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Introduction

Within populations, individual adiposity tends to remain

at the same level relative to other individuals from birth

through adulthood, leading to the so-called tracking phe-

nomenon.1–3 However, following individuals over time

with multiple repeated measures of the phenotype can re-

veal fluctuations, with some departing permanently from

their initial trajectory.4 A better understanding of tracking

and of departure from it may help in finding the optimal

conditions for preventing the development of a health-

challenging state of obesity.

Longitudinal tracking in body composition is likely to

be attributable to a set of determinants exhibiting stability

through time, and departures from this would be the result

of temporally unstable events.5 Long-lasting effects after

short-term environmental insults have been identified in re-

sponse to transient exposure during the ‘critical’ periods of

gestation and early infancy,6 sometimes with a much lon-

ger time interval between exposure and effect than is

required for changes in body composition. This suggests

that alternative systems of phenotypic ‘lag’ and ‘memory’

may exist which have marked effects on an individual’s

trajectory.

Given that the biological mechanisms of the long-term

effects of early time-limited exposures are largely un-

known, the challenge is to identify biological changes

induced by early exposures that are stable over long peri-

ods of time, possibly throughout the life course, which

may influence later adiposity development. One plausible

contribution to different patterns of time-dependent

phenotypic variation is that epigenetic signatures of the ex-

posure may act (in differing ways) as a memory of early-

life insult in the genome.7,8

Here we present examples of epidemiological observa-

tions suggesting the existence of the long-term effects of

short-term early exposures influencing adiposity and risk

of obesity development. We review the current biological

evidence for epigenetic alterations associated with the

early-life exposures and with the adiposity phenotype. We

suggest that these persisting, sometimes lagged, effects are

mediated by long-term epigenetic modifications induced

by the earlier exposures, and we outline types of studies

that may be used to unravel the effects. Finally, we discuss

the utility of knowing whether epigenetic changes are

mediating the early exposures, in order to improve the pre-

vention and treatment of obesity.
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Epidemiological evidence of early-life
exposure and later outcomes

Research into the development of the obesity epidemic

among schoolchildren, aged 7–13 years, and young male

conscripts, aged 18–22 years, in Denmark since the inter-

war period has identified two clearly separated phases of

increases in obesity prevalence, concordant between the

age groups when expressed by year of birth9; the first

began in the early 1940s, lasted for about 10 years and was

followed by a stable period until a new even steeper rise

began among those born in the 1970s (Figure 1).

Since the increase was manifest already at school age

and was associated with year of birth, the findings suggest

that the driver of the obesity epidemic in this population

was a preceding change in exposure to some environmental

determinants that operated very early in life. That there

was no corresponding change in the birthweight distribu-

tion over the time of the obesity epidemic, and the stability

of its relationship with risk of later obesity,10 suggests one

of two things: either that the prenatal environment induces

changes influencing later obesity, which are not manifest

in birth weight,11 or that the critical period occurs in early

postnatal life.

Specific early-life exposures found to be associated with

later offspring adiposity include maternal caloric restriction,

smoking, excessive weight gain and adiposity, and stress.

A well-known example of where early exposure may

have led to later increased risk of obesity is in the effects of

the Dutch Hunger Winter during the Second World War12;

exposure to famine in early gestation was found to be asso-

ciated with a 2-fold risk of obesity in adulthood, peaking

in the second trimester, whereas exposure during the last

trimester and the first postnatal months produced lower

overweight rates.13,14

In a recent study of maternal smoking, prenatal and

early postnatal exposure was found to have an influence

on risk of childhood overweight, independent of birth-

weight and exhibiting a dose-response relationship.15

Maternal weight gain early in pregnancy has also been

associated with offspring body mass index (BMI) in both

childhood and adulthood16; importantly, only half of the

association with adult BMI was found to be mediated by

birthweight and childhood BMI, suggesting an effect of

prenatal exposure on later BMI not fully explained by the

tracking of adiposity.

Severe maternal stress, caused by bereavement before,

during or after pregnancy, has also been investigated in re-

lation to obesity risk in the offspring. These studies sug-

gested that the critical period for stress exposure is

pre-17,18 rather than postnatal.19 Notably, the strongest as-

sociation in one study was found to be with exposure in

the 6 months leading up to pregnancy, suggesting an effect

around conception.17 This study also identified a lagged ef-

fect on the overweight outcome, with associations only

becoming apparent from age 10 years onwards.17

The epidemiological observations outlined above point

to some form of lasting effect or biological memory of an

early-life insult on metabolic homeostasis. The flexibility

in homeostatic systems is well established, with examples

of environmental perturbations having both adaptive

and maladaptive implications for later-life metabolic

health.20,21 However, it is unclear how these perturbations

are initiated and how the memory of the early-life insult is

maintained over many years, given the relatively rapid

turnover of most biological components in the body. In

addition, it would be anticipated that changes induced by

early exposures would generally have physiological or

morphological manifestations early in life, and therefore it

is difficult to explain examples of apparent ‘lagged’ effects

on adiposity development at later time points.

Evidence of early-life influences leaving
epigenetic marks

Epigenetic changes have been posited as potential medi-

ators in the early developmental origins of health and

disease.22,23 Embryonic development is critical for estab-

lishing and maintaining epigenetic signatures24,25 and may

be used to explain trimester-specific associations26 due to

differences in sensitivity of the epigenome to modifications

in specific periods of development. However, whether ex-

posures occurring before conception can influence epigen-

etic changes such as DNA methylation in the offspring is

subject to debate.27 Whereas it remains possible for

exposures to influence gametes directly, the role of

Figure 1. Trend from 1930 to 1980 in the prevalence of obesity in Danish

male conscripts (age 18–19 years) by year of birth. The definition of

obesity is BMI � 31 kg/m2.
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post-fertilization reprogramming should be considered.

Alternatively, in the case of maternal stress, it is possible

that the causal exposure was not only acting before con-

ception, but into pregnancy as well,18,28 a period during

which the offspring may be more vulnerable to epigenetic

modifications.

Epigenetic change is also one possible player in a collec-

tion of regulatory machinery which might explain observa-

tional findings of apparently lagged effects. As well as

constant genetic and environmental factors acting to

constrain patterns of epigenetic variation,29 persistent epi-

genetic modification has also been linked to transient

environmental insults.30–32 These modifications may

effectively lie dormant until the phenotypic implications of

the earlier challenge are realised by one of a series of poten-

tial events: a subsequent environmental exposure or biolo-

gical change interacting with the underlying epigenetic

profile to elicit a direct effect on the adiposity phenotype; or

the removal of an adapted epigenetic signature over time,

which may in turn influence the development of adiposity.

Associations between epigenetic
modifications and adiposity

The notion that epigenetic processes are linked to variation

in adiposity is established in both animal models33 and

humans.34 Some studies have investigated associations be-

tween histone modifications and adiposity,35,36 but DNA

methylation is the most researched epigenetic modification

and both global and site-specific methylation changes have

been investigated in the context of obesity. Since the initial

investigation of CpG sites in well-characterised, epigeneti-

cally regulated loci associated with growth, appetite

and adipogenesis,25,37 technological developments have

enabled the genome-wide quantification of site-specific

methylation, which has led to the identification and valid-

ation of multiple obesity-associated differentially methy-

lated sites and regions.38–41,44

However, most of the studies examining the relation-

ship between site-specific DNA methylation and obesity

have been cross-sectional, and so it is difficult to establish

whether the methylation marks associated with obesity are

preceding, following or developed in parallel with the

increased adiposity, and hence evidence for possible causal

relationships is lacking.42–44

Connecting early-life exposures, epigenetic
changes and later adiposity/obesity risk

DNA methylation profiling of the offspring of those

exposed to famine in the Dutch Hunger Winter during

the Second World War provided evidence of persistent

changes 60 years later. Timing of exposure and stage of

fetal development were suggested to be important for

influencing these marks, with associations being identi-

fied that were specific to exposure during particular ges-

tational phases and independent of birthweight.25,37,45,46

Whereas no association was found between DNA methy-

lation at a number of candidate sites and BMI at the

same time point,37 it is possible that the famine induced

methylation changes at other sites in the genome that

might influence obesity development.45 This idea is

supported by the epigenome-wide association study of

prenatal famine exposure described in this issue of IJE

which identified additional CpG dinucleotides linked to

genes involved in growth, development and metabol-

ism.46 However, whether the observed changes in DNA

methylation have mediated the effect of prenatal expos-

ure on later obesity risk is difficult to determine in this

study, given that DNA methylation has only been meas-

ured at one time point.

For the other early-life exposures previously mentioned

(prenatal maternal smoking, adiposity and stress), associ-

ations have been found with offspring DNA methylation

signatures at birth47–51 as well as in later in life.31,52,53 A

number of studies have also identified associations be-

tween changes in DNA methylation and risk of obesity in

later life.54,56,57 However, few studies have investigated

methylation change associated with specific prenatal ex-

posures and subsequent obesity risk, connected in a two-

step framework. Of those that have, no clear mediating

pathways have yet been established,51,54,56 although pos-

sible candidate mechanisms include methylation at the

retinoid X receptor, RXRA,51,54 and the matrix metallo-

proteinase family (MMP),39,49,55 which have been associ-

ated with measures of maternal nutritional or adiposity

exposure and offspring adiposity at later time points, in

independent cohorts. As both genes are thought to be

involved in adipose tissue formation, they may play a

mediating role in adiposity development. However, it re-

mains possible that these associations are confounded,

either by environmental factors or by genetic confounding

given the heritability of adiposity and the strong cis effects

of genetic variants on DNA methylation.58

Furthering our understanding of
mechanisms of epigenetic mediation

Study design

To implicate epigenetic mediation in associations between

early-life exposures and later-life obesity risk34 and to in-

vestigate the persistent nature of epigenetic mechanisms59
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requires a life-course approach.60 Detailed data for periods

covering the life course may be used to identify the contri-

bution of time-specific exposures and their temporal effects

on the phenotype. In particular, large-scale longitudinal

birth cohorts with data on early-life exposures, DNA

methylation measured at multiple time periods and later

adiposity phenotypes are required to better support the

proposed association between early epigenetic signatures

and the emergence of adiposity phenotypes later in

life.43,61,62 Thus, identifying whether persistent or lagged

obesogenic effects of early-life exposures are mediated by

epigenetic modifications requires the identification of: (i)

robust associations between the exposure and methylation

at the end of the early-life exposure period; (ii) persistent

differential methylation and/or expression of genes with a

function relevant to adiposity and obesity development;

and (iii) robust associations between methylation changes

associated with the exposure and variation in adiposity and

development of obesity at later time points. A number of

cohort studies have now obtained epigenome-wide data on

a large number of participants, some at multiple time

points. In addition, the development of multi-institutional

programmes and consortia will aid the replication of find-

ings in this area.

Improving methodologies

The statistical challenges of epigenome-wide association

studies have been discussed in detail elsewhere63–65 and are

also relevant when investigating a potential mediating role

of epigenetic change in the development of obesity. Such

analysis is particularly vulnerable to measurement error of

the mediator and therefore the measurement characteristics

of the identified epigenetic profiles, which can be influ-

enced by technical factors, cellular heterogeneity, time-

varying artefacts and stochastic changes which threaten

the detection of biological signals. Techniques for medi-

ation analysis taken from epidemiological studies should

therefore be considered in this context.66–69

Adiposity and obesity phenotyping

The epidemiology of the adiposity phenotype and its ex-

treme variant, obesity, is often based on anthropometric

measures, such as height and weight, typically combined in

the body mass index [BMI¼weight (kg)/height (m)2], and

various body circumferences, such as waist, hip and thigh.

These proxy measures for adiposity are justified by the

feasibility of measurement in large-scale population studies

combined with their high correlation with the size and

distribution of fat mass. However, the correlations are

not perfect and interpretation of observed individual

differences must allow for differences in the non-fat body

mass. In addition, distinct types of adipose tissue located at

different sites in the body are differentially associated with

metabolic dysfunction. Therefore, in order to advance our

understanding of the mechanisms for fat type formation

there is a need to refine the phenotyping of adiposity.70

Tissue specificity

Epidemiological studies have tended to profile methylation

signatures from easily accessible sources of DNA, such as

cord or peripheral blood. However, how likely it is that

DNA methylation in blood mediates the effect of early-life

exposures on later-life adiposity, and whether blood cell

methylation is representative of the epigenetic state of tar-

get tissues, remain unclear.71 In the context of obesity,

more focus should be given to epigenetic changes in target

tissues of regulatory systems in the brain and gastrointes-

tinal tract involved in appetite signalling, as well as the

endocrine and autonomous nervous systems. In addition,

DNA methylation profiling of more accessible adipose

tissue has the potential to yield informative findings, and

several differentially methylated CpG sites in subcutaneous

adipose tissue methylation have recently been identified

in gene regions previously associated with obesity

development.72

Cellular mechanisms

The functionality of the genes found to be epigenetically

regulated should be investigated, with epigenetic change

integrated into a wide context of transcriptional processes,

expression and tissue-specific regulatory elements. Network

and enrichment analysis, with the use of resources such

as ENCODE [http://genome.ucsc.edu/ENCODE/] and

Roadmap Epigenomics [http://www.roadmapepigenomics.

org/], may help to elucidate how epigenetic change can in-

fluence obesity development. The assessment of obesity as a

metabolic phenotype may be further improved by incorpo-

rating ‘omics’ analysis reflecting cellular, tissue and organ-

system mechanisms, which may also lead to the resolution

of complex biological pathways.

Asserting causality

Many conventional epidemiological methods can be used

to strengthen causal inference in associations involving epi-

genetic changes.73 To date, natural experiments25,37,46,52

sibling comparisons,25,37,46,74 parental comparisons31,51,75

and Mendelian randomization76,77 methods have been

used to investigate the causal effect of early-life exposures

on DNA methylation. However, few studies have applied
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causal inference methods to implicate DNA methylation as

a causal factor influencing obesity development.44,56 In a

recent large-scale epigenome-wide association study,

efforts were made to investigate the directionality of the as-

sociation using cis genetic variants robustly associated

with DNA methylation as a causal anchor.44 A promising

strategy for establishing a causal mediating effect is to ex-

pand this to a two-step Mendelian randomization design,

which can be used to interrogate the causal relationships

between early-life exposures, DNA methylation and out-

comes.78 In this issue of IJE, such a strategy was used to in-

vestigate the role of intermediate epigenetic mechanisms in

the association between maternal vitamin B12 exposure

and offspring IQ.77

Alternatives to epigenetic mediation

If epigenetic mediation cannot be asserted as an explan-

ation of persistent or lagged effects of early exposures in

epidemiological studies, other explanations for the

observed associations should be considered. Firstly, con-

founding may have generated a spurious association seen

observationally, and efforts should be made to assert a

causal effect of the early-life exposure on later adiposity

before embarking on mediation analysis. In addition,

whereas strong associations between early-life exposures

and offspring adiposity may only be observed at later time

points, it is possible that these associations also exist at ear-

lier ages but are not as easily detectable. This may be par-

ticularly relevant to studies in which BMI is used as a

classification for overweight, as this might not be an opti-

mal marker for body fatness in childhood.79 It is also ne-

cessary to rule out tracking of the exposure beyond the

early-life time window of interest in order to assert the per-

sistent effects, through pathway analysis16 or more sophis-

ticated methods.80 Alternatively, early environmental

influences may be mediated by other pathways, including

slow-acting metabolic and physiological processes, such as

the action of glucocorticoids, leptin and insulin signalling

on the development of obesity.81–83 However, epigenetic

regulation of such factors has also been identified,74 imply-

ing that epigenetic changes may act as a transient ‘switch’,

initiating metabolic imprinting.84

Utility of identifying epigenetic changes
associated with development of obesity

Implicating epigenetic mediation is important for prevent-

ive medicine as epigenetic marks in principle should be

modifiable, and therefore it may be possible to intervene

in the causal pathways to obesity development. If the

identified epigenetic marks are sensitive to manipulation

following the early-life exposure period, various interven-

tions may be considered to reverse these marks, such as

through lifestyle changes and hormone or drug administra-

tion, and thus reduce the risk of obesity development and

obesity-related health outcomes.85

If epigenetic marks are associated with the early-life

exposure and later adiposity outcome but are found to

be non-causal, they may still be of value as predictors.

Epigenetic profiling may lead to the development of novel

biomarkers for intrinsic and environmental factors, serving

as an archive for early-life exposure. In addition, epigenetic

signatures may be used as a biomarker that can be used to

detect alterations in the trajectory of metabolic develop-

ment. Although not contributing directly to the aetiology

of obesity, if these marks are correlated between tissues,

show individual variation and are relatively stable over

time, they may be used as predictors of later obesity, i.e.

with the potential for improved risk prediction.34,71

Conclusion

Several epidemiological observations suggest the existence

of long-term effects of short-term early-life exposures on

adiposity phenotypes and obesity development. There is

rapidly accumulating biological evidence for epigenetic al-

terations associated with such early-life exposures and adi-

posity. We suggest that these persisting, possibly lagged,

effects are mediated by long-lasting epigenetic changes

induced by the earlier exposures. However, there are sev-

eral challenges in proving the existence of mediating mech-

anisms. Should we succeed in showing their existence, it

may pave the way for new preventive and therapeutic

interventions at the individual level of obesity.
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