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Abstract

Background: The DNA methylation-based ‘epigenetic clock’ correlates strongly with

chronological age, but it is currently unclear what drives individual differences. We

examine cross-sectional and longitudinal associations between the epigenetic clock and

four mortality-linked markers of physical and mental fitness: lung function, walking

speed, grip strength and cognitive ability.

Methods: DNA methylation-based age acceleration (residuals of the epigenetic clock es-

timate regressed on chronological age) were estimated in the Lothian Birth Cohort 1936

at ages 70 (n¼920), 73 (n¼299) and 76 (n¼ 273) years. General cognitive ability, walking

speed, lung function and grip strength were measured concurrently. Cross-sectional cor-

relations between age acceleration and the fitness variables were calculated.

Longitudinal change in the epigenetic clock estimates and the fitness variables were

assessed via linear mixed models and latent growth curves. Epigenetic age acceleration

at age 70 was used as a predictor of longitudinal change in fitness. Epigenome-wide

association studies (EWASs) were conducted on the four fitness measures.

Results: Cross-sectional correlations were significant between greater age acceleration

and poorer performance on the lung function, cognition and grip strength measures
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(r range: �0.07 to �0.05, P range: 9.7 x 10�3 to 0.024). All of the fitness variables declined

over time but age acceleration did not correlate with subsequent change over 6 years.

There were no EWAS hits for the fitness traits.

Conclusions: Markers of physical and mental fitness are associated with the epigenetic

clock (lower abilities associated with age acceleration). However, age acceleration does

not associate with decline in these measures, at least over a relatively short follow-up.
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Introduction

DNA methylation is an epigenetic marker that influences

gene expression via the addition of a methyl group to cyto-

sine nucleotides across the genome at cytosine-phosphate-

guanine (CpG) sites.1 The proportion of methylation at

individual CpG sites can be measured on a 0–1 scale,

referred to as beta;2 these beta values are dynamic over

time and can be influenced by both genes and the environ-

ment.3 The ‘epigenetic clock’ is a DNA methylation-

derived measure that correlates highly with chronological

age across the life course.4–6 We showed an association be-

tween the epigenetic clock and death, with a 21%

increased mortality risk for those whose clock measure

was 5 years above their chronological age.7

In that study,7 we did not examine markers of bodily

fitness that might be related to epigenetic clock measures

in later life. Furthermore, it is not generally known how

changes in the epigenetic clock are influenced by or

how they influence changes in such traits. One set of

variables that may run in parallel with a biological clock

are those that reflect fitness or general health and

well-being.8 Markers of fitness include cognitive ability,

grip strength, walking speed and lung function; lower

levels in all of these measures are predictors of premature

mortality.9–16

Here, we examine cross-sectional and longitudinal asso-

ciations between the epigenetic clock and four measures of

physical and mental fitness. We also examine, for the first

time, longitudinal changes in the epigenetic clock in the

same individuals. We hypothesize that the higher the base-

line predicted age (epigenetic clock estimate) relative to

chronological age, the poorer the score on the fitness traits

cross-sectionally, and the greater the decline in the traits

over time.

Methods

The Lothian Birth Cohort 1936

The Lothian Birth Cohort of 1936 (LBC1936) is a longitu-

dinal study of ageing.17,18 Most of its members took part

in the Scottish Mental Survey of 1947, when almost all

children born in 1936 who attended school in Scotland on

4 June 1947 completed a test of general cognitive ability,

the Moray House Test No. 12.19 Individuals born in 1936

who were living in the Lothian area of Scotland were con-

tacted and invited to take part in LBC1936. In total, 1091

people were recruited at wave 1 (age �70 years) with fur-

ther follow-up waves at ages �73 and �76. Extensive

phenotypic data have been collected, including blood bio-

markers, cognitive testing, and psycho-social, lifestyle, gen-

etic and health measures.

Ethics

Ethical permission for the LBC1936 was obtained from the

Multi-Centre Research Ethics Committee for Scotland

(MREC/01/0/56) and the Lothian Research Ethics

Committee (LREC/2003/2/29). Written informed consent

was obtained from all subjects.

Key Messages

• DNA methylation age acceleration correlates cross-sectionally with physical and cognitive fitness in late life.

• DNA methylation age acceleration at age 70 does not predict decline in physical and cognitive fitness between the

ages of 70 and 76 years.

• There is no correlation between the rate of change in DNA methylation age and the rate of change in physical or cog-

nitive fitness.

• There are no epigenome-wide significant associations between individual CpGs and physical or cognitive fitness.
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LBC1936 DNA methylation

Details of DNA methylation measurement have been re-

ported previously.3,7 Briefly, blood samples for methyla-

tion were taken from 1004 LBC1936 participants at wave

1, and sub-groups of 336 and 332 participants were

sampled at waves 2 and 3, respectively. The decrease in

sample size for these latter two waves was partly due to

financial limitations rather than, for example, study drop-

out. DNA methylation typing was measured at 485 512

sites using the Illumina HumanMethylation450BeadChips.

Extensive quality control was performed on these data,

including the removal of probes with a low detection rate

(<95% at P< 0.01). Low-quality samples, e.g. those with

inadequate hybridization, bisulfite conversion, nucleotide

extension or staining signal, were identified via manual in-

spection and removed. Samples with a call rate below

450 000 probes at P< 0.01 were removed. Similarly, sam-

ples where predicted sex, based on XY probes, did not

match reported sex were removed, as were probes on the X

and Y chromosomes. After these QC steps, 450 726 auto-

somal probes remained with 920, 299 and 273 samples

available for analysis at wave 1 (age 70), wave 2 (age 73)

and wave 3 (age 76), respectively. The background cor-

rected probes were used to calculate DNA methylation

age. For the epigenome-wide association studies, beta val-

ues were corrected for effects of sample plate, BeadChip,

position on BeadChip and hybridization date using a gen-

eralized linear model with a logistic link function.

Residuals from this model were used in further analyses.

Data access

LBC data have been submitted to the European Genome-

phenome Archive (EGA; https://www.ebi.ac.uk/ega/home)

under accession number EGAS00001000910.

Fitness Measures

Four fitness measures were considered: walking speed, grip

strength, lung function and cognitive function.20 Walking

speed was measured as the time to walk 6 m. Grip strength

was assessed in the right hand three times using a North

Coast Hydraulic Hand Dynamometer (JAMAR) with the

best measure being carried forward. Lung function was

measured as the forced expiratory volume in one second

(FEV1) based on the highest score from three tests with a

Micro Medical Spirometer. General fluid-type intelligence

was derived from six non-verbal tests of cognitive function

from the Wechsler Adult Intelligence Scale-IIIUK: letter-

number sequencing and digit span backwards (working

memory), matrix reasoning (non-verbal reasoning), block

design (constructional ability), and digit symbol coding

and symbol search (processing speed).21 The scores from

the first unrotated component of a principal components

analysis were extracted and labelled as general fluid

ability, gf. This component explained 52% of the variance

with individual test loadings ranging between 0.65

and 0.77.

Covariates

In addition to age and sex, we adjusted for white blood cell

counts in the epigenome-wide association study ana-

lyses.22,23 These included basophils, monocytes, lympho-

cytes, eosinophils and neutrophils that were measured on

the same blood as that analysed for methylation. Details

are reported in McIllhagger et al.24 Two additional covari-

ates (height and smoking) were also included for some ana-

lyses. Smoking status was self-reported and categorized

into never smoked, ex-smoker, and current smoker.

Standing height was measured to the nearest millimetre

using a SECA stadiometer.

Statistical analyses

Methylation-based age acceleration was calculated for all

subjects at each wave as the residuals from a linear regres-

sion model of methylation age on chronological age.

Methylation age (epigenetic clock) estimates were calcu-

lated based on the algorithm of Horvath.6 The estimated

age was calculated online (http://labs.genetics.ucla.edu/

horvath/dnamage/), where background-corrected beta val-

ues were pre-processed using the calculator’s internal nor-

malization method. As the Horvath methylation age

predictor is based on data from multiple tissue types, it is

robust to differences in white blood cell counts (the num-

bers of basophils, monocytes, lymphocytes, eosinophils

and neutrophils per volume of blood) taken from whole-

blood samples.

Age- and sex-adjusted linear regression models with

standardized fitness and age acceleration inputs were used

to obtain the (semi-partial) correlations between the vari-

ables at wave 1 (age �70). Height was included as an add-

itional covariate in the models for FEV1, grip strength and

walking speed. Smoking status was included in the FEV1

model. Linear mixed models were used to test if either the

fitness variables or the methylation age estimates (epigen-

etic clock measure, not age acceleration) changed over

time. Covariates included age (centred to the minimum

value (67.7 years)and used as the time scale; age conver-

gence was assumed in the model) and sex. As with the

cross-sectional associations, height was included in the

models for FEV1, grip strength and walking speed;
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smoking status was included in the model for FEV1.Wave

1 age acceleration was then added as a fixed effect inter-

action with age to test if it predicted decline in the fitness

measures.

Next, a series of bivariate latent growth curve models

were used to test whether the slopes of later-life decline in

the fitness variables were correlated with the slope of

the increase in methylation age between age 70 (wave 1)

and age 76 (wave 3).25 For these models, we used full-

information maximum likelihood modelling to take into

account all of the available data.

Finally, to determine whether individual methylation

probes were associated with the fitness markers, epige-

nome-wide association studies were conducted using all

available information across the three waves for each trait.

The CpG probes were entered as the dependent variables;

covariates included age, sex, white blood cell counts and

the predictor of interest (cognition, walk speed, grip

strength or lung function). Height was adjusted for in the

FEV1, grip strength and walking speed analysis; smoking

status was controlled for in the FEV1 model. An epige-

nome-wide significance threshold was set at 1.1 x 10�7

(0.05 divided by the total number of probes, 450 726).

Linear mixed models were run in R using the libraries

‘lme4’ and ‘lmerTest’, and the ‘lm’ function in the ‘stats’ li-

brary.26–28 Latent growth curve models were run in MPlus

version 7.2.29

Results

Cohort information

Details of the LBC1936 cohort are presented in Table 1.

Of the 1091 subjects included in the cohort, the mean age

at baseline was 69.5 [standard deviation (SD) 0.8] years,

and 49.8% were female. The mean DNA methylation age

was 65.9 (SD 6.5) years. At waves 2 and 3, the mean ages

were 72.5 (SD 0.7) and 76.2 (SD 0.7) years, and the mean

DNA methylation ages were 67.2 (SD 6.7) and 71.5 (SD

6.2) years, respectively. Individual trajectories and the

mean rate of change in DNA methylation age are plotted

in Figure 1. The fitness variables are also presented in

Table 1 across the three waves. The mean fluid-intelligence

cognitive score at baseline was 0.05 (SD 1.01), which

declined at waves 2 (mean 0.03) and 3 (mean �0.07).

Decline was also observed for grip strength and lung func-

tion across the three waves. Walking speed decreased over

the waves, taking 3.9 s to walk 6 m at wave 1 compared

with 4.7 s at wave 3.Compared with the participants

with methylation data who completed more than one

wave, those with methylation data from the first time point

were slightly older with lower cognitive scores, poorer fit-

ness scores and a higher methylation age (Supplementary

Table 1, available as Supplementary data at IJE online).

Cross-sectional correlations between methylation

age acceleration and fitness

Table 2 presents the associations between age acceleration

at wave 1 and the fitness variables. The linear regression

coefficients are standardized betas after adjustment for

age, sex and, where specified, height and smoking. These

estimates are equivalent to semi-partial correlations. A

higher age acceleration was significantly associated with

lower cognitive scores (beta¼�0.07, P¼ 0.024), weaker

grip strength (beta¼�0.05, P¼0.0097) and poorer lung

function (beta¼�0.06, P¼ 0.0064) at wave 1. Walking

Table 1. Summary of the Lothian Birth Cohort 1936 at waves 1 (age �70), 2 (age �73) and 3 (age �76)

Wave 1 Wave 2 Wave 3

n Mean SD n Mean SD n Mean SD

Age (years) 1091 69.5 0.83 866 72.5 0.71 697 76.2 0.68

gf
a 1072 0.05 1.01 856 0.03 0.97 668 �0.07 0.98

Grip strength (kg) 1085 29.0 10.1 864 28.6 9.5 693 27.7 10.1

FEV1 (l)b 1085 2.36 0.69 856 2.30 0.68 690 2.11 0.64

6-m walk time (s) 1085 3.86 1.16 860 4.35 1.32 693 4.71 1.72

Methylation age (years)c 920 65.9 6.5 299 67.2 6.7 273 71.5 6.2

n % n % n %

Sex (female) 543 49.8 418 48.3 337 48.4

SD, standard error.
aFluid type general intelligence.
bForced expiratory volume in one second.
cEpigenetic clock estimate of DNA methylation age.
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speed had a non-significant association with age acceler-

ation (beta¼ 0.03, P¼ 0.45).

Longitudinal change in methylation

age and fitness

Linear mixed model output for decline in the fitness traits

and change in methylation age over time is presented in

Table 3. There was strong evidence for decline in all fitness

traits over the 6 years of follow-up, conditional on covari-

ates. Cognition declined at 0.05 SDs per year, grip strength

at 0.03 SDs per year, FEV1 at 0.07 SDs per year and walk-

ing speed at 0.10 SDs per year (all P< 2 x 10�16).

Methlyation age increased at 0.14 SDs per year

(P< 2 x 10�16), which corresponds to 0.91 years per

year. There was no evidence of DNA methylation (DNAm)

age acceleration changing over time: estimate 0.01

[standard error (SE) 0.008] SDs per year. There was also

no evidence to suggest variance differences for DNAm

age across the three waves (Bartlett’s K2¼ 2.1, df¼ 2,

P¼ 0.35).

Prediction of change in fitness based on baseline

methylation age acceleration

There was no evidence to suggest that wave 1age acceler-

ation was predictive of subsequent decline in any of the

four fitness measures (Table 4). A weak association was

seen for lung function, although the effect size was very

Table 2. Associations between age acceleration at wave 1

and fitness variables adjusted for age and sex

Age acceleration

Betaa SE P

gf
b �0.07 0.03 0.024

Grip strength (kg) �0.05 0.02 9.7 x 10�3

FEV1 (l)c �0.06 0.02 6.4 x 10�3

6 -m walk time (s) 0.03 0.03 0.45

SE, standard error.
aBoth age acceleration and the system integrity variables were standardized

inputs to the regression analyses, implying that the beta values can be read as

semi-partial correlations. Additional adjustments were also made for height

(grip strength, FEV1 and 6-m walk) and smoking (FEV1).
bFluid type general intelligence.
cForced expiratory volume in one second.

Figure 1. Individual trajectories and mean rate of change in DNA methylation age over time.

Table 3. Change in methylation age and fitness variables over

time

Betaa SE P

Methylation age(years) 0.14 0.007 <2 x 10�16

gf
b �0.05 0.003 <2 x 10�16

Grip strength (kg) �0.03 0.003 <2 x 10�16

FEV1 (l)c �0.07 0.002 <2 x 10�16

6-m walk time (s) 0.10 0.005 <2 x 10�16

aBeta values represent the change per SD in the dependent variable per year

of ageing (centred as time scale) from a linear mixed model adjusting for sex

with a random intercept. Additional adjustments were also made for height

(grip strength, FEV1 and 6-m walk) and smoking (FEV1).
bFluid type general intelligence.
cForced expiratory volume in one second.
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small with a nominal P-value (standardized beta¼
7.8 x 10�4, P¼0.05), corresponding to an increase of

0.0005 l of FEV1 per year for each additional year of age

acceleration. Using a linear regression model with data

from waves 1 and 3 (ages 70 and 76 years), we estimated

the proportion of variance in change in fitness explained

by baseline age acceleration. For decline in lung function,

0.33% of the variance was explained whereas less than

0.06% was explained for the other traits.

Bivariate latent growth models of change in

methylation age and fitness

The four bivariate latent growth curves had adequate-to-

good fit, according to absolute fit indices (all root mean

square error of approximation values <0.082; all com-

parative fit indices >0.925; all Tucker-Lewis indices

>0.915). There was no evidence for coupled change in

methylation age and general intelligence, FEV1, walking

speed or grip strength: the effect sizes for the slope-slope

correlations in the growth curve models were all non-

significant (Table 5). Note that the standard error estimate

for the coupled change in intelligence was very high, indi-

cating an imprecise estimate.

Epigenome-wide association studies

of the fitness variables

Manhattan plots from the epigenome-wide association

studies (EWAS) analyses are shown for the four fitness

traits in Figure 2. No probes passed the Bonferroni signifi-

cance threshold for any of the traits. A list of suggestive

hits at the P< 1 x 10�5 significance threshold are listed in

Supplementary Table 2 (available as Supplementary data

at IJE online).

Discussion

In a cohort of 1091 older individuals followed up from

ages 70 to 76, there was evidence to link DNA methyla-

tion-based age acceleration with measures of physical and

mental fitness. We found significant cross-sectional correl-

ations at age about 70 years between age acceleration and

fluid cognitive ability, grip strength and lung function;

higher methylation age acceleration was linked to poorer

fitness. The four fitness variables showed modest rates of

decline over the follow-up period, and methylation age

increased at the same rate as chronological age. Wave 1

(age �70) age acceleration did not predict rate of change

for any of the fitness variables. The methylation age and

the fitness variables did not show correlated changes be-

tween ages 70 and 76.

There were no significant associations between individ-

ual CpG methylation sites and any of the four fitness traits.

In a previous study on the 27 k methylation array, Bell

et al.31 found no EWAS hits for grip strength but a solitary

hit (cg16463460) for lung function. This hit did not repli-

cate in LBC1936 (P¼0.60).

A strength of the study is the availability of longitudinal

measures of fitness and DNA methylation on a moderately

large sample with a narrow age range. However, not all

participants had DNA methylation at waves 2 and 3, and

so there was limited statistical power to test the associ-

ations between changes in methylation age and changes in

fitness. For example, with a sample size of 300, the power

to detect a correlation of 0.10 is 0.41 compared with 0.85

when the sample size is 900. It will be of interest to see

how methylation age trajectories present in other large

studies with data from across the life course. For example,

do methylation age and age acceleration change linearly

over time or is there a period in life with greater acceler-

ation? Whereas the fitness measures are strong predictors

of health outcomes and mortality,9–16 three are based on

Table 4. Effect of baseline age acceleration on longitudinal

change in the fitness variables

Baseline age acceleration

Betaa SE P

gf
b �4.4 x 10�5 4.6 x 10�4 0.92

Grip strength (kg) 9.2 x 10�5 4.5 x 10�4 0.84

FEV1 (l)c 7.8 x 10�4 4.0 x 10�4 0.05

6-m walk time (s) 5.6 x 10�4 8.1 x 10�4 0.49

SE, standard error.
aBeta values represent the change per SD in the dependent variable per add-

itional year of age acceleration per year of follow-up from a linear mixed

model adjusting for sex with a random intercept. Additional adjustments

were also made for height (grip strength, FEV1 and 6 -m walk) and smoking

(FEV1).
bFluid type general intelligence.
cForced expiratory volume in one second.

Table 5. Associations of the slope of change in methylation

age and the slope of change in system integrity variables be-

tween ages 70 and 76 years

Methylation age slope

Betaa SE P

gf
b slope �0.56 0.82 0.49

Grip strength (kg) slope �0.08 0.38 0.83

FEV1 (l)c slope �0.20 0.15 0.18

6-m walk time (s) slope 0.16 0.26 0.55

SE, standard error.
aBetas represent the standardized slope-slope correlation from bivariate

latent growth curve models.
bFluid type general intelligence.
cForced expiratory volume in one second.
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physical performance measures, with the other measuring

complex cognitive ability. We did combine information

from these four domains into a general factor (49% of the

variance was explained and each test loaded strongly on

the factor), which correlated �0.09 with methylation age

(P¼ 3.8 x 10�4), declined over time, but was not predicted

by baseline methylation age acceleration (P¼ 0.12). In

addition, the ideal tissues to measure methylation directly

related to these outcomes would be muscle (grip strength,

walking speed), lung (FEV1), and brain (cognition).

However, given that the methylation age predictor was

derived from multiple tissue types, we argue that blood is a

reasonable proxy measure for this analysis. We also ran

the analysis using the blood-based Hannum predictor5

which yielded similar but weaker cross-sectional associ-

ations between methylation age acceleration and fitness

(Supplementary Table 3, available as Supplementary data

at IJE online) but no longitudinal findings. Future studies

could consider longitudinal changes in biomarkers that

might offer more information about mechanisms such as

inflammatory and metabolic measures, e.g., an index of

allostatic load.32 Other age-related biomarkers, such as

telomere length, could also be considered.33,34

A previous study of age acceleration using data from four

cohorts, including LBC1936, found no association between

the measure and several health-related, genetic or lifestyle

outcomes such as smoking, cardiovascular disease, diabetes,

hypertension, smoking status and APOE e4 status.7 Here we

provide some evidence to suggest that age acceleration may

also be a marker of general physical and cognitive fitness in

older individuals. Replication is required to determine

whether the findings are consistent and, if so, the size of these

associations, although the present study indicates that they

are likely to be small. In contrast to the cross-sectional find-

ings, there was no sign of wave 1 age acceleration predicting

decline in fitness, or changing in concert with any of the fit-

ness or cognitive variables. There are several explanations

for these null results: (i) there are genuinely no longitudinal

associations;(ii) the rate of change in the fitness variables is

small (maximum decline 0.07 SDs per year), which means

larger samples or longer follow-up periods may be required

to identify effects; or (iii) related to the previous point, the

Figure 2. Epigenome-wide association study Manhattan plots for the four fitness traits. The lines indicate the Bonferroni significant P-value threshold

(P¼ 0.05/450,726¼1.1 x 10�7) and nominal significance (P¼ 1 x 10�5). gf, fluid type general intelligence; FEV1, forced expiratory volume in one

second.
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cohort under investigation may be too young and fit to ob-

serve sufficiently large and reliable declines. In the present

study, we find that the Horvath predictor slightly underesti-

mates the ages (by about 4 years) in older subjects. However,

this systematic deviation does not affect our measure of age

acceleration which is defined as a residual from a linear re-

gression model. Moreover, with a birth cohort, a bias in the

intercept is of relatively minor importance as we are compar-

ing high and low predicted ages for individuals who have es-

sentially the same chronological age.

In conclusion, there is evidence to indicate an associ-

ation between DNA methylation age and general bodily

fitness as measured by four markers of physical and cogni-

tive ability. Given the relatively modest rates of decline in

what is a generally healthy sample of older people, it is per-

haps not surprising that baseline levels of the epigenetic

clock did not predict or correlate with rates of change in

fitness. Following cohorts such as LBC1936 into older age

and jointly modelling dropout due to mortality with de-

cline in the fitness variables will provide a better under-

standing of the epigenetic clock as a biomarker of ageing.

Supplementary Data

Supplementary data are available at IJE online.
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