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Abstract

Background: Adiposity is a risk factor for type 2 diabetes and cardiovascular disease,

suggesting an important role for adipose tissue in the development of these conditions.

The epigenetic underpinnings of adiposity are not well understood, and studies of DNA

methylation in relation to adiposity have rarely focused on target adipose tissue.

Objectives were to evaluate whether genome-wide DNA methylation profiles in subcuta-

neous adipose tissue and peripheral blood leukocytes are associated with measures of

adiposity, including central fat mass, body fat distribution and body mass index.

Methods: Participants were 106 men and women (mean age 47 years) from the New

England Family Study. DNA methylation was evaluated using the Infinium

HumanMethylation450K BeadChip. Adiposity phenotypes included dual-energy X-ray

absorptiometry-assessed android fat mass, android:gynoid fat ratio and trunk:limb fat

ratio, as well as body mass index.

Results: Adipose tissue genome-wide DNA methylation profiles were associated with all

four adiposity phenotypes, after adjusting for race, sex and current smoking (omnibus

p-values <0.001). After further adjustment for adipose cell-mixture effects, associations

with android fat mass, android:gynoid fat ratio, and trunk:limb fat ratio remained. In gene-

specific analyses, adiposity phenotypes were associated with adipose tissue DNA methyla-

tion in several genes that are biologically relevant to the development of adiposity, such as

AOC3, LIPE, SOD3, AQP7 and CETP. Blood DNA methylation profiles were not associated

with adiposity, before or after adjustment for blood leukocyte cell mixture effects.

Conclusion: Findings show that DNA methylation patterns in adipose tissue are associ-

ated with adiposity.
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Introduction

Obesity and excess regional fat, often referred to as adipos-

ity,1 are major risk factors for numerous chronic diseases

including type 2 diabetes and cardiovascular disease.2

Current trends suggest that the total healthcare costs at-

tributable to obesity could reach £610 billion by 2030.3

The aetiology of adiposity is multifactorial, known to have

both genetic4,5 and environmental determinants.6,7 Focus

has recently turned to improving understanding of underly-

ing molecular mechanisms that may contribute to adipos-

ity, and it is increasingly recognized that adiposity and

related cardiometabolic risk may arise as a result of dysre-

gulated cellular programming and alterations of regulatory

pathways via epigenetic mechanisms.8,9 Several prior stud-

ies investigated epigenetic contributions to adiposity, as as-

sessed by DNA methylation in humans;10–20 however,

almost all the studies evaluated methylation patterns only

in blood.10–17,19 Given that DNA methylation is a tissue-

specific phenomenon, there is considerable interest in

investigating directly affected tissues, such as (in this case)

adipose tissue. Although epidemiological studies on adi-

pose tissue DNA methylation are starting to increase in

number,18,21,22 little is currently known about associations

of adipose tissue DNA methylation with adiposity.

Furthermore, even less is known about possible associ-

ations of DNA methylation with direct measures of re-

gional fat distribution, particularly centrally-located

android fat that has important risks for dyslipidaemia,

type 2 diabetes and coronary heart disease.23,24

Consequently, study objectives were to determine whether

epigenome-wide DNA methylation profiles in blood and

adipose tissue are cross-sectionally associated with adipos-

ity, including android fat mass, android:gynoid fat ratio,

trunk:limb fat ratio and body mass index (BMI).

Research design and methods

Study population

Study participants were from the New England Family

Study (NEFS) which comprised 17 921 offspring of preg-

nant women in the Collaborative Perinatal Project (CPP)25

from Providence, Rhode Island and Boston, Massachusetts

sites (USA),who were recruited between 1959 and 1974.

The current NEFS sub-study, termed the Longitudinal

Effects on Aging Perinatal (LEAP) Project, includes

Providence-born participants selected with oversampling

for racial/ethnic minorities and small and large for gesta-

tional age. Four hundred participants were enrolled and as-

sessed during 2010–11. Of these, 316 had adequate

adipose tissue biopsy performed, 68 refused and 16 had in-

adequate biopsy specimens. Blood and adipose tissue DNA

methylation analyses were performed on a representative

sample of 108 of these 316 participants, with adequate

DNA methylation data available for 106. Characteristics

of participants with DNA methylation data (n¼ 106) did

not differ significantly from those in the overall study sam-

ple (n¼ 400), except that there was a higher percentage of

women in the DNA methylation sample (64%) in compari-

son with the overall study sample (57%).

Measures of adiposity and covariates

Dual-energy X-ray absorptiometry (DXA) scans were per-

formed using the Lunar Prodigy Advance scanner (GE

Healthcare, Madison, WI) and provided measures of fat in

various body compartments. Adiposity phenotypes of

interest included android fat mass (a measure of centrally

located fat), android:gynoid region fat mass ratio and trun-

k:limb region fat mass ratio (as measures of upper:lower

Key Messages

• In middle-aged men and women, adipose tissue genome-wide DNA methylation profiles were associated with several

measures of adiposity, including centrally-located fat, body fat distribution, and body mass index. Peripheral blood

leukocyte DNA methylation was not related to any adiposity phenotype.

• All analyses were adjusted for cell mixture effects, to reduce the potential for confounding by cell mixture in the

association between DNA methylation and adiposity. After adipose tissue cell mixture adjustment, adipose

tissue DNA methylation remained associated with centrally-located fat and fat distribution, but not with body mass

index.

• A stringent gene locus selection criteria was applied to identify genes of interest in the association between

adipose tissue DNA methylation and adiposity. Several of the genes selected have strong biological plausibility with

respect to adiposity and adipogenesis, and have previously been implicated in human and animal studies of

adiposity.
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body fat distribution). Weight and height measures were

obtained using a calibrated stadiometer by trained person-

nel, and converted into BMI (kg/m2). Quality control tests

to monitor reproducibility and stability of DXA assess-

ments were performed weekly using models that simulate

different levels of body fat. Covariates of interest included

race, sex and current smoking. All but 4 participants were

White (n¼ 72) or African American (n¼ 30); consequently

race was collapsed into ‘White’ vs ‘non-White’.

Tissue sample collection, methylation profiling

and data processing

Subcutaneous adipose tissue samples were collected from

the upper outer quadrant of the buttock using a 16-gauge

needle and disposable syringe. DNA was extracted from

adipose tissue samples using the Qiagen DNeasy Blood &

Tissue Kit (Qiagen, Valencia, CA) and the Zymo Genomic

DNA Clean & Concentrator Kit, according to the manu-

facturers’ protocol. Whole blood samples were centrifuged

to obtain buffy coat, and peripheral blood leukocyte DNA

was extracted using the Qiagen DNeasy Blood & Tissue

Kit (Qiagen, Valencia, CA), according to the manufac-

turers’ protocol.

DNA was sodium bisulfite-converted using the EZ-96

DNA Methylation-Direct and EZ DNA Methylation-

Direct kits (Zymo Research, Orange, CA; as per manufac-

turer’s instructions). Blood and adipose tissue samples

were randomly distributed across 18 beadchips on three

plates, and analysed using the Infinium Human

Methylation450 BeadChip array (Illumina, San Diego,

CA) at the Genomics Core Facility at the UCSF Institute

for Human Genetics (San Francisco, CA), according to the

Illumina protocols for the Infinium platform. Beadchips

were scanned with the Illumina iScan system.

Heatmaps of the control probe data and the total signal,

as well as the distribution of detection p-values were exam-

ined to assess data quality. Samples with a detection p-value

>0.05 for>1% of probes were excluded from analyses.

The DNA methylation data were out-of-band back-

ground corrected and dye bias corrected using the methyl-

umi package in R,26 and further normalized using the

Beta-Mixture Quantile Dilation (BMIQ) approach27 in

order to obtain similar ranges for type I vs.type II probes

on the Infinium array. For each of the CpG sites and

for 834 additional controls, average beta was calculated as

M/(MþUþe), where M and U refer to the signal from the

probe corresponding to the methylated and unmethylated

target CpG, respectively, and e¼ 100 in order to protect

against division-by-zero.

Prior to analyses, 3156 non-CpG probes were excluded,

followed by a further exclusion of 11 551 CpG sites

located on sex chromosomes, 88 803 CpGs with SNPs in

probe28 (at the flanking G, within 10 nt of the target CpG,

and 11-50 nt away from the target CpG), 20 882 probes

that are considered cross-reactive29and a further 50 probes

that had missing values for >10% of participants. In total,

361 135 CpG sites were included in the analyses.

Statistical analyses

All of the 106 participants with adequate DNA methyla-

tion data had available BMI data, while DXA scan data

were available for 101 participants. Average beta values

were logit-transformed to M-values prior to analyses. In a

manner similar to combat,30M-values were adjusted for

chip (i.e. beadchip position on plate) effects using a linear

mixed effects (LME) model; all chip effects were then sub-

tracted from M-values on a CpG-by-CpG basis.

Android fat mass, android:gynoid fat ratio and

trunk:limb fat ratio were analysed as continuous variables,

with android fat mass and trunk:limb fat ratio log-trans-

formed in order to satisfy assumptions of normality. BMI

was analysed as a continuous variable, with a quadratic

term in the model to account for non-linearity.

Epigenome-wide association studies

Epigenome-wide association studies (EWAS) analyses

involved CpG-by-CpG analysis of M-values in combin-

ation with omnibus tests for significance via permutation

testing (which effectively accounts for multiple testing by

controlling for the family-wise error rate). Individual re-

gressions were fit for each CpG (as the dependent variable)

in relation to each adiposity phenotype (as the independent

variable) with adjustment for sex, race and current smok-

ing. (Analyses were not adjusted for age, given the very

narrow age range (44–50 years) in the study sample).

Summary of genome-wide association was constructed

over all regression coefficients using the minimum nominal

p-value as the test statistic. Omnibus tests for association

were obtained by comparing the test statistic with its cor-

responding permutation-derived null distribution, gener-

ated by permuting phenotype values with respect to DNA

methylation data and confounders; 1000 permutations

were applied for each test.

EWAS analyses in blood were performed with and with-

out adjustment for blood leukocyte distribution. The

method of Houseman et al.31 was first used to estimate ef-

fects of phenotype on distribution of the most prevalent

distinct leukocyte lineages. For each CpG, effects of leuko-

cyte composition on chip-adjusted average-beta DNA

methylation were then determined by a linear regression

and subtracted from the corresponding beta values, which

International Journal of Epidemiology, 2015, Vol. 44, No. 4 1279



were subsequently logit-transformed back to ‘leukocyte-

adjusted M-values’ for analyses.

We also conducted EWAS analyses adjusted for cell mix-

ture effects in adipose tissue, using the recently developed

reference-free method of Houseman et al.32 This method

adopts a statistical model with a latent variable representing

mean methylation, together with a factor-analytical error

model similar to the surrogate variable approaches,33,34 thus

producing estimates of non-cell mixture mediated

DNA methylation associations. The method requires an

assumed latent variable dimension (i.e. number of cell types),

which was estimated using the random matrix theory

method of Teschendorff et al.34 and was equal to 23 for all

analyses.

Given sexual dimorphism in body composition,35 sex-

specific analyses were also performed.

Gene-specific analyses

We conducted gene-specific analyses in order to identify

regions of interest with respect to associations with adipos-

ity. For each adiposity phenotype, we conducted CpG-

specific analyses (with methylation on the M-value scale)

and extracted nominal p-values corresponding to each

CpG-specific regression coefficient. We then summarized

this information at the gene region level (i.e. gene regions

specified by the manufacturer): for each gene region of a

gene, only the CpG with a nominal p-value representing

the median p-value in that gene region was selected for fur-

ther inquiry. A gene was then selected as a ‘top gene of

interest’ only if it had at least one gene region with a me-

dian CpG-specific nominal p-value <0.0001, across all

adiposity phenotypes analysed. This criterion was imple-

mented for two reasons: (i) selection based on median

CpG-specific p-value per gene region will mitigate the ef-

fects of spurious CpGs that register as an extreme (i.e. out-

liers); and (ii) an association observed across all adiposity

phenotypes utilizes strengths of triangulation, thereby

increasing likelihood that findings are reflective of a bio-

logically significant event. It should be noted that all CpGs

selected with this approach (i.e. nominal p-value of

<0.0001) had a false discovery rate (FDR)-corrected

p-value <0.05 in all analyses.

We separately investigated whether adipose tissue DNA

methylation in candidate loci in the HIF3A gene were

related to BMI in our study sample, in light of recent

findings on such an association.20 We extracted CpG-

specific regression results for associations of DNA methyla-

tion with BMI, reporting regression coefficients and nominal

p-values.

All statistical analyses were performed using the R stat-

istical package (v. 3.1.0).

Results

The 106 participants in the study sample had a mean age of

47 (range 44–50) years; 64% were women, 68% White

and 34% current smokers. The proportion of women

decreased at higher levels of android:gynoid fat ratio,

trunk:limb fat ratio, and BMI (Table 1). Mean BMI was

positively associated with android fat mass and android:

gynoid fat ratio. Adiposity phenotypes were not related to

race, years of education or smoking status (Table 1).

EWAS analyses

Adipose tissue DNA methylation profiles were associated

with all four adiposity phenotypes in EWAS analyses

(omnibus p-value <0.001 in all cases) after adjustment for

race, sex and current smoking (Table 2). After further ad-

justment for adipose cell type mixture using the reference-

free approach, associations remained with android fat

mass, android:gynoid fat ratio and trunk:limb fat ratio but

not with BMI (Table 2). Quantile-quantile plots for ex-

pected vs observed distribution of p-values and estimated

genomic inflation factor (i.e. lambda) are available in

Supplementary Figure 1a–c (available as Supplementary

data at IJE online). In sensitivity analyses, android fat

mass, android:gynoid fat ratio, and trunk:limb fat ratio re-

mained associated with DNA methylation even after fur-

ther adjustment for BMI (Supplementary Table 1,

available at IJE online).

In EWAS analyses in peripheral blood leukocytes, DNA

methylation profiles were not related to any adiposity

phenotype, whether adjusted or unadjusted for blood

leukocyte distribution (Table 3).

We did not observe differences in associations by sex in

any of the analyses, therefore only sex-pooled analyses are

presented and discussed.

Gene-specific analyses

For associations with android:gynoid fat ratio, android fat

mass and trunk:limb fat ratio, we selected genes that con-

tained at least one region with a CpG-specific median p-

value <0.0001 across all of these adiposity phenotypes;

101 genes met this criterion. For a selection of these genes,

Table 4 summarizes associations between adipose tissue

DNA methylation and each adiposity phenotype, listing

the effect size estimate and nominal p-value of the median

CpG in each gene region (see Supplementary Table 2 for

the full list, available as Supplementary data at IJE online).

Finally, we tested whether methylation of adipose tissue

at the candidate gene HIF3A was associated with BMI, as

previously reported.20 In our analyses we observed the
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same three CpGs reported by Dick et al. to be associated

with BMI [nominal p-value¼ 1.3 x 10–6, 4.3 x 10–6 and

5.5 x 10–5for cg27146050, cg22891070 and cg16672562,

respectively (see Table 5)]. It should be noted, however,

that these associations did not meet the Bonferroni correc-

tion threshold (0.05/361 135¼ 1.4 x 10–7) for our analyses.

Blood DNA methylation at these CpG sites was not related

to BMI in our analyses.

Table 2. EWAS analyses:a adipose tissue DNA methylation in

relation to adiposity phenotypes, the LEAP Project

Analyses not

adjusted for cell

mixture effects

Analyses adjusted for

cell mixture effects

Omnibus p-valuesb Omnibus p-valuesb

Based on

permutation test

Based on reference-free

approach

Android:gynoid fat

ratio

<0.001 0.024

Android fat mass <0.001 0.003

Trunk:limb fat ratio <0.001 0.011

Body mass index <0.001 0.195

aAnalyses on android fat mass, and trunk:limb and android:gynoid

fat ratios include 101 participants, whereas analyses on BMI include

106. All analyses adjusted for sex, race (White vs non-White) and current

smoking.
bAnalyses not adjusted for cell mixture report omnibus p-values based on

permutation tests, using the minimum p-value test statistic to construct sum-

mary of genome-wide associations. Analyses adjusted for cell mixture, using a

reference-free method, report omnibus p-values based on the bootstrap

method described in Houseman et al. 2014.32

Table 3. EWAS analyses:a peripheral blood leukocyte DNA

methylation in relation to adiposity phenotypes, the LEAP

Project

Analyses not

adjusted for leuko-

cyte distribution

Analyses adjusted

for leukocyte

distribution

Omnibus p-valuesb Omnibus p-valuesb

Based on

permutation test

Based on

permutation test

Android:gynoid fat

ratio

0.408 0.635

Android fat mass 0.688 0.802

Trunk:limb fat ratio 0.460 0.058

Body mass index 0.738 0.954

aAnalyses on android fat mass and trunk:limb and android:gynoid fat

ratios include 101 participants, whereas analyses on BMI include 106. All

analyses adjusted for sex, race (White vs non-White) and current smoking.
bAnalyses report omnibus p-values based on permutation tests, using the

minimum p-value test statistic to construct summary of genome-wide associ-

ations. Analyses adjusted for cell mixture are based on the method described

in Houseman et al. 2012,31 using DNA methylation measures at 100 select

DMRs as surrogate markers of leukocyte distribution.

Table 1. Characteristics of participants, the LEAP Project

According to tertiles of android fat massa According to tertiles of android:gynoid fat ratioa

Tertile 1

(n¼33)

Tertile 2

(n¼34)

Tertile 3

(n¼34)

p for

trend

Tertile 1

(n¼33)

Tertile 2

(n¼34)

Tertile 3

(n¼34)

p for

trend

Women, no. (%) 26 (79) 19 (56) 20 (59) 0.09 31 (94) 28 (82) 6 (18) <.001

White, no. (%) 22 (67) 23 (68) 24 (71) 0.73 24 (73) 20 (59) 25 (74) 0.93

Education, mean years (SD) 13.6 (3.1) 13.4 (3.7) 12.2 (2.4) 0.08 12.7 (2.4) 14 (3.5) 12.5 (3.3) 0.84

Current smoker, no. (%) 12 (36) 10 (29) 14 (41) 0.68 13 (39) 12 (35) 11 (32) 0.55

Ever smoker, no. (%) 18 (54) 18 (53) 24 (71) 0.18 20 (61) 19 (56) 21 (62) 0.91

BMI, mean kg/m2 (SD) 24.3 (2.8) 31.2 (4.9) 37.4 (5.1) <.001 28.6 (6.6) 32.1 (8.2) 32.4 (5.1) 0.03

According to tertiles of trunk:limb fat ratioa According to categorized BMI (kg/m2)

Tertile 1

(n¼33)

Tertile 2

(n¼34)

Tertile 3

(n¼34)

p for

trend

18.5 -<25

(n¼24)

25 -<30

(n¼25)

�30

(n¼57)

p for

trend

Women, no. (%) 31 (94) 26 (76) 8 (24) <.001 20 (83) 15 (60) 33 (58) 0.04

White, no. (%) 20 (61) 24 (71) 25 (74) 0.26 16 (67) 18 (72) 38 (67) 0.92

Education, mean years (SD) 13.3 (2.9) 13.6 (3.2) 12.3 (3.3) 0.20 14.5 (3.3) 13.2 (2.4) 12.7 (3.4) 0.18

Current smoker, no. (%) 10 (30) 14 (41) 12 (35) 0.68 9 (38) 9 (36) 18 (32) 0.58

Ever smoker, no. (%) 16 (49) 21 (62) 23 (68) 0.11 13 (54) 13 (52) 35 (61) 0.47

BMI, mean kg/m2 (SD) 30.9 (9.1) 29.5 (5.5) 32.9 (5.2) 0.23 22.9 (1.5) 27.6 (1.6) 36.6 (5.3) <.001

aTertiles for android fat mass, android:gynoid fat ratio, and trunk:limb ratio add up to 101, as only 101 of the 106 participants had DXA scan measures

available.
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Table 4. Adipose tissue gene-specific DNA methylation in relation to adiposity, the LEAP Project (select number of

genes displayed; full list of all 101 genes available in Supplementary Table 2, available at IJE online)

Median, CpG-specific effect size estimate (p-value)a per gene regionb

Android:gynoid fat ratio Android fat Trunk:limb fat ratio

ADAMTS4

5’UTR 0.107 (5.6�10–6) 0.036 (1.3�10–6) 0.1 (2.0�10–6)

TSS1500 0.092 (2.1�10–4) 0.027 (5.2�10–4) 0.092 (3.3�10–5)

TSS200 0.143 (5.9�10–4) 0.058 (1.9�10–5) 0.136 (2.6�10–4)

1stExon 0.107 (5.6�10–6) 0.036 (1.3�10–6) 0.1 (2.0�10–6)

3’UTR 0.051 (0.04) 0.02 (0.01) 0.04 (0.07)

AGAP2

TSS1500 0.024 (9.3�10–3) 0.006 (3.3�10–3) 0.013 (9.2�10–3)

TSS200 0.035 (8.6�10–3) 0.019 (1.6�10–3) 0.032 (0.03)

1stExon 0.117 (2.0�10–4) 0.049 (7.9�10–7) 0.118 (2.4�10–5)

Body 0.137 (2.3�10–4) 0.056 (2.8�10–6) 0.126 (5.1�10–5)

3’UTR 0.201 (1.7�10–5) 0.075 (2.9�10–7) 0.163 (1.2�10–4)

ANGPT2

5’UTR 0.124 (4.0�10–4) 0.044 (7.4�10–5) 0.128 (3.8�10–5)

TSS1500 0.088 (1.9�10–3) 0.02 (0.03) 0.063 (0.01)

TSS200 0.122 (3.27�10–4) 0.046 (1.5�10–5) 0.123 (4.3�10–5)

1stExon 0.142 (2.1�10–4) 0.051 (3.7�10–5) 0.143 (2.0�10–5)

Body 0.106 (1.3�10–3) 0.031 (2.1�10–3) 0.091 (2.2�10–3)

ANGPT4

5’UTR 0.145 (2.1�10–6) 0.046 (1.5�10–6) 0.157 (3.6�10–9)

TSS1500 0.132 (1.1�10–4) 0.049 (4.4�10–6) 0.151 (4.4�10–7)

TSS200 0.04 (2.7�10–4) 0.01 (5.5�10–3) 0.048 (1.7�10–7)

1stExon 0.145 (2.1�10–6) 0.046 (1.5�10–6) 0.157 (3.6�10–9)

Body 0.024 (0.10) 0.007 (0.07) 0.021 (0.09)

AOC3

5’UTR 0.15 (1.4�10–4) 0.056 (4.6�10–6) 0.147 (2.8�10–5)

TSS1500 0.052 (0.04) 0.023 (1.4�10–3) 0.047 (0.02)

TSS200 0.137 (8.3�10–5) 0.053 (8.5�10–7) 0.137 (9.3�10–6)

1stExon 0.15 (7.3�10–5) 0.056 (1.8�10–6) 0.147 (1.1�10–5)

Body 0.187 (1.1�10–5) 0.066 (8.4�10–7) 0.186 (7.9�10–7)

3’UTR 0.076 (2.5�10–3) 0.035 (4.8�10–6) 0.066 (3.8�10–3)

AQP7

5’UTR 0.108 (3.5�10–5) 0.037 (5.5�10–6) 0.117 (3.1�10–7)

1stExon 0.108 (3.4�10–5) 0.037 (5.4�10–6) 0.117 (3.1�10–7)

Body 0.023 (0.19) 0.006 (0.31) 0.02 (0.19)

CETP

5’UTR 0.124 (7.6�10–5) 0.039 (4.4�10–5) 0.121 (5.4�10–6)

TSS1500 0.149 (6.8�10–5) 0.045 (7.0�10–4) 0.148 (4.5�10–6)

TSS200 0.098 (2.5�10–4) 0.028 (1.2�10–3) 0.099 (3.4�10–5)

1stExon 0.124 (7.6�10–5) 0.039 (4.4�10–5) 0.121 (5.4�10–6)

Body 0.004 (0.44) �0.002 (0.01) 0.004 (0.14)

3’UTR 0.128 (3.2�10–7) 0.032 (1.0�10–4) 0.115 (2.9�10–7)

DOCK9

5’UTR 0.215 (1.9�10–6) 0.073 (1.9�10–7) 0.196 (1.2�10–6)

TSS1500 0.052 (0.01) 0.014 (0.20) 0.053 (1.7�10–3)

TSS200 0.225 (8.7�10–6) 0.077 (8.1�10–7) 0.212 (2.8�10–6)

1stExon 0.107 (0.46) 0.037 (0.46) 0.098 (0.40)

Body 0.027 (0.07) 0.009 (0.04) 0.034 (0.04)

3’UTR 0.006 (0.51) 0.002 (0.25) �2�10–5 (0.30)

HOXA3

5’UTR 0.051 (0.13) 0.017 (0.08) 0.033 (0.25)

TSS1500 0.056 (0.13) 0.019 (0.07) 0.034 (0.28)

(Continued)
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Discussion

Overall, in this study of middle-aged men and women, adi-

pose tissue DNA methylation profiles were associated with

BMI, centrally-located android fat mass and fat distribu-

tion measures of android:gynoid and trunk:limb fat ratios,

after adjustment for sex, race and current smoking.

Further adjustment for adipose cell mixture attenuated as-

sociations with BMI. There was no evidence of associ-

ations between peripheral blood leukocyte DNA

methylation and adiposity. This suggests that there is im-

portant tissue specificity in the origin of adiposity-related

DNA methylation.

We implemented a stringent gene locus selection criter-

ion to identify genes where DNA methylation was associ-

ated with adiposity. Several of these genes have strong

biological plausibility with respect to adipogenesis and adi-

posity, including AOC3,36,37 SOD3,38–41 DOCK9,42,43

AQP7,44–49 ANGPT4,50 ANGPT2,50–52 TIMP453–57 and

ADAMST4.50 For example, AOC3 encodes a major pro-

tein that resides on the adipocyte plasma membrane,37 and

serum levels of the protein predicted 10-year cardiovascu-

lar mortality in type 2 diabetic subjects.36 SOD3, which

encodes an antioxidant enzyme,39,40,58 has been related to

BMI in type 2 diabetes patients38 and is responsive to high-

fat feeding in white adipose tissue of male rats.59

AQP7encodes a glycerol transporter expressed in adipo-

cytes, and its regulation is thought to be crucial for gly-

caemia control.46,60 Several lines of evidence from both

animal44,45 and human48,49 studies suggest that down-

regulation of AQP7 is associated with development of

obesity. Specifically, AQP7 gene expression was shown to

be down-regulated in subcutaneous adipose tissue of obese

vs lean individuals.48 TIMP4, ANGPT2, ANGPT4 and

ADAMTS4 encode proteins involved in processes that

Table 4. Continued

Median, CpG-specific effect size estimate (p-value)a per gene regionb

Android:gynoid fat ratio Android fat Trunk:limb fat ratio

TSS200 0.251 (4.8�10–7) 0.089 (3.6�10–9) 0.213 (3.3�10–6)

1stExon 0.113 (4.3�10–5) 0.044 (8.6�10–8) 0.115 (2.3�10–6)

Body 0.006 (0.04) 0.001 (0.23) 0.006 (0.03)

3’UTR 0.112 (2.6�10–3) 0.028 (9.0�10–3) 0.101 (9.6�10–4)

LIPE

5’UTR 0.21 (4.2�10–6) 0.059 (5.6�10–5) 0.208 (2.6�10–7)

TSS1500 �0.001 (0.13) 0.001 (0.30) �0.001 (0.46)

TSS200 0.289 (4.9�10–7) 0.09 (8.4�10–7) 0.29 (1.1�10–8)

1stExon 0.21 (4.2�10–6) 0.059 (5.6�10–5) 0.208 (2.6�10–7)

Body 0.082 (1.7�10–4) 0.033 (4.9�10–5) 0.066 (1.6�10–4)

3’UTR �0.005 (0.32) �0.003 (0.09) �0.007 (0.13)

SOD3

5’UTR 0.079 (0.39) 0.033 (0.06) 0.075 (0.10)

TSS1500 0.054 (6.6�10–3) 0.025 (4.1�10–4) 0.068 (1.8�10–4)

TSS200 0.183 (6.7�10–6) 0.064 (7.0�10–7) 0.185 (3.7�10–7)

1stExon 0.155 (4.0�10–6) 0.059 (1.1�10–8) 0.152 (3.7�10–7)

Body 0.027 (0.32) 0.002 (0.52) 0.022 (0.36)

3’UTR 0.018 (1.4�10–4) 0.002 (0.16) 0.017 (4.3�10–5)

TIMP4

5’UTR 0.113 (1.6�10–5) 0.026 (1.8�10–4) 0.102 (1.5�10–5)

TSS1500 0.191 (2.7�10–7) 0.064 (3.7�10–8) 0.184 (2.3�10–8)

TSS200 0.137 (1.3�10–6) 0.041 (4.8�10–6) 0.123 (1.2�10–6)

1stExon 0.113 (1.6�10–5) 0.026 (2.5�10–3) 0.102 (3.0�10–5)

Body 0.2 (0.01) 0.043 (0.27) 0.239 (1.6�10–4)

3’UTR 0.018 (0.12) 0.006 (0.11) 0.026 (0.01)

UTR, untranslated region; TSS, transcription start site.
aFor each of the adiposity phenotypes (columns), results report the effect size estimate and nominal p-value for the CpG with the median nom-

inal p-value in each gene region of the gene. Although analyses for the process of gene selection were based on models with DNA methylation on

the M-value scale, once the top genes of interest were selected, results for the top genes were redone with methylation on the beta scale, in order

to provide interpretable effect estimates in this table. Therefore, results displayed here are based on models with the adiposity phenotype of inter-

est as exposure, DNA methylation (on the beta scale) as the outcome and adjusted for sex, race and current smoking.
bFor some genes, not all gene regions are displayed, as no CpGs (after applying our CpG exclusion criteria) were mapped to that gene region.
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modulate adipose tissue structure during development of

adiposity, including adipogenesis, angiogenesis and extra-

cellular matrix remodelling.50 In particular, altered levels

of ANGPT2 protein have been observed in subcutaneous

adipose tissue52 and serum51 of obese and overweight vs

lean individuals. TIMP4 encodes a protein that interacts

with matrix metalloproteinases, which are active in human

adipocytes and have been associated with obesity in ro-

dents and humans.53–57

In addition, genes related to fatty acid and lipid metab-

olism were also identified in our list of top genes, including

LIPE and CETP. LIPE, also known commonly as hor-

mone-sensitive lipase (HSL), encodes a protein expressed

in adipose tissue and the heart where it primarily hydro-

lyzes stored triglycerides to free fatty acids. LIPE is a key

enzyme in adipocyte lipolysis, and alterations in lipolysis

have been frequently associated with obesity.61 LIPE ex-

pression and function in subcutaneous fat cells were

observed to be associated with obesity among a sample of

men and women.62 CETP encodes a protein that plays a key

role in lipid metabolism and was one of the top differentially

expressed genes in adipose tissue in a study of diet-induced

weight loss among obese subjects.63 CETP has been related

to atherosclerosis, type 2 diabetes and obesity.64–67

A prior investigation reported blood DNA methylation

at three CpG sites, located in the HIF3A gene, to be associ-

ated with BMI among 479 individuals, as well as in a pri-

mary and secondary replication cohort. DNA methylation

at these three CpG sites was also shown to be positively

associated with BMI in subcutaneous adipose tissue of 635

White females (reported p-values of 9.27 x 10–7,

1.72 x 10–5 and 5.01 x 10–6 for cg27146050, cg22891070

and cg16672562, respectively).20 Interestingly, we found

that associations of subcutaneous adipose tissue DNA

methylation at these same three CpG loci were positively

associated with BMI in our study sample. HIF3A encodes

a protein that is one component of the heterodimeric hyp-

oxia-inducible factor (HIF) transcriptional complex, which

regulates many adaptive responses to hypoxia.68,69 The

specific role of HIF3A in adiposity is not well known, but

adipocyte-specific targeted disruption of other genes

(HIF1A and ARNT) in the HIF heterodimer was associ-

ated with reduced fat formation and insulin resistance in

transgenic mice fed a high-fat diet, in comparison with

wild-type control mice who were also fed a high-fat diet.70

Several recent publications have highlighted the import-

ance of adjusting for cell type composition in generating

DNA methylation profiles that reflect phenotypic differ-

ences,32,71,72 given that cell type composition is related

both to DNA methylation signatures73 and disease

states.71,74,75 Similar to blood, cell mixture may also be im-

portant to consider in adipose tissue analyses, since this tis-

sue is also heterogeneous, and the cellular composition of

adipose tissue can shift as a result of adiposity and related

inflammation.76,77 Whereas adjustment for cell mixture in

blood DNA methylation analyses is facilitated by the avail-

ability of reference datasets on cell types in blood,31 such

reference datasets are not available for other tissue types

such as adipose tissue. Recently developed statistical meth-

ods, however, allow for cell mixture adjustment without

the need to rely on such reference datasets on underlying

cell types.32,72 We thus implemented the reference-free

method of Houseman et al.32 to adjust for cell mixture ef-

fects in our adipose tissue analyses, and found that all adi-

posity phenotypes, except for BMI, remained associated

with genome-wide DNA methylation. Thus, associations

of DNA methylation with BMI may potentially be due to

cell mixture effects, whereas associations observed with

direct, DXA-assessed measures of fat suggest that regula-

tory mechanisms involving DNA methylation in genes or

pathways are related to development of adiposity.

Table 5. Adipose tissue CpG DNA methylation in the HIF3A

gene in relation to body mass index, the LEAP Project

CpG locus Beta coefficient Nominal p-value

cg07022477 7.5�10–4 0.29

cg19045239 �1.45�10–3 0.07

cg15229275 �1.47�10–3 0.24

cg19310908 2.8�10–4 0.38

cg14117138 3.3�10–4 0.27

cg10594090 �2.3�10–4 0.38

cg14088357 1.0�10–3 0.38

cg02879662 1.7�10–4 0.63

cg09789590 6.8�10–4 0.31

cg05286653 1.8�10–3 0.19

cg27146050a 2.7�10–3 1.3�10–6

cg22891070a 5.8�10–3 4.3�10–6

cg16672562a 3.7�10–3 5.5�10–5

cg12068280 3.3�10–3 3.8�10–5

cg21617218 �9.9�10–5 0.07

cg11253785 �2.6�10–5 0.63

cg01552731 8.4�10–4 0.23

cg25196389 1.1�10–3 0.03

cg23548163 2.8�10–3 0.01

cg26749414 1.1�10–3 0.10

cg20667364 2.5�10–3 0.02

cg07684068 1.1�10–3 0.01

cg20969614 1.0�10–3 0.58

cg25460031 3.8�10–4 0.47

cg14153927 5.7�10–4 0.25

CpGs are listed in order according to their position on the genome, based

on annotation information provided by Illumina.

Analyses are based on models with methylation on the beta scale, adjusting

for sex, race and current smoking.
aCpG loci reported to be associated with BMI in the study by Dick et al.

2014.20
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DNA methylation profiles in peripheral blood leuko-

cytes were not related to adiposity in the current study.

This result is consistent with some prior studies13,15,19 but

in contrast with others.10–12,14,16,20 Heterogeneity in study

populations, methylation profiling methods, analytical

approaches and assessments of cell mixture across studies

may be causes of differences in findings.75

Strengths of this study include the assessment and ana-

lysis of genome-wide DNA methylation performed in both

peripheral blood leukocytes and adipose tissue.

Furthermore, we were able to assess DNA methylation in

relation to direct measures of central fat and body fat dis-

tribution, in addition to BMI. Finally, analyses adjusted for

cell mixture effects in both blood and adipose tissue.

With regard to limitations, DNA methylation was as-

sessed at a single time point in adulthood, and concurrently

with the adiposity outcomes of interest. Consequently, dir-

ectionality or causality cannot be inferred from the associ-

ations observed. In addition, low power due to study

sample size is possible, and may be one reason for lack of

associations in blood. Furthermore, future validation and

replication attempts regarding findings in this study are im-

portant, to establish whether observed associations are ac-

curate and generalizable.

In conclusion, this study found adipose tissue DNA

methylation to be related to several different measures of

adiposity. This provides strong support for a novel epigen-

etic mechanism, potentially affected by both environmen-

tal and genetic factors in development, to contribute to

adiposity.
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Supplementary data are available at IJE online.
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