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Abstract

The concept of frailty plays a major role in the statistical field of survival analysis. Frailty vari-

ation refers to differences in risk between individuals which go beyond known or measured

risk factors. In other words, frailty variation is unobserved heterogeneity. Although under-

standing frailty is of interest in its own right, the literature on survival analysis has demon-

strated that existence of frailty variation can lead to surprising artefacts in statistical estima-

tion that are important to examine. We present literature that demonstrates the presence

and significance of frailty variation between individuals. We discuss the practical content of

frailty variation, and show the link between frailty and biological concepts like (epi)genetics

and heterogeneity in disease risk. There are numerous suggestions in the literature that a

good deal of this variation may be due to randomness, in addition to genetic and/or environ-

mental factors. Heterogeneity often manifests itself as clustering of cases in families more

than would be expected by chance. We emphasize that apparently moderate familial relative

risks can only be explained by strong underlying variation in disease risk between families

and individuals. Finally, we highlight the potential impact of frailty variation in the interpret-

ation of standard epidemiological measures such as hazard and incidence rates.
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Key Messages

• Variation in risk of disease often goes far beyond what is captured by measured risk factors.

• Heterogeneity in risk may be established early in life, and stochastic variation in these processes could be a major

contributor in this regard.

• Even a moderate familial relative risk points to the existence of large variations in disease risk between families, and

Individuals, across the population.

• Failing to take into account the unobserved heterogeneity between individuals may lead to erroneous interpretations

of standard epidemiological measures such as age-incidence curves and hazard ratios.
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Introduction

In epidemiology and clinical science, it is often tacitly

assumed that the risk of a certain disease is similar among

individuals across the population at equal levels of known

risk factors. It is often presumed, for instance, that all indi-

viduals are vulnerable to the same risk factors, and to the

same degree. Differences between individuals tend to be

ignored unless they can be expressed in terms of known

risk factors such as known genetic properties. However,

the fact of the matter is that individuals are generally

highly dissimilar also for many unknown, or just partly

known, reasons. Indeed, the extent of this heterogeneity is

probably not generally appreciated.

Heterogeneity which is unknown, or not represented in

available data, is often referred to as frailty, a quantity that

varies between individuals. The term frailty comes from

the statistical field of survival analysis, where there is a

strong interest in this type of heterogeneity. Frailty is usu-

ally modelled by assuming that the hazard rate (baseline

hazard) for an average individual, aðtÞ, is multiplied by a

frailty factor Z that renders the level for a specific individ-

ual, i.e. the individual hazard rate is;

k tð Þ ¼ ZaðtÞ:

When we integrate out the variation in Z to get the (ob-

servable) population hazard rate, the resultant function is

quite different from the baseline hazard a(t). A number of

various distributions exists for the frailty Z.1,2 Note that

the baseline hazard may be a function of observed individ-

ual covariates, e.g. through a Cox model, and that includ-

ing a frailty term may improve the fit of such a model.3

A number of diseases exhibit incidence rates that peak

at young ages, including cancers like childhood leukaemia

and Hodgkin lymphoma, but also schizophrenia, which

has recently been analysed from a frailty point of view.4 In

several cases frailty variation is a reasonable explanation

for an early peak in incidence, especially when the disease

has a strong heritability, which is the case for diseases like

schizophrenia and testicular cancer. The frailty approach

has yielded particularly fruitful insights for testicular can-

cer.5–8 Furthermore, the so-called frailty models form a

basis for the analysis of familial association in cancer

incidence.7–9

One goal of the present paper is to point out the ubi-

quity of heterogeneity, or varying frailty. We shall also em-

phasize the role of stochasticity. Furthermore, we will

discuss how important indications of frailty variation may

be deduced from data on familial disease association.

Indeed, moderate familial association implies surprisingly

strong variation in risk between individual families.

Although understanding frailty variation is important in its

own right, it may also be essential in order to correctly in-

terpret statistical analyses in epidemiological studies.

Finally, we will cover an issue that has been pointed out in

the statistical literature: that not taking into account unob-

served frailty variation in statistical analyses may lead to

misleading comparisons of hazard rates and incidence rates

resulting in, among other things, an artificial cross-over

effect.

Heterogeneity between individuals may
be high

Individual variation in susceptibility

It is often obvious that disease risk is a fluid phenomenon,

dependent on environmental and lifestyle risk factors,

genes, age and the country of residence, among other

things. For example, the risk of being diagnosed with colo-

rectal cancer (CRC) varies widely across different coun-

tries; it has increased sharply (in fact more than tripled) in

the past few decades in many industrialized countries, and

it varies substantially between different countries world-

wide. This means that the risk of CRC is not a given quan-

tity, but rather something that varies widely. It would

follow that the individual risk of CRC is also a fluid

phenomenon; that it varies considerably between individ-

uals even when the outer circumstances are similar.

Furthermore, there are large differences in risk across re-

gions (Figure 1).10 Therefore, it seems logical that the risk

will not be homogeneous within regions (especially given

the arbitrariness of many borders).11 In short, the variation

in risk between regions strongly suggests a considerable

variation within regions. This kind of variation has been

clearly demonstrated for the USA with regard to the de-

pendence on race of CRC incidence.12 However, it is

highly likely that there are other variations based on both

known and unknown risk factors. Large variations in the

susceptibility to CRC have been estimated in Norway,13

and it has been estimated that only 12% of the US popula-

tion is susceptible to colon cancer.14

Some of the biomedical literature has indicated that

there is a high degree of variation in individual cancer

susceptibility, thereby supportingthe presence of frailty

variation. An interesting paper is that of Balmain et al.15

where they indicate a strong variation in susceptibility to

breast cancer. They studied a population without high-risk

individuals (individuals with BRCA1 and BRCA2 muta-

tions excluded), and still suggest a 40-fold difference in the

risk of breast cancer between the top 20% and bottom

20% of the study population. Their model also suggests

that more than 50% of cancers occur in the 12% of the

population that is most susceptible. Peto and Mack16
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reached similar conclusions by studying the relatives of

breast cancer patients.They observed a very strong familial

risk in monozygotic twins which could only be explained

by a large individual variation in risk. They make the fol-

lowing statement: ‘Our most surprising conclusion is that a

high proportion of all breast cancers, and perhaps the ma-

jority, arise in women at very high risk’. Also, the increased

risk of a another breast malignancy after ductal carcinoma

in situ of the breast, even after adjustment for type of treat-

ment, points to a large variation between individuals in

susceptibility to this disease.17

Regarding CRC, Win et al.18 suggest that ‘the risk of

developing CRC varies approximately 20-fold between the

people in the lowest quartile (average 1.25% lifetime risk

of CRC) vs the highest quartile for familial risk profile

(average 25% risk)’. Another study of colorectal cancer in

DNA mismatch repair gene mutation carriers showed a

U-formed distribution in risk distinguishing a high-risk

group from a moderate risk-group.19

It is important to be aware that even for cancers with

strong attributable risk factors, frailty remains a large

component. In lung cancer, for instance, there are strong

Figure 1. Age-standardized rates (ASR) of colorectal cancer, standardized with respect to the world (W) population, in various regions for 2012.

Picture constructed by Globocan10.
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indications that some people are much more vulnerable to

the damage inflicted by smoking than others, with just

10–15% of smokers developing lung cancer.20

Susceptibility may be established early in life

The notion of ‘early life programming’ has become popu-

lar. This idea was formulated in the Forsdahl-Barker

hypothesis, which states that the risk of many diseases is

strongly influenced by what happens very early in life, e.g.

at or prior to birth. Forsdahl21 showed a strong correlation

between mortality rates for arteriosclerotic heart disease in

people aged 40–69 years, and infant mortality in the same

birth cohorts within Norwegian counties. Earlier works in-

clude that of Ravelli et al.22who observed babies born to

women who were pregnant during the Dutch famine. They

found that the weight of these children later in life de-

pended on which trimester the famine affected. Kermack

et al. found an association between childhood and adult

mortality for different birth cohorts.23,24 Barker et al.

studied heart disease and found that areas in England that

had the highest coronary heart disease mortality in the

1980s also had the highest child mortality rates 70 years

earlier.25,26 Since then, many papers have been published

indicating a relationship between early life conditions and

disease risk later in life,27 including the recent paper

by Eriksson et al.28 who assert in the title that ‘Boys live

dangerously in the womb’.

Epigenetics is the study of changes in gene expression that

are not caused by alterations in the nucleotide sequence of

the genome, and examples of cellular mechanisms producing

such changes are DNA methylation and histone modifica-

tion. Epigenetic processes are involved in both mitotic and

meiotic cell division, as discussed by Davey Smith.29 In the

former, they ensure the transmission of cellular traits, essen-

tial for development from the pluripotent zygote to the

formed organism. Although it is not clearly established what

happens epigenetically during meiosis, these mechanisms

clearly play a role in mediating transgenerational inheritance

as addressed by Heard and Martienssen.30

Forsdahl-Barker type effects have been tied to such epi-

genetic alterations.31,32 Painter et al. showed that the chil-

dren of those exposed to the Dutch famine in utero during

World War II (WWII) were also at increased risk for ill

health, which indicates that epigenetic effects in utero can

even have transgenerational consequences.33 Studies from

The Netherlands and Scandinavia have shown a decreased

risk of testicular cancer for birth cohorts born during

WWII compared to those born before and after.34,35

All these examples suggest that epigenetic alterations

early in life may lead to a large degree of heterogeneity

between adult individuals in a population.

Different types of variation

Figure 2 illustrates various ways in which frailty, Z, can be

distributed between individuals. Panel 1 indicates a frailty

that is quite similar across individuals, with some variation.

Panel 2 shows a situation where most individuals have a

relatively similar frailty, but there are some individuals who

deviate quite a lot (the upper tail). This is expressed even

more clearly in panel 3, where many individuals have a

frailty close to zero whereas there are a number of individ-

uals with high frailty. An even stronger variation is illus-

trated in panel 4, where most individuals have frailty close

to zero but some individuals have a very high frailty. All

these types of variation could actually occur. The examples

given in this paper show that even the types of variation

shown in panels 3 and 4 could be common. However, an-

other issue is how frailty develops over time. One view is

that there is a rather small variation in frailty at an early

age, which increases over time as the result of the varying

stresses of life. An alternative view argues that much of the

variation in frailty between individuals is determined very

early in life, maybe even prior to birth.

Genetic variation and rare variants

Over past years, genome-wide association (GWA) studies

have led to new discoveries about genes and pathways

involved in common diseases and other complex traits.36

However, most of the associated single nucleotide poly-

morphisms (SNPs) have small effect sizes and the proportion

of heritability is modest, which has led people to think that

rare mutations might be responsible for many diseases.37

Rare gene combinations are difficult to discover in GWA

studies, which may explain the apparent lack of genetic ef-

fects.38,39 Also, other authors explain how disease suscepti-

bility may be an effect of common low-penetrance genes or

rare gene combinations.40,41 On the other hand, there are

examples of common SNPs explaining a large fraction of

the heritability of complex traits in human populations,

such as height, by considering all SNPs simultaneously.42

A simple polygenic model, where the risk (or liability) is

a linear combination of a (possibly large) number of fac-

tors with no single factor dominating, will often be

assumed to give a normally distributed risk like that in

panel 1 of Figure 2. On the other hand, rare variants make

it more likely that we will get skewed variations of the type

seen in panels 3 and 4.41

Heterogeneity may be due to stochastic
processes

Randomness and chaos

Heterogeneity, or varying frailty, between individuals may

have a number of different explanations: environment,
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genetics or epigenetics; or it may be a purely stochastic

phenomenon. There is a growing recognition in biology

that both stochastic variation and chaotic variation are im-

portant. By stochastic variation we mean a purely random

phenomenon, but it is well known that unpredictable vari-

ation may also be produced by deterministic mathematical

relations if they are nonlinear; this is often termed chaos.

This mathematical theory and its implication for biology

and other fields are discussed in detail in a book by

Strogatz.43 A characteristic of the chaos phenomenon is

that small variations in starting conditions may yield very

big differences in the end product; even simple nonlinear

equations may have this effect. Hence, dynamic systems

may develop in a very complex and unpredictable way.

This is seen in many fields, like meteorology, physics and

economics and is likely to play a considerable role in biol-

ogy as well. The sensitive dependence on initial conditions

is often popularized by the term ‘butterfly effect’, where

one imagines that a butterfly flapping its wings may pro-

duce a hurricane on the other side of the world several

weeks later. Although randomness and chaos are different

mathematical phenomena, they are also related and a mix-

ture of both might be present.Often they cannot be clearly

distinguished. In general, random and chaotic variation is

to be expected on purely mathematical principles.

Many studies point to large individual differences that

do not have obvious explanations, where the above discus-

sion could be relevant. Kirkwood and Finch44 show that

even genetically identical (i.e. isogenic) worms have great

variation in their lifetimes. They stress the random and un-

predictable nature of cell damage that occurs with ageing.

Epigenetic factors are also likely contributors to these

time-dependent processes.

Le and Cheng45 studied the problem of why genetically

identical cells in the body vary widely in their storage of

fat, even when there is no difference in the expression of

the particular genes that affect this storage. They found

that the differences between cells were due to variation

occurring in a cascade of events within an insulin-signal-

ling pathway. These variations were slight at the beginning

of the cascade, but led to very different results at the end.

Possibly this is an example of chaos; cascade phenomena

Figure 2. Various types of possible distributions of the frailty (unexplained risk), Z , at an early age. The panels illustrate: (1) small variation in frailty

between individuals, (2) large group have moderate frailty, and a smaller group of individuals have a high frailty, (3) very skewed: many individuals

have a low frailty and a small group have a high frailty, (4) most individuals have close to zero frailty and a few individuals have a high frailty.
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would be expected to be nonlinear with complex feedback

dynamics.

In an interesting Nature letter, Frank and Nowak46 sug-

gest a model where random mutations at a very young age

can produce a developmental disposition to cancer.The

idea is that during the gestational phase, stem cells may

mutate and then multiply randomly with long-lasting ef-

fects. If the mutation rate is high enough, this initial ran-

dom variation could be a dominant feature in later

life.47,48

A classic paper by Gärtner, on the importance of appar-

ently random variation in biology, was recently reprinted

in the International Journal of Epidemiology with a series

of commentaries that discuss the nature of this variation,

whether it is due for example to epigenetic effects, and

whether nonlinearity could be a source.49–56

The examples given here show that great individual

variation in genetically identical organisms may simply be

an accumulation of purely random variation combined

with nonlinear dynamics.

Davey Smith offered a fascinating discussion of the im-

portance of randomness in epidemiology.57 He asserted

that epidemiology cannot capture the pervasive random-

ness which averages out at the population level. Our point

here, though, is that when time is considered, there are tell-

tale indications of random variation.

Epigenetic stochasticity

During recent years, there has been growing recognition

that environmental exposure affects cancer susceptibility

through epigenetic changes, in addition to the traditional

gene-environment interactions that can promote mutations.

This is particularly relevant in the developmental origins of

health and disease hypothesis.58 Some authors argue for a

paradigm shift, where the old view on the importance of

DNA mutations is down-weighted and supplemented by the

modern view of epigenetic modifications.59 There are, how-

ever, indications of an important stochastic component to

these modifications, and it has even been speculated that the

majority of important epigenetic changes may not be due to

the environment, but to random events early in life.59 This

might explain the large variation that is often observed be-

tween genetically identical individuals.60

Familial cancer risk points to large individual
heterogeneity

For many diseases there is a familial association in risk

more than can be explained by chance. A surprising and

counter-intuitive issue is that even a moderate familial as-

sociation points towards a large variation in risk between

families. Hence, the existence of a familial association is

another argument for the presence of considerable individ-

ual heterogeneity in risk.

There is generally a familial association when it comes

to cancer risk. For example, in breast cancer some muta-

tions in the genes BRCA1 and BRCA2 confer a very high

risk in the specific family. But even in the absence of such

‘important’ genes, sizeable familial association is still

observed. Johns and Houlston61 pointed out that having a

first-degree relative with CRC is associated with more than

a doubling of one’s risk for the disease, whereas the risk is

increased more than 4-fold when one has two first-degree

relatives with CRC. The risk of testicular cancer for a

brother of a case is increased about 6-fold.7,8 Tumours of

the nervous system also show a strong heritability (standar-

dized incidence ratios around 2, but up to 27 for the rare

multiplex families).62

Even familial risks that appear modest, like the relative

risk of about 2 seen for relatives of breast or colon cancer

patients, still imply a large variation in risk between indi-

viduals.62–64 This has also been pointed out by Moger

et al.7 and by Aalen65 in a cardiovascular disease setting.

In fact the variation in individual risk when even small

familial risks are observed will typically be of the type in

panels 3 and 4 of Figure 2. An interesting quote from

Hopper63 stresses this surprising fact:

Even for a disease for which there is only what one

might consider in epidemiological terms ‘modest’ famil-

ial aggregation (such as a 2-fold increased risk for close

relatives of affected), people of the same age and sex

must differ greatly in their familial risks of disease (e.g.

a 20-fold or more difference in risk between the quarter

of the population at lowest familial risk and the quarter

of the population at greatest familial risk). This familial

risk gradient is in addition to differences due to ‘non-

familial’ environmental or lifestyle factors that are

specific to individuals. Finding the causes of even a

modest proportion of familial aggregation of a disease

could be a major step in understanding the causes of the

disease itself.

Let us consider a very simple situation: assume that the

population is divided into two groups of equal size, and

such that the probability of acquiring a specific disease is

1% in one group and 20% in the other. All the members of

a given family belong to the same group, be it the high-risk

or low-risk group. Consider that the familial relative risk is

defined as follows: the conditional probability of develop-

ing the disease if a specific family member has acquired it,

divided by the average risk of getting the disease. In our

example the familial relative risk equals 1.82. Hence a rela-

tive risk of 20 at the individual level translates into a very

modest familial risk, just as suggested by Hopper.63
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Since familial relationships are important for disease

risk, it is useful to use study designs that to some extent

control for such relationships. Within-pair twin studies are

useful in this regard.66

Statistical models for familial risk

In order to get a deeper understanding, one has to consider

statistical models. The familial risk association depends on

two conditions, namely the correlation between the risk

factors within a family, and the variation in risk within the

population associated with these factors. Assume that the

risk depends exponentially on normally distributed risk fac-

tors with a correlation q, and that s denotes the relative risk

associated with a change in the risk factor from mean –2

standard deviations (SD) to meanþ 2SD. The familial rela-

tive risk, r, associated with a diseased sibling is given by:

r ¼ exp q ln sð Þ2=16
n o

; (1)

which is a special case of a more general formula given by

Aalen.65 Assume for instance that q¼ 0.5 which is a very

strong familial correlation. Then formula (1) as a function

of s is plotted in Figure 3. One sees that even for s¼ 10,

which represents a very strong effect of the risk factor, the

value of r is still less than 1.2. Hence, for simple polygen-

etic inheritance at the risk factor level, the familial relative

risk associated with even strong risk factors is very

moderate.

In practice, familial association will have several sour-

ces, partly genetic and partly a shared environment or cul-

ture, or attitude toward various risk behaviours. It can be

shown that known environmental influences contribute

only very slightly to the observed familial risk association.

However, measured risk factors could be poor surrogates

for risk factors that are stronger, more strongly familial,

and the effect could be somewhat prone to measurement

error, for example. 64

Formula (1) presumes a normal distribution of the risk

factor(s), which one would usually assume for simple poly-

genetic inheritance. Some skewness might be introduced,

which might appear more realistic if some genes have a

stronger effect than others, for example due to higher pene-

trance. To investigate the effect of introducing additional

skewness in the distribution of the risk factor(s) into the

model, we shall assume that two individuals have a com-

mon risk component which is gamma distributed with

shape parameter d. Following Aalen,65 the modified famil-

ial relative risk, rF, is given by:

rF ¼ 1þ ln r

d� 2ðd ln rÞ1=2

( )d

: (2)

Note that when the shape parameter d goes to infinity, this

expression will converge to r (because an infinite d implies a

normal distribution for the common component). Plots of

formula (2) as a function of d and r are given in Figure 4.

The major deviation occurs for d ¼ 1 which corresponds to

Figure 3. The familial relative risk, r, associated with a diseased sibling

as a function of s according to formula (1) in the text, where s denotes

the relative risk associated with a change in a risk factor from mean

minus two standard deviations to mean plus two standard deviations.

The familial correlation, q, is set to 0.5. Based on normally distributed

variation in risk.

Figure 4. The modified familial relative risk, rF , associated with a dis-

eased sibling as a function of r according to formula (2) in the text,

where the two individuals in the family have a common risk component

that is gamma distributed with shape parameter d. Here r is the familial

relative risk from formula (1), that is the familial relative risk without the

skewness introduced by the common, gamma distributed component.

rF is plotted for given values of d. Note that d!1 implies rF ¼ r .
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an exponential distribution of the common familial risk.

This represents a high degree of skewness (Figure 5).

It means that members of a minority of families have

a much higher risk than others. However, the familial

relative risk still appears to be moderate. Figure 5 also in-

cludes an illustration of an even more skewed gamma

distribution.

Similar results are presented in the work of Moger

et al.7 where a totally different mathematical model also

indicated that even a very skewed familial frailty distribu-

tion would result in very moderate familial relative risks.

The paper presents the following useful formula:

R ¼ CV2 þ 1

where CV is the coefficient of variation of the probability

of being susceptible, as it varies between families, and R is

the relative risk of another member of the family acquiring

the disease if there is already a case in the family. From the

above formula it is seen that assuming, for example, R¼ 2

implies CV¼ 1. This means that the standard deviation

equals the expectation. If the distribution comes from the

gamma family, then it has to be an exponential distribu-

tion. If CV is greater than 1, then the shape parameter

of the gamma distribution is less than 1, which yields

an extremely skewed distribution (Figure 5). In fact

the cases discussed here correspond to panels 3 and 4 of

Figure 2.

The conclusion from this brief review of familial associ-

ation is that a familial relative risk of 2 or above is a strong

indication of wide variation in individual familial risk and

of the existence of high risk groups of individuals.

The competing explanations: frailty
selection vs biological mechanism

Frailty explanations of observed incidence rates will typic-

ally attribute certain findings to statistical selection effects.

A disease where frailty is likely to play a role is testicular

cancer. The age-incidence curve of this disease is typical of

cancer forms originating in early (fetal) life, reaching a

peak at a rather young age (approximately 30 years) and

then declining sharply. A reasonable explanation for this

observation is that some men are susceptible to acquiring

testicular cancer, and do so relatively early. This leads to

an increasing age-incidence rate at quite young ages. The

subsequent declining incidence of testicular cancer with

age is presumed to be due to high-risk individuals being

selected out from the population after they acquire the

disease.5 The individual risk of testicular cancer is thus

increasing throughout life for susceptible individuals,

whereas the age-incidence rate observed in the population

is peaking due to selection effects. This fits well with biolo-

gical evidence suggesting that testicular cancer may be

caused by cellular damage during fetal life, which has been

used as a basis for a so-called frailty analysis of incidence.5

The origin of testicular cancer is believed to be carcinoma

in situ cells, the malignant transformation of which is initi-

ated during early development from primordial germ cells,

or gonocytes that fail either to end their proliferation or to

undergo proper differentiation.67 Since the incidence rate

of testicular cancer also has increased substantially during

past decades, this damage appears to have become more

prevalent over time. It should be noted that this kind of

statistical explanation typically competes with a biological

mechanistic one. It has also been suggested that the decline

in the risk of testicular cancer with age could be due to a

declining testosterone level. Although the surge in testos-

terone level during puberty is important for the transform-

ation of dormant carcinoma in situ cells to invasive

testicular cancer, there is no evidence that individual tes-

tosterone level is a risk factor for testicular cancer.68

Furthermore, the decline in testosterone is rather modest

from the age of 30 years.

On the other hand, there are clearly cases where frailty

is not the major cause of the decline in risk. One example

is retinoblastoma, where there are almost no cases in indi-

viduals over 10 years of age. The likely explanation is that

the retinoblasts are fully differentiated at the age of 10,

and thus thereafter are not susceptible to malignant trans-

formation.69 However, in his seminal study on retinoblast-

oma, Knudson actually took varying frailty into account.70

Long before the Rb1 gene was identified, he separated a

very frail group (those with an inherited germ line muta-

tion) from a less frail group (those who had the

Figure 5. Probability density for a random variable X, following either

the exponential distribution (solid line) or the gamma distribution with

shape parameter 0.5 (dashed line).
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non-hereditary form), and used this to formulate his fam-

ous two-hit hypothesis. The case of retinoblastoma is thus

an example of how the consideration of varying frailty

combined with biological knowledge may provide valuable

insights.

Competing frailty and biological mechanistic explan-

ations are often suggested, and it may not be obvious

which one is correct. Part of the difficulty is that when

frailty is estimated from single event data (e.g. the single

occurrence of a specific type of cancer for an individual),

there will necessarily be uncertainty. A much more precise

assessment of frailty can be done in a setting where there

are repeated events (e.g. cancer in both breasts, kidneys or

testicles), or when studying cancer incidence in families,

e.g. testicular cancer among brothers.7,8

Interpretation of epidemiological measures

Taking heterogeneity, or varying frailty, between individuals

into account can be of crucial importance for the under-

standing of epidemiological features in a population. There

is a natural tendency to assume that hazard rates and inci-

dence rates can be taken at face value. Although these con-

cepts appear to be simple, their interpretation can still be

very difficult. The statistical interest in frailty stems in part

from the fact that it can lead to curious statistical artefacts.

Cross-over effects

Consider two groups of individuals with hazard rates aðtÞ
and 2aðtÞ, such that the hazard ratio is 2. In each of these

groups there would necessarily be some unobserved hetero-

geneity between individuals. By introducing equally dis-

tributed frailty variables in the two groups, a decreasing

hazard ratio over time may be obtained. Depending on the

choice of frailty distribution, the hazard ratio may

even cross over and become lower than 1, such that the

high-risk group appears to become the low-risk group

(Figure 6). The decrease (and possible cross-over) of the

hazard ratio over time is a frailty effect. Individuals in the

high-risk group will on average experience events earlier

than those in the low-risk group. This causes the propor-

tion of highly susceptible individuals in the high-risk group

to decrease faster than in the low-risk group, leaving an

increasing proportion of less susceptible individuals. Thus,

the hazard ratio will decrease. If, for instance, the popula-

tion contains a non-susceptible subgroup, then the suscep-

tible individuals in the high-risk group would be exhausted

earlier than in the low-risk group, causing the relative risk

to cross over and become lower than 1, even if the hazard

ratio stays constant on the individual level. This means

that when frailty is not observed and cannot be accounted

for, a wrong conclusion could be drawn regarding the true

relationship between two groups. This is in fact a time-

dependent version of Simpson’s paradox, which means

that the observed relationship (concerning risk of disease,

for example) between two groups is reversed at an aggre-

gate level compared with what would be observed at a

more detailed level if covariates could be conditioned on.

Likely cross-over phenomena are observed in practice,

for example in the work of Gulsvik et al. where it is shown

that high serum cholesterol appears as a ‘protective’ factor

with respect to general mortality at old age.71 This could

be a frailty artefact, especially since statin treatments has

been shown to reduce disease incidence of cardiovascular

disease in the elderly.72 A strongly reduced risk with age

was also seen for smokers compared with never smokers in

the paper by Gulsvik et al. which could be, at least par-

tially, a frailty phenomenon.71 Increasing reverse causation

with age could also contribute to explaining such results.

Another interesting effect of frailty occurs when discon-

tinuing treatment in a clinical trial. Let us assume that the

treatment group has hazard rate aðtÞ and the control group

has hazard rate 2aðtÞ, presuming the treatment is effective.

At the start of the study, the hazard ratio is 2. Because the

treatment is effective, patients in the control group will on

average have events earlier than in the treatment group,

and the hazard ratio will decrease with time. At some point

the difference between the hazard rates is so small that it is

decided treatment is no longer effective, and it is stopped.

A possible consequence of this decision is that the hazard

Figure 6. Assume that the hazard rates in two risk groups are a tð Þ and

2a tð Þ respectively. When frailty variables are introduced, the observed

relative risk declines over time as shown in the figure. Three frailty dis-

tributions are used; one leads to a crossover of the hazard ratio. This

case corresponds to a frailty distribution with a positive probability of

zero frailty (i.e. a non-susceptible group). See Aalen et al.2, Chapter 6,

for technical details.
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ratio drops below 1, and it appears protective to be a mem-

ber of the control group (Figure 7). In the control group

the frailest individuals would already have had an event at

this point and, at the time of discontinuing the treatment,

there would be a higher proportion of less frail individuals

in the control group. In the treatment group, frail individ-

uals that would already have had an event if they had not

been treated, have a very high risk immediately after the

treatment is stopped. Not being aware of a possible frailty

effect may lead to a wrong impression of the effect of dis-

continuing a treatment for an individual.

False protectivity

In a competing risks framework, two (or more) events

compete in determining the failure of an individual. The

failure rate of each cause is expressed in terms of a cause-

specific hazard rate. As in the example above, the hazard

rates may be influenced by frailties. If these frailties are

correlated, then one may observe a false protectivity.73 If a

covariate has a detrimental effect on one of the two com-

peting risks, it may, at the population level, appear to be

protective in the other cause-specific hazard rate.

Frailty and models of carcinogenesis

The famous multi-stage model of Armitage and Doll set

the stage for a mathematical approach to understanding

cancer incidence,74 and it continues to play a fundamental

role in our understanding of the carcinogenic process. This

was exemplified by the re-publication of the original article

in the International Journal of Epidemiology at its 50-year

anniversary in 2004.75 In a commentary to this reprint,

Doll points out his views on the random nature of cancer

development.76 Since the Armitage-Doll model was first

suggested, however, more sophisticated models have been

published. Moolgavkar and Knudson proposed a two-hit

model (combined with clonal expansion of initiated

cells),77 andexplained peaking incidence rates of certain

cancers by the varying (decreasing) number of stem cells

susceptible to mutation. Their model has later been

expanded to allow for a cell to undergo several transitions

before going into the clonal expansion phase,78 as well as

other further developments of the model.47,79,80 All these

models were created to facilitate the understanding of can-

cer development on an individual level. Meza et al. studied

the effect of gestational mutations on cancer risk, and

stated that: ‘Even with identical gestational mutation rates

in all individuals in a population, at birth individuals are at

different risk because of random variation in the number

of mutated cells at birth’.47 Heidenreich modelled risk

functions (at certain ages) for liver cancer by treating the

two-stage clonal expansion model as fully stochastic, and

demonstrated that this leads to heterogeneity in a popula-

tion even when considering genetically identical individ-

uals.81,82 Taking varying frailty into account (i.e.

heterogeneity in risk between individuals), a Weibull haz-

ard rate, as suggested by the Armitage-Doll model, is a

sensible approximation to the carcinogenic process within

an individual.83 A mathematical formulation is that, on the

individual level, the hazard rate of an event is given as a

product of the Weibull hazard and an individual frailty fac-

tor. The frailty component may include both underlying

heritable predispositions and an increased susceptibility

due to purely random events. As opposed to the exhaustion

of susceptible stem cells within the individual, the model

considers the exhaustion of initially highly susceptible indi-

viduals as an explanation of a peaking age-incidence curve.

This approach may also be modified in several ways,

including taking into account an expanding host tissue dur-

ing, for example, puberty.84 An important element is thus

to combine models of carcinogenesis with a realistic under-

standing of individual differences,6,84,85 to better under-

stand features of population age-incidence rates.

Interpretation of incidence rates

It turns out that changes in epidemiological incidence rates

over calendar time also can be wrongly interpreted if one

does not take into consideration the possible heterogeneity

between individuals. Consider the simple Armitage-Doll

multistage model of carcinogenesis, which states that a cell

has to go through a certain number of transitions to reach

malignancy. As an example, consider the simple version of a

multistage model as shown in Figure 8. Assume that the

Figure 7. Effect of discontinuing treatment. A control group with hazard

rate 2a tð Þ is compared with a treatment group with hazard rate a tð Þ.
Treatment is discontinued at time point 1.

International Journal of Epidemiology, 2015, Vol. 44, No. 4 1417



transition rates are not the same for all individuals, but

that there is a strong variation in susceptibility. Consider

for instance a population where only a small subgroup is

susceptible to the cancer in question, and the majority

has a zero rate of cancer initiation (transition from a

normal cell to an intermediate cell). If the initiation rate

increases abruptly at a given point in (calendar) time, the

incidence rate may increase to a peak, then drop and

stabilize on a higher level. This is illustrated in Figure 9a,

for the simple multistage model in Figure 8, with only 1%

of the population being susceptible. The same point, with

90% being susceptible, is illustrated in Figure 9b.

Although a simplification, the abrupt increase in the

initiation rate could be the result of a risk factor that

becomes more pronounced in the population at a given

time.

The above example is simple, but illustrates that changes

in the prevalence of risk factors may have an impact on

observed incidence rates, even a long time after the change

occurred. Whereas the real biological change here was an

abrupt increase in the prevalence of a risk factor, the

observed incidence rates gave the impression of a risk that

first increased and then decreased. It is of course more likely

that the presence of risk factors changes gradually over

time, and this will have a similar effect on observed inci-

dence rates as in the above example. The idea is that the in-

crease in the prevalence of the risk factor over time could

cause cancers that would not have emerged earlier to ap-

pear, even a long time after the external risk factor

has ceased to change, and the observed incidence rate will

thus continue to change after the prevalence of the risk

factor has stabilized. If a cell requires more events to become

malignant, changes in prevalence of different risk factors

may affect the transition rates to various states. This could

possibly also lead to multimodal shapes of hazard rates.

The point we are making is that changes in the inci-

dence rate may not be a simple reflection of what is

happening at a biological level. It is well known that

underlying effects will be smoothed out in the observed

incidence. But in addition to this, frailty may produce inci-

dence rates with aspects that are unrepresentative of the

underlying changes. Care should be taken before drawing

conclusions on an individual level based on observations in

a population.

Figure 9. Incidence rates for the model in Figure 8. Assume that 10,000 individuals enter state one per time unit. The transition rates are a1 ¼ 0:01 for

time < 20, and a1 ¼ 0:03 for time �20. Also, a2 ¼ 0:02, l1 ¼ 0:01 and l2 ¼ 0:05 a) 1% of the population is susceptible, i.e. having a1 6¼ 0. b) 90% of the

population is susceptible, i.e. having a1 6¼ 0.

Figure 8. Simple illustration of an Armitage-Doll multi-stage model of

carcinogenesis. The states represent the stages of the carcinogenic pro-

cess. State one is the healthy state, state two is an intermediate state,

and in state three a malignant cell has developed. State four is a cen-

sored state. The as and ls are transition rates.
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Conclusion

We have pointed out a number of findings that indicate the

presence of a considerable individual variation in the risk

of cancer and other diseases that goes beyond what is due

to measured risk factors. Varying frailty may create arte-

facts when studying incidence rates and other epidemiolo-

gical measures, such as a decline in incidence due to the

frailest individuals experiencing the event early.

Familial associations in disease that appear moderate

may be the result of a large underlying variation in risk

between individuals. This and other aspects of individual

variation point towards caution in interpretation. The

presence of individual heterogeneity cannot be ignored.

It may be necessary to perform mathematical modelling to

get a proper understanding of the nature and magnitude of

the phenomenon of frailty in any given study population.
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In this special issue on epigenetics, Aalen and colleagues1

discuss the ‘elusive concept’ of frailty which ‘can lead to

surprising artefacts in statistical estimation that are im-

portant to examine’. They define frailty variation as ‘differ-

ences in risk between individuals which go beyond known

or measured risk factors’. Use of the term frailty to describe

all unexplained heterogeneity in longitudinal or age-related

data is based on the historic statistical literature, and

should not be confused with the common English usage of

the term to describe the particular vulnerability of people

in their declining years.

We agree that the study of age-related changes in dis-

ease risk and survival is of central importance in epidemi-

ology. The challenge is to model heterogeneity to explain

why disease risk changes with age, rather than to simply

waste that information by adjusting away any age-related

effects, as has often been standard practice.

Aalen and colleagues remind us that variation in risk

could be due to genetic or environmental causes or random

effects (though the latter would be regarded as unexplained

environmental causes, given that the impact of all germ-

line genetic effects can be determined from the disease con-

cordance of monozygotic twin pairs). Yet this aetiological

framework is incomplete unless attempts are made to

measure genetic and environmental interactions and shared

environmental effects (e.g. within families), and to parti-

tion random effects into those due to age-related develop-

mental changes (which can be epigenetic in origin) and

those that are truly stochastic (i.e. due to somatic genetic

effects (mutations) or unexplained epigenetic effects that

are not developmentally programmed). In this regard, twin

and family studies are obviously important tools that can

now be used more widely through a newly constructed

international network.2
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