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Abstract

An important task in pharmacogenomics (PGx) studies is to identify genetic variants that may 

impact drug response. The success of many systematic and integrative computational approaches 

for PGx studies depends on the availability of accurate, comprehensive and machine 

understandable drug-gene relationship knowledge bases. Scientific literature is one of the most 

comprehensive knowledge sources for PGx-specific drug-gene relationships. However, the major 

barrier in accessing this information is that the knowledge is buried in a large amount of free text 

with limited machine understandability. Therefore there is a need to develop automatic approaches 

to extract structured PGx-specific drug-gene relationships from unstructured free text literature. In 

this study, we have developed a conditional relationship extraction approach to extract PGx-

specific drug-gene pairs from 20 million MEDLINE abstracts using known drug- gene pairs as 

prior knowledge. We have demonstrated that the conditional drug- gene relationship extraction 

approach significantly improves the precision and F1 measure compared to the unconditioned 

approach (precision: 0.345 vs. 0.11; recall: 0.481 vs. 1.00; F1: 0.402 vs. 0.201). In this study, a 

method based on co-occurrence is used as the underlying relationship extraction method for its 

simplicity. It can be replaced by or combined with more advanced methods such as machine 

learning or natural language processing approaches to further improve the performance of the 

drug- gene relationship extraction from free text. Our method is not limited to extracting a drug-

gene relationship; it can be generalized to extract other types of relationships when related 

background knowledge bases exist.
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1. Introduction

Automatically extracting pharmacogenomics (PGx) specific drug-gene pairs from free text 

is a challenging task. First, gene symbols are short and sometimes ambiguous. Ambiguous 

gene symbols can introduce false positives during the relationship extraction process. For 

instance, the symbol “CAD” can represent the gene symbol for “carbamoyl-phosphate 

synthetase 2, aspartate transcarbamylase, and dihydroorotase”. “CAD” is also the symbol for 

a metabolizing gene for the pharmacological substance l-glutamine. In addition, , “CAD” is 

the abbreviation for “coronary artery disease” in MEDLINE, and co-occurs with many 

drugs indicated for cardiovascular diseases. When “CAD” co-occurs with a drug, the 

relationship can be a PGx-specific drug-gene relationship (e.g., l-glutamine-CAD and 

aspartate-CAD), or drug disease relationship (e.g., cyclosporine-CAD, azathioprine-CAD, 

and prednisone-CAD). Secondarily, the exact semantic relationships between a drug and its 

co-occurred genes can be a drug-gene target relationship (e.g., enalapril-ACE, and 

testosterone-AR), metabolizing (PGx) relationship (e.g., warfarin-CYP2C9, and warfarin-

VKORC1) or others. For accurate PGx-specific drug-gene relationship extraction from free 

text, it is important to disambiguate gene symbols or semantically classify sentences before 

extracting the drug-gene relationship from sentences.

Standard drug- gene relationship extraction algorithms often use natural language processing 

(NLP), machine learning, co-occurrence statistics, or a combination of these methods to 

extract drug-gene pairs from sentences (Figure 1a). Unlike standard methods, our 

conditional methods only extract drug-gene pairs from sentences classified as PGx-related 

(Figure 1b). More specifically, we first automatically classify sentences as PGx-related or 

not based on the occurrences of known PGx-specific drug-gene pairs or PGx-specific genes 

in the sentences. Then, we extract additional drug-gene pairs from the sentences classified as 

PGx-related using standard relationship extraction approaches (co-occurrence methods used 

in this study). For example, the sentence “Substrates for CYP2C9 include fluoxetine, 

losartan, phenytoin, tolbutamide, torsemide, S-warfarin, and numerous NSAIDs” (PMID 

09663807) contains a known PGx-specific drug-gene pair warfarin-CYP2C9 and is 

classified as PGx-related. Additional drug-gene pairs, such as fluoxetine-CYP2C9, losartan-

CYP2C9, phenytoin-CYP2C9, tolbutamide-CYP2C9, and torsemide-CYP2C9, will be 

extracted from this sentence and determined to be PGx-specific.

2. Background

2.1 Importance of PGx-specific drug-gene relationship extraction from free text

Different patients respond differently to the same drug. Both genetic and non-genetic factors 

are involved in an individual's drug response, with genetics accounting for 20 to 95 percent 

of variability [1]. Pharmacogenomics (PGx) is the study of how human genetic variations 

affect an individual's response to drugs, with focuses on drug metabolism, absorption, 

distribution and excretion. The assumption underlying personalized medicine is that an 

individual's genotype profile can be used to predict effects (both efficacy and side effects) of 

drug treatment [2]. An understanding of the genetic variants associated with various drug 

responses is an essential step of personalized medicine [3, 4].
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New PGx discovery depends on knowledge generated by previous research. PGx research is 

a knowledge-intensive field whose goal is to discover new drug-gene relationship 

knowledge and put it to clinical use for disease treatment. In this field, the research focus is 

rapidly shifting from studying an individual entity (e.g., one disease, drug, or gene) to entire 

networks of many different biological entities. Computational analysis of the knowledge 

represented in biomedical networks can uncover important new relationships, generate new 

testable hypotheses and provide new insight into biological systems [5, 6]. Recent 

investigations use systems biology methods to examine drug responses, by utilizing a 

network-based view of the genes involved in complex drug responses [7, 8].

The success of PGx studies largely depends on the availability of accurate, comprehensive 

and machine understandable drug-gene relationship knowledge. Adequate drug-gene 

relationship acquisition and integration are therefore becoming fundamentally important for 

these studies. The number of biomedical research publications, and therefore the underlying 

biomedical knowledge base, is rapidly expanding. The MEDLINE 2010 database contains 

over 20 million records (http://www.ncbi.nlm.nih.gov/pubmed). Scientific literature is the 

ultimate knowledge source for PGx studies. Clearly, with the current rate of growth in 

published biomedical research, it becomes increasingly likely that important knowledge 

connecting drugs, genes and diseases is being missed.

There is a need to develop new ways torsemide acquire structured drug-gene relationship 

knowledge from literature. Biocuration is the activity of transforming the information buried 

in human natural language into machine understandable knowledge by human curators 

reading scientific reports and extracting knowledge from published literature [9]. 

Biocuration has become an essential part of biological discovery and biomedical research. 

Substantial manual curation efforts have been used to extract PGx knowledge from 

literature. For example, The Pharmacogenomics Knowledge Base (PharmGKB) is an 

integrated resource about how variation in human genetics leads to variation in response to 

drugs [10]. Each of the curation projects involves a large number of curators, but their 

knowledge base is still limited by their ability to review all current related medical literature 

in a timely manner. To extract biomedical information, including drug-gene relationships, 

from published literature manually and to transform it into machine understandable 

knowledge is a difficult task, since biomedical terminologies and knowledge are huge, 

dynamic, diversified and complex. In addition, human curators are liable to error and 

subjective bias. Therefore, any manually curated terminology and knowledge base is 

deemed to be incomplete [11, 12]. Automated information extraction of structured 

knowledge from natural language text is crucial to biomedical researchers in their search for 

complete and up-to-date knowledge from published scientific reports. Compared to potential 

biocurator errors generated by heavy workload and/or bias, automated extraction will 

improve the quality and timeliness of the knowledge base.

2.2 Methods for biomedical relationship extraction from free text

Currently there are two major types of approaches for extracting biomedical relationships, 

including drug-gene relationships, from free text. The simplest and also the most widely 

used approaches are based on co-occurrence and use frequency-based statistics to rank 
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extracted relationships. Li et al. used the co-occurrence of drug and disease names in 

MEDLINE abstracts to derive drug–disease relationships and to build a disease specific 

drug–protein network [13]. Yen et al. developed a co-occurrence approach based on an 

information retrieval principle to extract gene-disease relationships from text [14]. Blaschke 

et al. and Rosario et al. extracted semantic relationships among entities based on co-

occurrence of two named entities and one semantic type from text [15, 16]. The assumption 

of co-occurrence methods is that, if two entities appear together, they may be related. 

Cooccurrence methods often have high recall. However, it is often true that two entities are 

mentioned together without being semantically related [17]. Therefore, an important 

shortcoming of these methods is that they introduce many false positives and suffer low 

precision. In addition, no semantics are provided for the associations. The second type of 

relationship extraction algorithm is based on NLP techniques to recognize entities and 

relationships using domain-specific lexicons and syntactic grammars. Syntactic templates 

and shallow parsing are often used in these NLP-based approaches. NLP methods have the 

advantage of being able to learn semantic types between entities. However, NLP methods 

sometimes suffer from low recall [18]. Rindflesch et al. extracted protein-binding 

relationships from text using NLP methods [19]. Leroy et al. have developed a shallow 

parser based on closed-class words to capture a variety of relationships from text [20]. 

Friedman et al. developed an NLP system called GENIE to extract molecular pathways from 

journal articles [21]. Rindflesh et al. developed a rule-based symbolic natural language 

processing system called SemRep to extract semantic predications from free text using the 

Unified Medical Language System (UMLS)] as the underlying knowledge base [22, 23]. 

However, due to the complexity of natural language, these NLP-based relationship 

extraction methods often target only specific semantic relations.

2.3 Prior studies of PGx-specific drug-gene relationship extraction from free text

Developing automatic approaches for extraction of PGx-specific drug-gene relationships 

from free text is a highly active research area. Both co-occurrence and NLP methods have 

been used. Chang et al. extracted drug-gene pairs from literature using the co-occurrence 

method and then used supervised machine learning algorithms to classify the extracted 

relationships into five subcategories such as genotype, clinical outcome, or 

pharmacokinetics [24]. The co-occurrence algorithm was able to achieve a recall of 78% 

when evaluated using one review article from the literature. However, the precision was not 

reported in Chang's study. Garten et al. developed Pharmspresso, a text-mining tool for 

extracting PGx concepts and relationships from full text [25]. The evaluation in Garten's 

study was done using manually curated PGx related articles, and the performance of 

extracting drug-gene relationships from other types of text (e.g., general MEDLINE articles) 

was not evaluated. Guided by the drug-gene relationships available in PharmGKB, Theobald 

et al. constructed n-way Bayesian networks based on conditional probability tables extracted 

from co-occurrence statistics over the entire MEDLINE corpus, and produced a broad-

coverage analysis of the relationships between these biological entities [26]. The focus of 

Theobald's study was on building a Bayesian network. No evaluation was done in terms of 

the precision and recall of the extracted drug-gene relationships. Hansen et al. recently 

described an algorithm that uses existing knowledge to rank 12,460 genes in the human 

genome on the basis of their potential relevance to specific drugs [7]. Strictly speaking, this 
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work did not focus on developing automatic methods for drug-gene relationship extraction 

from free text; it used existing biomedical knowledge about drug structures and indications 

in order to improve the precision of ranking PGx-specific genes for a given drug. Garten et 

al. extended Hansen's work by replacing the drug-gene relationships in PharmGKB with the 

drug-gene co-occurrence relationships extracted from manually curated PGx-specific full-

text articles [27] and showed that a knowledge base derived from cooccurrence relationships 

mined from PGx specific literature performs as well as the curated knowledge base. 

Although the focus of these two studies was not on automatic drug-gene relationship 

extraction from free text, they demonstrate that prior knowledge is important for PGx-

specific drug-gene relationship determination and that drug-gene co-occurrences based on 

highly relevant PGx literature have quality comparable to those curated by humans. Ahlers 

et al. developed an NLP system (Enhanced SemRep) to extract semantic relationships on 

pharmacogenomics in Medline citations [28]. The development of Enhanced SemRep 

depends on domain knowledge in the UMLS. Coulet et al. have developed NLP techniques 

to build a PGx ontology from 17 million MEDLINE abstracts by using the syntactic 

dependency structure of MEDLINE sentences to systematically extract common 

relationships and to map them to a common schema [29]. This method, based on detailed 

syntactic dependency analysis, achieved high precision. Recall was not reported.

2.4 Special challenges in PGx-specific drug-gene relationship extraction from free text and 
our approach

As we discussed in the Introduction section, extracting PGx-specific drug-gene relationships 

from free text is a challenging task. First, gene symbols are sometimes ambiguous. For 

instance, the symbol “CAD” represents the metabolizing gene “carbamoyl-phosphate 

synthetase 2, aspartate transcarbamylase, and dihydroorotase”. “CAD” is also the 

abbreviation used for “coronary artery disease”. When a drug name co-occurs with the 

symbol “CAD”, the relationship can be a drug-gene relationship as shown in sentence (1), or 

a drug-disease relationship as shown in sentence (2).

(1) “Mammalian DHOase (S-dihydroorotate amidohydrolase, EC 3.5.2.3) is part of 

a large multifunctional protein called CAD, which also has a carbamoyl-

phosphate synthetase [carbon-dioxide: L-glutamine amido-ligase (ADP-

forming, carbamate-phosphorylating), EC 6.3.5.5] and aspartate 

transcarbamoylase (carbamoyl-phosphate: L-aspartate carbamoyltransferase, 

EC 2.1.3.2) activities” (PMID 01967494).

(2) “The possible role of viral infection in the genesis of CAD stimulated the review 

of 102 patients transplanted since the introduction of triple drug 

immunosuppression (cyclosporine, azathioprine and prednisone) to assess the 

importance of posttransplant cytomegalovirus infection in the development of 

CAD in the cardiac graft” (PMID 02547298)

For accurate drug- gene relationship extraction, it is necessary to disambiguate gene symbols 

or classify sentences based on the features or prior knowledge inherent in the sentences. In 

this study, we first automatically classify sentences as PGx-related or non-PGX-related, 

based on the occurrences of known PGx-specific drug-gene pairs in the sentences. Then, we 
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extract additional drug-gene pairs from the sentences classified as PGx-related. For example, 

sentence (1) contains one known PGx-specific drug-gene pair CAD-L-aspartate, and is 

classified as PGx-related. An additional drug-gene pair CAD- L-glutamine is extracted from 

sentence (1) if this pair is unknown. On the other hand, sentence (2) does not contain any 

known PGx-specific drug-gene pairs and is classified as non-PGX-related. Thus, no drug- 

gene relationship extraction is performed for sentence (2).

Secondarily, even though a gene is drug-related, the exact semantic relationships between 

the gene and co-occurred drugs can be complicated. The semantic relationships between a 

drug and a gene can be a drug- gene target relationship as shown in sentences (3) and (4), or 

a drug-gene metabolizing relationship as shown in sentences (5) and (6).

(3) “AR agonists and inhibitors included dihydrotestosterone (DHT), testosterone 
(T), and flutamide (Flu)” (PMID 17559882).

(4) “ACE inhibitors: enalapril and captopril compared” (PMID 02998719).

(5) “Pharmacogenetic testing of CYP2C9 and VKORC1 alleles for warfarin” 

(PMID 18281922).

(6) “Substrates for CYP2C9 include fluoxetine, losartan, phenytoin, tolbutamide, 

torsemide, S-warfarin, and numerous NSAIDs” ” (PMID 09663807).

In this study, we first used known PGx-specific drug-gene relationship knowledge to 

classify sentences, and then extracted drug-gene pairs from PGx-related sentences. For 

example, neither sentence (3) nor (4) contains known PGx-specific drug-gene pairs, and our 

algorithm will classify these two sentences as non-PGx-related. Sentence (5) contains a 

known PGx-specific drug-gene pair warfarin-CYP2C9 and will be classified as PGx-related. 

An additional drug-gene pair warfarin-VKORC1 will be extracted from sentence (5) if this 

pair is unknown. Similarly, sentence (6) will be classified as PGx-related based on the 

occurrence of a known drug-gene pair warfarin-CYP2C9. Additional PGx-specific drug-

gene pairs such as fluoxetine-CYP2C9, losartan-CYP2C9, phenytoin-CYP2C9, tolbutamide-

CYP2C9, and torsemide-CYP2C9 will be extracted from this sentence.

The focus of our study is not to develop an independent drug-gene relationship extraction 

algorithm. Instead, our goal is to demonstrate that drug-gene relationship extraction 

algorithms can benefit from the addition of existing prior knowledge. The main contribution 

of this study is that we use prior knowledge, i.e., the known drug-gene pairs available in 

PharmGKB, to classify sentences as PGx-related or non-PGx-related before applying any 

drug-gene relationship extraction algorithms. Our assumption is that if a sentence contains 

one known PGx-specific drug-gene pair, it is very likely that this sentence is a PGx-related 

sentence. Then additional drug-gene pairs extracted from PGx-related sentences are likely to 

be PGx-specific drug-gene pairs. In this study we use co-occurrence based on a relationship 

extraction algorithm for its simplicity. However, the co-occurrence based method can be 

easily replaced by more advanced methods such as machine learning, NLP or rule-based 

approaches.
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3. Data and methods

We have used 20 million MEDLINE abstracts (roughly 100 million sentences) published 

from 1965 to 2010 as the text corpus for our task of PGx-specific drug-gene relationship 

extraction. The drug-gene pairs available in PharmGKB were used as prior knowledge and 

as an evaluation gold standard. The PharmGKB database, downloaded in January of 2011, 

contained 10,898 drug-gene pairs, 918 drugs, and 2,388 genes. Annotation of the 20 million 

MEDLINE abstracts and 100 million sentences with drugs and gene terms was done using 

ThinTek's high performance tagger (http://www.thintek.com/). ThinTek's tagger is a cloud-

based fast general-purpose biomedical named entity recognizer running on multiple 

processors in parallel. The tagger is based on simple exact string matching; no syntactic 

parsing was used. The tagger takes as input either user-provided biomedical dictionaries or 

the biomedical dictionaries that ThinTek provides. In this study, we provided the tagger the 

lists of drug and gene terms from PharmGKB. For each MEDLINE sentence or abstract, we 

collected the co-occurring drug-gene pairs.

There are total 918 drugs, 2,388 genes and 10,898 drug-gene pairs in PharmGKB. Only 

2,943 (27%) out of the 10,898 pairs appear in MEDLINE sentences, 3,957 (36%) pairs 

appear in MEDLINE abstracts, and 1,014 pairs appear in MEDLINE abstracts, but not in 

sentences since a drug and gene can occur in the same abstract but be in different sentences 

(Table 1). This overall low percentage is partly due to the fact that the drug terms in 

PharmGKB drug-gene relationships include drug class names such as anticholinesterases, 

antihypertensives, antimalarials and beta blocking agents, and non-natural language drug 

names such as “antivirals for treatment of HIV infections, combinations”, “sulfonamides, 

urea derivatives”, “antiinflammatory and antirheumatic products, non-steroids”, 

“multivitamins, plain”, and “interferon alfa-2a, recombinant”. These terms are not 

commonly used in MEDLINE research articles. To evaluate MEDLINE-based PGx-specific 

drug-gene relationship extraction algorithms, we used the PharmGKB drug-gene pairs that 

appear in MEDLINE as the gold standard. We used the 2,943 drug-gene pairs that occur in 

MEDLINE sentences as the gold standard to evaluate drug-gene relationship extraction from 

sentences, and the 3,957 pairs that appear in MEDLINE abstracts were used as the gold 

standard for evaluating relationship extraction from MEDLINE abstracts.

We developed two methods to extract PGx-specific drug-gene pairs from MEDLINE 

sentences. The algorithm “Unconditioned” is a simple co-occurrence based method in which 

drug-gene pairs are extracted from unclassified sentences (Figure 2a). The algorithm “Drug-

Gene Conditioned” first classifies sentences based on the occurrence of known drug-gene 

pairs from PharmGKB before relationship extraction (Figure 2b). The drug-gene pairs in 

PharmGKB are split into two parts: one part is used as training data set in the algorithm 

“Drug-Gene Conditioned”, but not used in the algorithm “Unconditioned”), and the other 

part is used as testing data. The same testing data was used for both methods. The Student's 

t-test was performed for significance evaluation. A comparison evaluation was determined 

as significant when p value is less than 10E-7.
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4. Results

4.1 Performance comparison of the unconditional and conditional methods for PGx-
specific drug-gene relationship extraction from MEDLINE

We compared the precision, recall and F1 measure of the two co-occurrence based 

approaches (“Unconditioned” vs. “Drug-Gene Conditioned”) for PGx-specific drug-gene 

pair extraction from both MEDLINE sentences and abstracts. The “Unconditioned” method 

is a simple co-occurrence based method for drug-gene extraction from unclassified 

MEDLINE sentences or abstracts. The “Drug-Gene Conditioned” method uses the 

occurrence of known drug-gene pairs to classify sentences as PGx-related or not before 

relationship extraction. The drug-gene pairs from PharmGKB were randomly split into 

training data set and testing data set at five different training/testing ratios: 10%-90%, 

20%-80%, 30%-70%, 40%-60%, and 50%-50%. One part (training set) was used as the prior 

knowledge for classifying sentences in the method “Drug-Gene Conditioned”, but not used 

in the method “Unconditioned”. The other part (testing set) was used for evaluation for both 

methods.

As shown in Table 2, the method “Drug-Gene Conditioned” consistently has significantly 

better precision and F1 values than the “Unconditioned” method. These improvements were 

significant for both sentence-based and abstract-based drug-gene pair extraction at all five 

different training/test ratios. For example, when 10% of PharmGKB drug-gene pairs (294 

out of the 2,943 pairs that appear in MEDLINE sentences) were used as prior knowledge for 

sentence classification, and the remaining 90% were used as testing data, the method “Drug-

Gene Conditioned” achieved a precision value of 38.8%, more than a 200% improvement 

over the Unconditioned method (precision: 11.7%). The recall is lower for the method 

“Drug-Gene Conditioned”, but the F1 score, which is the balanced measure of precision and 

recall, is significantly higher (37.7% vs. 20.9%). The precision and F1 improvements are 

consistent across document types (sentences or abstracts) and not sensitive to the amount of 

prior knowledge and testing data used. For the “Unconditioned” method, the precision 

slightly decreased from 11.7% to 9.1% when testing data was decreased from 90% to 50%. 

For the “Drug-Gene Conditioned” method, the precision also significantly decreased from 

38.8% to 24.9% when less test data was used, while recall significantly increased from 

36.6% to 65.1% and F1 did not change (37.1% to 36.1%). However, the “Drug-Gene 

Conditioned” method has significantly better precision and F1 than the “Unconditioned” 

method, even when the amount of testing data was decreased. In addition, both the 

“Unconditioned” and “Drug-Gene Conditioned” methods for drug-gene relationship 

extraction from sentences consistently has significantly better precision and F1 scores than 

from abstracts (p-values less than 10E-7).

These results show that using known drug-gene relationship knowledge to guide drug-gene 

relationship extraction from free text can significantly reduce false positives while keeping 

high recall. The occurrence of a known PGx-specific drug-gene pair in a sentence or abstract 

can implicitly classify the sentence or abstract as PGx-related. Drug-gene relationship 

extraction from sentences or abstracts classified as PGx-related has significantly better 

precision and F1 scores than from unclassified sentences. In this study, we used the simple 
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co-occurrence-based relationship extraction method, which can be easily replaced by more 

advanced methods such as NLP and machine learning methods. We expect that these 

advanced methods will benefit from extraction from PGx-related sentences.

3.3 Comparison of different conditional methods for PGx-specific drug-gene extraction

We have shown that the occurrence of known PGx-specific drug-gene pairs in a sentence or 

abstract can implicitly classify the sentence or abstract as PGx-related and therefore improve 

the overall precision and F1 of subsequent drug-gene relationship extraction (Table 2). We 

then tested whether or not the appearance of additional drug terms, gene terms or both (not 

necessarily known PGx-specific drug-gene pairs) can also implicitly classify a sentence or 

abstract as PGx-related. We have developed five different PGx-specific drug-gene extraction 

methods: (1) The “Unconditioned” method extracts drug-gene pairs from unclassified 

sentences, (2) The “Drug-Gene Conditioned” method extracts drug-gene pairs only from 

sentences containing known PGx-specific drug-gene pairs, (3) The “Drug Conditioned” 

method performs relationship extraction only from sentences that contain at least one 

additional drug term, (4) The “Gene Conditioned” method performs relationship extraction 

only from sentences that contain at least one additional gene, and (5) The “Drug × Gene 

Conditioned” method extracts drug-gene pairs only from sentences containing at least one 

additional drug term and one gene term. The method “Drug-Gene Conditioned” is 

conditioned on the appearance of actual drug-gene pairs from PharmGKB while the method 

“Drug × Gene Conditioned” is conditioned on the appearance of the cross product of genes 

and drugs from PharmGKB. We split the drug-gene pairs in PharmGKB into training data 

set and testing data set. We use the drug terms, gene terms, or drug-gene pairs in the training 

data set to implicitly classify sentences before relationship extraction for conditioned 

methods. For example, when we use a randomly selected 10% of PharmGKB drug-gene 

pairs as training data set, we obtain 294 known drug-gene pairs, 189 drugs, 158 genes, and 

total of 29,862 (189 × 158) drug-gene pairs. In the “Drug-Gene Conditioned” method, a 

sentence is classified as positive if it contains at least one of the 294 known drug-gene pairs. 

In the “Gene Conditioned” method, a sentence is classified as positive when it contains at 

least one of the 158 genes. In the “Drug × Gene Conditioned” method, a sentence is 

determined as positive only if contains at least one of the 29,862 (189 × 158) drug-gene 

pairs; the drug-gene pairs do not necessarily all appear in MEDLINE and are not necessarily 

valid PGx-specific drug-gene pairs. The 29,862 drug-gene pairs comprise a superset of all 

valid PGx-specific drug-gene pairs, including the 294 pairs derived from PharmGKB.

As shown in Table 3, the F1 scores for the “Drug-Gene Conditioned”, “Gene Conditioned” 

and “Drug × Gene Conditioned” methods are similar (37.1% vs. 30.3% vs. 32.4%) when 

10% of PharmGKB data was used as training data set. When 50% of PharmGKB data was 

used as training data set, the F1 score for the “Drug-Gene Conditioned” method is 

significantly higher than those for the “Gene Conditioned” and “Drug × Gene Conditioned” 

methods (36.1% vs. 17.3% vs. 19.5%). The same trend holds true for drug-gene extraction 

from abstracts. All three methods (“Drug-Gene Conditioned”, “Gene Conditioned” and 

“Drug × Gene Conditioned”) have significantly better precision and F1 values than the 

“Unconditioned” and “Drug Conditioned” methods. The “Unconditioned” and “Drug 

Conditioned” methods have similar F1 scores for drug-gene relationship extraction from 
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MEDLINE sentences (20.9% vs. 23.4% and 16.7 vs. 17.0) when 10% or 50% of PharmGKB 

data is used as training data set. In summary, drug-gene relationship extractions from text 

documents (sentences or abstracts) containing known PGx specific drug-gene pairs (“Drug-

Gene Conditioned”), gene terms (“Gene Conditioned”) or gene terms plus drug terms 

(“Drug × Gene Conditioned”) have significantly better precision and F1 scores than methods 

based on unclassified documents (“Unconditioned”) or documents containing additional 

drug names from training dataset. The “Gene Conditioned” method performs as well as both 

the “Drug-Gene Conditioned” and “Drug × Gene Conditioned” methods, meaning that the 

appearance of a PGx-specific gene symbol in a sentence is sufficient to classify it as PGx-

related. For example, if a sentence contains a known PGx-specific gene symbol “CYP2C9”, 

it is likely that any drug-gene pairs extracted from this sentence are PGx-specific. In 

addition, the occurrence of a PGx-specific symbol such as “CYP2C9” in a sentence can 

implicitly disambiguate other gene symbols in the same sentence. For example, if the 

symbol “CAD” appears in a sentence containing the symbol “CYP2C9”, it is highly possible 

that “CAD” represents the metabolizing gene “carbamoyl-phosphate synthetase 2, aspartate 

transcarbamylase, and dihydroorotase”, instead of the short name for “coronary artery 

disease”. On the other hand, occurrence of additional drug names from known drug-gene 

pairs cannot classify a sentence as PGx-related or not. Drug terms can appear together with 

ambiguous gene symbols such as “CAD” in sentences specifying drug-disease relationships, 

or with gene symbols representing drug-gene target relationships instead of drug-gene 

metabolizing relationships.

4.3 Detailed analysis of the mechanisms underlying the performance improvements

We use specific examples to show how the “Drug-Gene Conditioned” method can implicitly 

disambiguate gene symbols. We picked six known ambiguous gene symbols (“PC”, “GC”, 

“CP”, “BID”, “NP”, and “CAD”) based on our experience. For each of these ambiguous 

gene symbols, we extracted the full gene names from PharmGKB and non-gene-related 

names by searching MEDLINE. As shown in the Table 4, the “Drug-Gene Conditioned” 

method (column 5) significantly reduces false positive rates compared to the 

“Unconditioned” method (column 4). For example, total 506 different drug names co-occur 

with the symbol “PC” in MEDLINE. However, more than 99% of the cooccurrences are not 

PGx-specific gene-drug pairs based on manual examination. The “Drug-Gene Conditioned” 

method reduces the false positives from 506 to 33 for the symbol “PC’. Similar reductions 

are obtained for the other five ambiguous gene symbols.

Next we show how the conditional method reduces false positive rates by examining some 

specific drug-gene pairs involving ambiguous gene symbols. For example, the drug 

dipyridamole co-occurred with the symbol “CAD” 334 times in MEDLINE; this pair never 

appears together with known drug-gene pairs from PharmGKB such as “warfarin-CYP2C9” 

(Table 5). The same is true for the ambiguous symbol “GC”. The symbol “GC” is highly 

ambiguous; it refers to “glucose consumption”, “glucose clearance”, “glucose cycling”, 

“glucose clamp”, and “glucocorticoids”. For example, “GC” represents glucocorticoids in 

the sentence, “In the liver, glucocorticoids (GC) normally regulates the glucose synthesis by 

acting on PEPCK” (pmid17182006). The drug choline and symbol “GC” appear together in 

MEDLINE sentences 1,126 times. However, the pair choline-GC has not appeared together 
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with any of the known PGx drug-gene pairs. Since the “Drug-Gene Conditioned” method 

only extracts drug-gene relationships from sentences containing known PGx-specific drug-

gene pairs, the pair dipyridamol-CAD or choline-GC will be extracted.

5. Discussion

We have developed four conditional methods (“Drug-Gene Conditioned”, “Drug 

Conditioned”, “Gene Conditioned” and “Drug × Gene Conditioned”) for PGx-specific drug-

gene relationship extraction from MEDLINE. We have compared conditional methods to an 

unconditioned method, which extracts drug-gene pairs from unclassified sentences. We have 

shown that the “Drug-Gene Conditioned”, “Gene Conditioned” and “Drug × Gene 

Conditioned” methods significantly improve precision and F1 measures, compared to both 

“Unconditioned” and “Drug Conditioned” methods in extracting PGx-specific drug-gene 

relationships from MEDLINE. In this study, we used a co-occurrence based method for 

drug-gene relationship extraction for its simplicity. However, this co-occurrence based 

method can be replaced by more advanced relationship extraction methods such as machine 

learning or NLP approaches.

Our approaches have a number of limitations. First, the precision of conditional methods 

largely depends on the precision of the underlying prior knowledge. If there are incorrect or 

ambiguous drug-gene pairs in the underlying knowledge base, the errors and ambiguities 

will propagate into the extracted drug-gene pairs. For example, in the sentence “At rest 

patients with CAD showed an increased myocardial extraction of glutamate, glucose and 

lactate and an augmented glutamine and alaninerelease compared with controls” (PMID 

02707269), CAD-glutamate is a disease-drug pair. However, the same pair is also a PGx-

specific drug-gene pair in PharmGKB. Because of this ambiguous pair, our algorithm will 

classify the above sentence as PGx-related. Three additional drug-CAD pairs, namely CAD-

glucose, CAD-lactate and CAD-alanine, will be extracted as PGx-specific drug-gene pairs. 

In this situation, the “Gene Conditioned” method will be able to classify this sentence as 

non-PGx-related since it does not contain additional PGx-specific genes. The “Gene 

Conditioned” method depends on highly specific PGx-specific gene symbols. For example, 

the PGx-specific gene symbol “CYP2C9” or “VKORC1” can disambiguate a sentence as 

PGx-related or not. On the other hand, ambiguous gene symbols such as “PC” or “GC” 

cannot. Therefore, to further improve precision of conditional methods, we need to develop 

methods to identify PGx-specific gene symbols or drug-gene pairs and only use non-

ambiguous gene symbols or pairs as the prior knowledge. An alternative approach would be 

to develop text classification methods to classify a sentence or abstract as PGx-related or 

non-PGx-related based on text features such as the text patterns that researchers use to 

describe PGx-specific drug-gene relationship.

The recall of the conditional methods depends on the coverage of the underlying prior 

knowledge. Consider the sentence, “Oxatomide was metabolized by CYP2D6-Val and 

CYP3A4, but not by CYP1A2, CYP2C9-Arg, CYP2C9-Cys or CYP2C19” (PMID 

15133245). The drug oxatomide does not associate with any genes in PharmGKB. The 

“Drug-Gene Conditioned” algorithm will classify this sentence as non-PGx-related since it 

does not contain any known PGx-specific drug-gene pairs and will not extract the valid pairs 
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(CYP2D6-oxatomide and CYP3A4-oxatomide) from the sentence. The “Unconditioned” 

method will extract these pairs, including false positives (CYP1A2-oxatomide, CYP2C9-

oxatomide, and CYP2C19-oxatomide).

In this study, we used a co-occurrence based method as the underlying drug-gene 

relationship extraction for conditional methods. The limitation of any co-occurrence 

approaches is that they cannot differentiate pure co-occurrences from real semantic 

relationships. For example, in the sentence “In the present study, the possible role of genetic 

polymorphism of three drug-metabolizing enzymes, debrisoquine/sparteine hydroxylase 

(CYP2D6), glutathione S-transferase mu (GSTM1), and N-acetyltransferase (NAT2), as a 

putative genetic component of human longevity, was explored” (PMID 9654200), there are 

three drugs (debrisoquine, sparteine, and glutathione) and three drug metabolizing genes 

(CYP2D6, NAT2 and GSTM1). The gene symbols “CYP2D6”, “NAT2” and “GSTM1” are 

highly specific drug metabolizing genes. In addition, the drug-gene pairs “debrisoquine-

CYP2D6” and“sparteine-CYP2D6” pairs are in PharmGKB. Our conditional methods 

(“Drug-Gene Conditioned”, “Gene Conditioned” and “Drug × Gene Conditioned”) will 

correctly classify this sentence as PGx-related. The co-occurrence based relationship 

extraction methods will extract nine (3 ×3) drug-gene relationships (the same as the 

“Unconditioned”), method instead of four valid PGx-specific drug-gene pairs (debrisoquine-

CYP2D6, sparteine-CYP2D6, glutathione-GSTM1, and glutathione-NAT2). In this situation, 

more advanced methods such as machine learning, NLP approaches, or human curation will 

be still needed.

In summary, the performance of the conditional methods for PGx-specific drug-gene 

relationship extraction depends on the quality of the prior knowledge and the underlying 

relationship extraction methods. Imprecision and ambiguity of prior knowledge decrease the 

overall precision of conditional methods. The coverage of the prior knowledge can also 

affect the recall. In addition, the underlying relationship extraction algorithms (co-

occurrence, machine learning, NLP, or rule-based approaches) will affect the performance 

of the corresponding conditional methods. It will be interesting to investigate how 

conditional prior knowledge can affect other relationship extraction methods in PGx-specific 

drug-gene relationship extraction. It may be possible that the conditional methods only have 

a big impact on methods with low precision such as the co-occurrence method, not on those 

with high precision such as NLP or rule-based approaches.

6. Conclusions

We have developed knowledge-driven conditional relationship extraction approaches to 

extract PGx-specific drug-gene pairs from 20 million MEDLINE abstracts. We have used 

the drug-gene pairs available in PharmGKB as prior knowledge to implicitly classify 

sentences before applying relationship extraction methods. The conditional methods 

significantly improve both the precision and F1 measures compared to the traditional 

(unconditioned) method (precision: 0.345 vs. 0.11; recall: 0.481 vs. 1.00; F1: 0.402 vs. 

0.201). Our method is not limited to PGx-specific drug-gene relationship extraction, and it 

can be generalized to extract other types of biomedical relationships from free text, provided 

that high quality prior background knowledge exists for a give task. In the future, we will 
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develop automatic approaches to identify ambiguous gene and drug-gene pairs from 

PharmGKB, to further improve the precision of prior knowledge and of the conditional 

methods. In addition, we will develop conditional PGx-specific drug-gene extraction 

methods based on more advanced relationship extraction methods such as NLP approaches.
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➢ Knowledge of drug-gene relationships is important for pharmacogenomics (PGx) 

studies.

➢ Automatic PGx-specific drug-gene relationship extraction from free text is 

difficult.

➢ We develop a conditional relationship extraction method using prior knowledge.

➢ We compare the conditional method to method using no prior knowledge.

➢ Conditional method has significant better precision and F1 measure than 

unconditional method.
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Figure 1. 
(a) Standard and (b) conditional PGx-specific drug-gene relationship extraction methods
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Figure 2. 
(a) Unconditional co-occurrence method for drug-gene relationship extraction from 

unclassified sentences; (b) Conditional co-occurrence (“Drug-Gene Conditioned”) method 

for PGx-specific drug-gene relationship extraction from classified sentences containing 

known PGx-specific drug-gene pairs.
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Table 1

PharmGKB drug-gene pair occurrence in MEDLINE

Drugs Genes Drug-Gene Pairs

PharmGKB 918 2,388 10,898

PharmGKB in MEDLINE Sentences 585 718 2,943

PharmGKB in MEDLINE Abstracts 643 965 3,957
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Table 2

Performance comparison of “Unconditioned” and “Drug-Gene Conditioned” PGx-specified drug-gene 

relationship extractions from MEDLINE sentences and abstracts

PharmGKB Unconditioned Drug-Gene Conditioned

Sentence

Prior Testing Precision Recall F1 Precision Recall F1

10% 90% 11.7 100.0 20.9 38.8 36.6 37.7

20% 80% 11.1 100.0 20.1 34.5 48.1 40.2

30% 70% 10.5 100.0 18.9 30.8 55.5 39.7

40% 60% 10.0 100.0 18.1 28.4 60.2 38.5

50% 50% 9.1 100.0 16.7 24.9 65.1 36.1

Abstract

10% 90% 8.1 100.0 14.9 26.8 50.5 35.0

20% 80% 7.6 100.0 14.1 21.7 64.3 32.4

30% 70% 7.2 100.0 13.4 18.4 70.8 29.2

40% 60% 6.8 100.0 12.7 16.4 74.7 26.9

50% 50% 6.4 100.0 12.0 14.8 78.8 24.9
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Table 3

Comparison of five different methods: “Unconditioned”, “Drug-Gene Conditioned”, “Drug Conditioned”, 

“Gene Conditioned”, and “Drug × Gene Conditioned”.

Condition Training Testing Precision Recall F1

Sentence

Unconditioned
10% 90% 11.7 100.0 20.9

50% 50% 9.1 100.0 16.7

Drug-Gene Conditioned
10% 90% 38.8 36.6 37.7

50% 50% 24.9 65.1 36.1

Drug Conditioned
10% 90% 13.6 83.5 23.4

50% 50% 9.4 95.1 17.0

Gene Conditioned
10% 90% 19.0 75.3 30.3

50% 50% 9.5 90.1 17.3

Drug × Gene Conditioned
10% 90% 21.6 64.9 32.4

50% 50% 11.0 85.6 19.5

Abstract

Unconditioned
10% 90% 8.1 100.0 14.9

50% 50% 6.4 100.0 12.0

Drug-Gene Conditioned
10% 90% 26.8 50.5 35.0

50% 50% 14.8 78.8 24.9

Drug Conditioned
10% 90% 9.0 94.4 16.5

50% 50% 66.5 98.9 12.2

Gene Conditioned
10% 90% 12.3 81.0 21.4

50% 50% 7.2 94.7 13.3

Drug × Gene Conditioned
10% 90% 13.6 77.5 23.2

50% 50% 7.3 94.0 13.5
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Table 4

Comparison of “Unconditioned” and “Drug-Gene Conditioned” methods in gene disambiguation

Gene Symbol Gene Name Alternative Name (Non-
gene Name)

False Positives (Unconditioned) False Positives 
(Drug-Gene 

Conditioned)

PC Pyruvate carboxylase Phosphatidylcholine 506 33

GC Group-specific component Glucose consumption 482 30

CP Ceruloplasmin (ferroxidase) Cyclophosphamide 562 134

BID BH3 interacting domain death 
agonist

Twice a day 315 18

NP Nucleoside phosphorylase Non-Preferring 330 52

CAD Carbamoyl-phosphate synthetase Coronary artery disease 247 25
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Table 5

Comparison of “Unconditioned” and “Drug-Gene Conditioned” methods in drug-gene relationship extraction 

for ambiguous gene symbols “CAD” and “GC”.

Symbol False Positives (Unconditioned) False Positives (Drug-Gene Conditioned)

Dipyridamole CAD 334 0

Aspirin CAD 213 0

Atorvastatin CAD 87 0

Choline GC 1126 0

Ethanol GC 232 0

Paclitaxel GC 156 0
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