiments. Results are expressed as mean § SEM.
Scale bar, 10 mm.
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as shown previously.37 H2O2 treatment led to PDX-1 nuclear
exclusion in dispersed rat islets (compare Fig. 5A to Fig. 1A) and
MIN6 cells (compare Fig. 5B to Fig. 2A). H2O2 treatment of
INS832/13 led to an approximately 3-fold decrease in the
nuclear/cytoplasmic ratio of PDX-1 (0.66 § 0.08 vs 2.1 § 0.24,
p < 0 .01; compare Fig. 5B to Fig. 4A). Surprisingly, H2O2

exposure did not affect PDX-1 localization in HIT-T15 cells
(compare Fig. 5B to Fig. 3A), in contrast to a previous study.37

This discrepancy may be due to the difference in the passage
number of HIT-T15 which may affect their susceptibility to oxi-
dative stress. While ours were used at 78–86 passages, cells used
by Kawamori et al.37 were of higher passages.

In summary, these data show that PDX-1 nuclear localiza-
tion is regulated by glucose in dispersed rat islets, consistent
with previous ex vivo16 and in vivo studies.35 In contrast, using
the same experimental conditions we found endogenous PDX-1
sub-cellular localization to be independent of glucose in the
insulin-secreting MIN6, HIT-T15 and INS832/13 cells. These
data highlight a defect in the mechanism regulating the localiza-
tion of PDX-1 and its glucose responsiveness in a number of
commonly used b-cell lines which we speculate may have arisen
during the transformation process. In support of this, PDX-1 is
highly expressed in human pancreatic tumors52-54 and controls
their oncogenic properties.55-57 It would be interesting to exam-
ine the localization of PDX-1 and its glucose responsiveness in
insulin-secreting cell lines under restricted growth conditions.
In conclusion, these results raise a note of caution regarding the
use of transformed insulin-secreting cell lines to examine the
regulation of PDX-1 nucleo-cytoplasmic shuttling.

Materials and Methods

Generation of PDX-1-GFP
expression plasmid

A pcDNA3.1-PDX-1-GFP plasmid
was generated as previously described.38,44

Briefly, after stop codon removal, the
mouse PDX-1-cMyc sequence was
excised from the pcDNA3.1-PDX-1-
cMyc plasmid (provided by Dr. Guy Rut-
ter, Imperial College London, London,
United Kingdom) using Hind III and
Kpn I and re-inserted into the mamma-
lian expression vector pcDNA3.1-GFP
provided by Dr. Marc Prentki (Montreal
Diabetes Research Center, CRCHUM,
Montreal, QC, Canada).

Rat islet isolation, dispersion and
glucose stimulation

All procedures using animals were
approved by the Institutional Commit-
tee for the Protection of Animals at the
Center Hospitalier de l’Universit�e de
Montr�eal. 250–275 g male Wistar rats
(Charles River) were housed on a 12 h
light/dark cycle with free access to water

and standard laboratory chow. Islets were isolated as previously
described.35 After overnight recovery, islets were dispersed by
treatment with Trypsin – 0.05 EDTA (Invitrogen) for 5 min
and plated on poly-L-lysine-coated (Sigma) coverslips. Dis-
persed islets were cultured in RPMI-1640 media (Invitrogen)
supplemented with 10 % Fetal Bovine Serum (FBS; Invitrogen)
and 5.5 mM glucose for 24 h. Media was then changed to 0.5
% fatty acid-free BSA (Equitech-Bio) and 2.8 mM glucose for
2 h after which cells were treated with glucose in the presence
or absence of palmitate (Sigma) or H2O2 (Invitrogen) as
described in RESULTS.

MIN6, INS832/13 and HIT-T15 cell culture, transfection
and glucose stimulation

<!——>MIN6 cells (passage 25–30; provided by Dr. Jun-ichi
Miyazaki, Osaka University Graduate School of Medicine, Suita,
Osaka, Japan) were maintained in Hyclone DMEM (Thermo-
Fisher Scientific) containing 25 mM glucose and supplemented
with 10 % FBS and 0.005 % b-mercaptoethanol. INS832/13 cells
(passages 50–56; provided by Dr. Christopher Newgard, Duke
University School of Medicine, Durham, NC) were maintained in
RPMI-1640 containing 11 mM glucose and supplemented with
10 % FBS. For PDX-1 localization studies MIN6 and INS832/13
culture medium was changed to 5.5 mM glucose overnight then
to 2 mM glucose and 0.5 % BSA for an additional 2 h after
which cells were exposed to glucose in the presence or absence of
H2O2 as described in RESULTS. For MIN6 static insulin secretion
assays cells were cultured overnight in culture medium containing

Figure 5. PDX-1 localization is affected by oxidative stress in dispersed rat islets and MIN6 and
INS832/13 cells but not in HIT-T15 cells. PDX-1 (green), insulin (red) and nuclei (DAPI, blue) were visu-
alized by fluorescence microscopy (£20). (A) Dispersed rat islets were exposed to 16.7 mM glucose
in the presence of 50 mM H2O2 for 1h or 0.5 mM palmitate (PA) for 24 h. (B) MIN6, INS832/13 (INS)
and HIT-T15 (HIT) cells were exposed to 16.7 mM glucose in the presence of 50 mM H2O2 for 1 h.
Arrows indicate pyknotic nuclei. Scale bar, 10 mm.
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5.5 mM glucose and then pre-incubated twice for 30 min in
Krebs Ringer bicarbonate HEPES buffer (KRBH) C 0.1 % BSA
supplemented with 1 mM glucose prior to stimulation with 1, 5,
9, 12, 16 or 20 mM glucose. For INS832/13 static insulin secre-
tion assays cells were pre-incubated in culture medium containing
1 mM glucose for 2 hours and then in KRBH C 0.1 % BSA sup-
plemented with 1 mM glucose for 1 hour prior to stimulation
with 1, 2, 5, 11 and 16 mM glucose. Each condition was run in
triplicate. Intracellular insulin content was measured after acid-
alcohol extraction. Insulin was quantified using an AlphaLISA
immunoassay kit (PerkinElmer). HIT-T15 cells (passages 74–86;
provided by Dr. R. Paul Robertson, Pacific Northwest Diabetes
Research Institute, Seattle, WA, USA) were maintained in RPMI-
1640 containing 11.1 mM glucose and supplemented with 10 %
FBS. Medium was changed to 1 mM glucose for 24 h then to
0.1 mM glucose C 0.5 % BSA for an additional 2 h prior to
treatment with glucose in the presence or absence of H2O2 as
described in RESULTS. For static insulin secretion assays cells were
cultured overnight in 0.1 mM glucose and then pre-incubated
twice for 30 min in KRBH C 0.1 % BSA supplemented with
0.1 mM glucose prior to stimulation with either 0.1, 0.5, 1, 1.5,
2, 5, 11 or 16 mM glucose and treated as described above. Trans-
fection was performed using Lipofectamine 2000 (Invitrogen) as
per the manufacturer’s instructions. Following transfection in
RPMI-1640 supplemented with 11.1mM glucose and 10 % FBS
the medium was changed to 1 mM glucose and after 24 hours to
0.1 mM glucose C 0.5 % BSA for an additional 2 h prior to
treatment with either 0.1 or 5 mM glucose.

Immunohistochemistry
PDX-1 immunostaining was performed as previously

described.26 Cells were incubated with rabbit anti-PDX-1
(Abcam) and guinea pig anti-insulin (Dako) antibodies followed
by Alexa Fluor� 488 (Invitrogen) and Rhodamine (Jackson
ImmunoResearch) fluorophore-conjugated secondary antibodies.
Coverslips were then mounted using VectaShield mounting

media containing DAPI for nuclei staining (VectorLab). Images
were acquired and quantified using a fluorescence microscope
(£20) and Zen Imaging Software (Carl Zeiss). Quantification
was performed on 3 acquired images of each of the 3–4 indepen-
dent experiments, and counting 5 cells per image. For exogenous
PDX-1 immunostaining, GFP signal was visualized using a Leica
confocal microscope (£40).

Statistics
Results are expressed as mean § SEM and significance was

tested using Student’s paired t test or a 2-way ANOVA with Bon-
ferroni post hoc adjustment for multiple comparisons, as appro-
priate, using GraphPad Instat (GraphPad Software). A value of
p < 0.05 was considered significant.
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