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Abstract

BACKGROUND AND OBJECTIVE—African Americans have worse outcomes in colorectal 

cancer (CRC) than Caucasians. We sought to determine if KRAS, BRAF and PIK3CA mutations 

might contribute to the racial differences in CRC outcome.

METHODS—DNA was extracted from tissue microarrays made from CRC samples from 67 

African Americans and 237 Caucasians. Mutations in KRAS, BRAF, and PIK3CA were evaluated 

by PCR sequencing. We also examined microsatellite instability (MSI) status. Associations of 

mutation status with tumor stage and grade were examined using a logistic regression model. Cox 

proportional hazards models were used to estimate the all-cause mortality associated with 

mutational status, race and other clinicopathologic features.

RESULTS—KRAS mutations were more common in African Americans than among Caucasians 

(37% vs 21%, p=0.01) and were associated with advanced stage (unadjusted odds ratio 

(OR)=3.31, 95% confidence interval (CI) 1.03–10.61) and grade (unadjusted OR=5.60, 95% CI 

1.01–31.95) among African Americans. Presence of BRAF mutations was also positively 

associated with advanced tumor stage (adjusted OR=3.99, 95%CI 1.43–11.12) and grade (adjusted 

OR=3.93, 95%CI 1.05–14.69). PIK3CA mutations showed a trend toward an association with an 

increased risk of death compared to absence of those mutations (adjusted for age, sex and CRC 

site HR=1.89, 95% CI 0.98–3.65). Among African Americans, the association was more evident 

(adjusted for age, sex and CRC site HR=3.92, 95% CI 1.03–14.93) and remained significant after 

adjustment for MSI-H status and combined education-income level, with HR of 12.22 (95%CI 

1.32–121.38).

CONCLUSIONS—Our results suggest that African Americans may have different frequencies of 

somatic genetic alterations that may partially explain the worse prognosis among African 

Americans with CRC compared to whites.
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Introduction

There is significant racial variability in colorectal cancer (CRC) incidence and mortality. 

CRC incidence and mortality have decreased for Caucasian males and females in the past 30 

years [17]. In contrast, rates for African Americans have not decreased, and African 

Americans continue to have lower 5-year survival rates than whites [17]. Several factors 

have been identified to explain the disparate outcomes by race, such as socioeconomic status 

(SES), screening, diagnosis and treatment differences [1; 13; 27; 37; 40]. There are 

differences in risk factors such as diet, obesity and comorbidities such as diabetes that may 

also account for risk [10; 32; 41]. However, even after controlling for factors such as SES, 

CRC stage and treatment, many studies still report a worse outcome for African Americans 

[1; 12; 13; 27; 37; 40]. While some of these studies evaluated tumor characteristics such as 

CRC grade and location as explanations for unequal outcomes, only a few studies have 

focused on genetic or molecular differences that might explain the more aggressive CRC 

observed in African Americans [6; 18; 34].

Advances in molecular techniques and gene sequencing have led to a discovery that 85% of 

CRC display chromosomal instability, and specific molecular markers and pathways 

influence prognosis and treatment outcomes [17]. Specifically, epidermal growth factor 

receptor (EGFR) and its downstream molecules that are involved in signal transduction 

through RAS/RAF and PI3K/AKT pathways have been shown to be critically important in 

CRC carcinogenesis and survival after treatment [7]. Several studies have observed that 

KRAS mutations occur in 20–40% of CRC, BRAF mutations in 10–15%, and PIK3CA 

mutations in 15–20% [3; 7]. Randomized clinical trials have demonstrated that while KRAS 

wild type tumors benefit from anti-EGFR monoclonal antibodies, KRAS mutant tumors do 

not [4; 15; 35]. Similarly, tumors with BRAF mutations have been associated with worse 

prognosis and a decreased response to anti-EGFR antibody therapies for advanced CRC [8; 

14; 25; 30]. Mutations in PIK3CA, a gene encoding PI3K, are also suggested to predict 

worse prognosis and outcomes with anti-EGFR therapy [22; 31; 33]. To date, however, we 

are unaware of studies that evaluated a possible role of PIK3CA mutational status in the 

racial disparity observed in CRC. Therefore, we conducted a study comparing mutational 

status of KRAS, BRAF and PIK3CA in African Americans and Caucasians, and determined 

the relationship of the mutation status with clinicopathologic factors as well as overall 

mortality.

Methods

Patients

Study samples were obtained from a population-based cohort study, Cancer Care Outcomes 

Research and Surveillance Consortium (CanCORS). The study design of CanCORS has 

been described previously [2]. Briefly, study included newly diagnosed colorectal cancer 
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patients with the aim of measuring the quality of cancer care and associated health 

outcomes. In addition to information collected by patient surveys and medical record 

review, the University of North Carolina CanCORS site collected tissue blocks and 

peripheral blood specimens on consenting subjects. Survival and mortality data was 

determined from phone surveys and ascertained with death records through the social 

security death index.

Ethics Statement

All participants signed an informed consent. All clinical investigations were conducted 

according to the principles expressed in the Declaration of Helsinki. The study was 

approved by the human subjects committee and institutional review board at the University 

of North Carolina.

DNA isolation from a tissue microarray (TMA)

TMAs were constructed from formalin-fixed, paraffin-embedded colorectal tissues. A study 

pathologist evaluated all tissue blocks and determined the areas of tumor and normal, from 

where the cores were made. Each microarray block included duplicate or triplicate cores of 

CRC and adjacent normal tissues from each patient. All DNA extractions were performed 

using Qiagen’s QIAmp DNA Micro Kit following the manufacturer’s instructions for laser-

microdissected tissues (Valencia, CA). To increase the DNA yield, 9 cores per patient were 

extracted for each normal and CRC tissue.

Primers for KRAS, BRAF and PIK3CA sequencing

We designed the following primers (MWG Biotech, High Point, NC) for PCR amplification, 

targeting KRAS Exon 1 (codons 12 and 13), BRAF exon 15 and PIK3CA exons 9 and 20: 

KRAS exon 1 forward 5’-GTGTGACATGTTCTAAATATAGTCA-3’, reverse 5’-

TTACTGGTGCAGGACCATTC-3’; BRAF exon 15 forward 5’-

TGCTTGCTCTGATAGGAAAATG-3’, reverse 5’-AGCATCTCAGGGCCAAAAAT-3’; 

PIK3CA exon 9 forward 5’-ATCATCTGTGAATCCAGA-3’, reverse 5’-

TTAGCACTTACCTGTGAC-3’; PIK3CA exon 20 forward 5’-

TGACATTTGAGCAAAGACC-3’, reverse 5’-GTGTGGAATCCAGAGTGA-3’. Prior to 

sequencing, PCR products were purified using QIAquick PCR Purification Kit (Qiagen, 

Valencia, CA). Sequences were analyzed using Sequencher (Gene Codes Corporation, Ann 

Arbor, MI). The mutations detected in Sequencher program were verified by two 

independent readers prior to inclusion for statistical analysis. Samples that had poor 

sequence readings were excluded from analysis.

Microsatellite markers for microsatellite instability (MSI) analysis

Microsatellite markers included two mononucleotide repeats (BAT 25 and 26) and three 

dinucleotide repeats (D2S123, D5S346 and D17S250) recommended by NIH [5]. Published 

primer sequences [9] were labeled with either 6-FAM or VIC (BAT26). PCR was performed 

in a final volume of 25 µL containing 2× Qiagen Multiplex PCR Master Mix, 2µM of each 

primer, PCR grade water and 3µL of template DNA. The thermal conditions were 95°C/15 

min followed by 35 cycles (94°C/45”, 52°C/90” and 72°C/1 min) and a final extension at 
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72°C/30 min. The dye-labeled PCR products were diluted 1:40, and 1µL of the diluted 

product was added to a mixture of HI-Di formamide and GS 500 size standard followed by 

analysis with the ABI PRISM 3100 Genetic Analyzer and Genemapper software (Applied 

Biosystems, Foster City, CA). Both tumor and matched normal samples were analyzed. 

Samples with instability in at least 2 markers were defined as having MSI-High (MSI-H).[5] 

Samples with instability in a single marker or none were defined as MSI-Low (MSI-L) and 

microsatellite stable (MSS), respectively.

Statistical Analyses

Baseline characteristics of study participants were compared using Student’s t-tests for 

continuous variables or Fisher’s exact test for categorical variables. Mutation frequencies for 

each exon between African Americans and Caucasians were compared using Fisher’s exact 

tests. To examine whether there was an association between stage or grade of CRC and 

mutations, a polytomous logistic regression model was fit with an ordinal response, stage 

(American Joint Committee on Cancer/Union Internationale Contre le Cancer stages 1, 2, 3 

or 4) or grade (well, moderate or poorly differentiated), and mutation (yes/no) as the 

predictor. The proportional odds assumption was tested and passed for all models, thus, 

allowing a single odds ratio (OR) to describe the effect of mutation across all levels of stage 

or grade of CRC. This model estimated ORs and 95% CIs for having a worse stage or grade 

in those with mutations compared to those without mutations (the referent group). This was 

analyzed unadjusted and adjusted for age, sex, BMI and MSI-H status, and performed with 

all subjects as well as separately for African Americans and whites. Cox proportional 

hazards models were used to estimate hazard ratios (HRs) and 95% confidence intervals 

(CIs) for all-cause mortality associated with mutation status and race. Multivariate models 

were fit to adjust for age (continuous), gender, stage, grade, combined education and income 

(less than high school completion and income <$40,000, more than high school graduate and 

income <$40,000, less than high school completion and income >$40,000, or more than 

high school graduate and income >$40,000), anatomic site (right/proximal or left/distal), 

MSI status (MSS/MSI-L or MSI/H) or receipt of chemotherapy (yes or no). If anyone was 

missing income answers, then they were grouped according to education level. Due to small 

sample sizes, multivariate models were unable to be adjusted for all of these risk factors at 

once, but instead multiple models were run with adjustments for different sets of risk 

factors. All analyses were performed using SAS Version 9.2 (SAS Institute, Cary, NC).

Results

There were 67 African Americans and 237 Caucasians with clinicopathologic data as well as 

gene sequencing results. African Americans in this study tended to be younger and more 

obese than Caucasians, however, these differences were only of borderline significance 

(Table 1). KRAS mutations occurred significantly more frequently in African Americans 

than Caucasians (37% vs 21%, p=0.01). When each gene was divided into respective codons 

for KRAS or exons for PIK3CA, we observed that KRAS codon 12 mutations were 

significantly more frequent in African Americans than Caucasians (p=0.04) (Figure 1). 

Frequency of mutations for KRAS codon 13, BRAF exon 15 or both exons 9 and 20 for 

PIK3CA did not differ significantly according to the race.
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Overall, BRAF mutations were associated with higher stage (OR=3.99, 95%CI 1.43–11.12) 

or worse grade (OR=3.93, 95%CI 1.05–14.69) of CRC, after adjustment for age, smoking 

and MSI status (Table 2). Adjustment for BMI, instead of smoking, did not change the 

results (data not shown). KRAS mutations were also associated with worse stage (unadjusted 

OR=3.31, 95%CI 1.03–10.61) or grade (unadjusted OR=5.60, 95%CI 1.01–30.95), and the 

relationship was limited to African Americans. PIK3CA mutations showed no significant 

effect on stage or grade of CRC.

Presence of PIK3CA mutations showed a trend toward an association with an increased risk 

of death compared to absence of those mutations when adjusted for age, sex, CRC site, 

chemotherapy and MSI status (HR=2.51, 95% CI 0.97 –6.48) (Table 3). After adjusting for 

MSI status, education and income level, African Americans with a PIK3CA mutation had a 

hazard ratio of 12.22 (95%CI 1.23–121.38), but because of the small sample size, the 

estimates became imprecise with a wide confidence interval. When adjusted for stage and 

grade or chemotherapy, we were not able to calculate the race specific estimates in the 

multivariate model due to limited sample size. KRAS or BRAF mutations were not 

associated with overall survival disadvantages in either African Americans or Caucasians.

Discussion

In this cohort study of CRC patients from both urban and rural areas, we evaluated 

molecular mutations in KRAS, BRAF, and PIK3CA in CRC in African Americans and 

Caucasians, and determined whether there is a racial difference in frequencies of these 

mutations that could affect survival in CRC. Subjects with PIK3CA mutation had a 

significantly increased risk of mortality, and this relationship was especially true for the 

relatively small number of African Americans in this study. We also found that African 

Americans had higher KRAS mutation rates than Caucasians, especially in codon 12, and 

were more likely to have worse stage or grade of CRC if they had KRAS mutations.

Previous studies have shown that PIK3CA mutations confer worse survival and prognosis in 

all stages of CRC [16; 22–24]. However, few studies examined the effect of PIK3CA 

mutations on prognosis and survival in African Americans as compared to Caucasians. In 

our study, we observed that 11% of the Caucasians and 14% of the African American 

subjects were positive for PIK3CA mutation. These distributions are similar to published 

reports [3; 7]. We found that African Americans who had PIK3CA mutations had an 

increased risk of death compared to African Americans without PIK3CA mutations when 

adjusted for income and education, a relationship not observed in Caucasians. Given the 

small number of African Americans with PIK3CA mutations found in our sample, this 

finding needs to be validated in a larger sample population. As new therapies and evidence 

regarding treatment for CRC with PIK3CA mutations emerge [11; 21], studying the role of 

PIK3CA mutations, especially in African Americans, could possibly impact the outcome 

disparity observed in different racial groups.

We found that 37% of the African Americans had KRAS mutations, which is higher than in 

Caucasians, and this is consistent with the published literature [18; 34]. We observed a 

higher frequency of mutations in codon 12, which is the more predominantly mutated codon 
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in KRAS in literature [3; 7]. We also found that African Americans with KRAS mutations 

were more likely to have worse stage and grade of CRC than those without KRAS mutations.

We showed that those with BRAF mutations had higher risks for having poorly 

differentiated tumors, of which have been linked with poor prognosis. However, we did not 

observe any survival benefits in those with wild type BRAF as compared to those with BRAF 

mutation. This is contrary to some of the previously reported studies regarding BRAF 

mutation and survival [14; 25; 30]. Prior studies have reported that BRAF mutations are 

associated with MSI-H, and survival in BRAF mutated CRC is dependent on MSI status, 

where MSS or MSI-L tumors are associated with worse survival [18; 25; 29; 34]. To 

complicate matters further, MSI status also affects response to chemotherapeutic regimen, 

where MSI-H could predict a lack of response to 5-fluorouracil [36]. There was information 

on specific chemotherapy regimens used in only a minority of the subjects in our study. 

Thus, we were unable to assess the effect of specific treatment on CRC prognosis. This may 

partly explain why we did not observe survival benefits in those with MSS/MSI-L status.

Limitations of this study include a modest sample size, especially for African Americans 

with PIK3CA mutations. Given these small numbers our results need to be confirmed in 

larger studies. Another limitation is a lack of specific chemotherapeutic regimen data. We 

only had data on whether or not a patient received chemotherapy. It has been established 

that KRAS and likely BRAF wild type is paramount to treatment success with anti-EGFR 

antibodies [7]. However, we were unable to conclude if the increased risk of mortality 

associated with PIK3CA mutations in African Americans or the lack of survival benefit in 

those with BRAF and KRAS mutations is due to treatment regimen differences.

Proximal and distal colon cancers were previously believed to represent distinct disease 

entities. However, recent studies suggest that the distribution of molecular mutations in 

colorectal segments may be a continuum from cecum to rectum instead of the traditional 

“two-colon” concept [26; 28; 38]. This continuum theory was proposed by Yamauchi et al. 

[39] who observed that KRAS mutated tumors were most frequent in the cecum, while the 

frequencies of BRAF mutation gradually increased from rectum to the ascending colon in a 

linear manner. Rosty et al. [28] also demonstrated that KRAS mutated tumors were most 

frequent in the cecum, while BRAF mutation frequencies followed a bimodal distribution 

with the lowest frequencies in the transverse-descending segments, instead of a linear 

association. Similarly, PIK3CA mutation frequencies had a bimodal distribution where 

highest the frequencies were observed in the cecum-ascending segments and lowest in the 

descending colon [28; 39]. In our study, we observed a bimodal frequency distribution for 

KRAS, BRAF and PIK3CA, with highest in cecum-ascending, second highest in sigmoid 

and lowest in transverse colon (data not shown). Given these findings, further research is 

needed in larger studies to confirm the continuum of molecular mutations from one end of 

the colon to the other.

Lower SES has been associated with increased mortality from CRC, partly due to limited 

access to screening and treatment with adjuvant therapy [10; 17; 19; 20]. However, several 

studies have demonstrated that even after controlling for multiple variables including 

treatment differences [1; 13; 37; 40] as well as SES [37], African Americans still had worse 
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survival than Caucasians, suggesting that there may be differences in biologic or genetic 

characteristics that could contribute to the outcomes. In our study, we had information on 

income and level of education, and combined them as a surrogate marker for SES. We 

observed that even after controlling for income and education levels, African Americans 

with PIK3CA mutations had an increased risk of mortality compared to those without 

PIK3CA mutations.

In conclusion, there is evidence suggesting that African Americans with PIK3CA mutations 

may have higher mortality than those without PIK3CA mutations. Our findings also 

demonstrated that KRAS and BRAF mutations in African Americans could influence CRC 

stage and grade. These genetic alterations may contribute to the aggressive CRC phenotype 

and may partially explain the worse prognosis observed in African Americans.
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Figure 1. Frequency of each mutation by race
Numbers inside bars represent percent in the respective race with corresponding mutation.

*P=0.04
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Table 1

Baseline characteristics of study subjects.

Characteristics Caucasian
(n=237)

African American
(n=67)

P value

Age, mean (se) 67.0 (0.8) 63.6 (1.4) 0.05

Male sex, n (%) 123 (52) 38 (57) 0.49

Tumor Location*, n (%)

  Right/Proximal 80(43) 20 (38) 0.63

  Left/Distal 106 (57) 32(62)

Tumor stage, n (%)

  1 36 (18) 15 (28) 0.41

  2 65 (32) 13 (25)

  3 67 (33) 18 (34)

  4 33 (16) 6 (11)

Tumor grade, n (%)

  Well 7 (3) 6 (10) 0.14

  Moderate 169 (77) 42 (70)

  Poor 31 (14) 7 (12)

Smoking, n (%)

  Never 18 (9) 5 (10) 0.51

  Former 89 (44) 18 (35)

  Current 94 (47) 28 (55)

BMI, n (%)

  Normal 58 (31) 7 (15) 0.053

  Overweight 59 (31) 16 (33)

  Obese 71 (38) 25 (52)

KRAS, n (%)

  Wild 161 (79) 35 (63) 0.01

  Mutation 42 (21) 21 (37)

BRAF, n (%)

  Wild 122 (87) 32 (82) 0.45

  Mutation 19 (13) 7 (18)

PIK3CA, n (%)

  Wild 108 (89) 24 (86) 0.75

  Mutation 14 (11) 4 (14)

Received Chemo, n (%)

  Yes 93 (54) 21 (49) 0.61

  No 80 (46) 22 (51)

MSI Status, n (%)

  MSI-H 56 (24) 11 (17) 0.28

  MSI-L 32 (14) 13 (21)

  MSS 141 (62) 39 (62)
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*
Proximal tumors were defined as tumors in the cecum, ascending colon, hepatic flexure and transverse colon. Distal tumors were defined as 

tumors in splenic flexure, descending colon, sigmoid colon and rectum.
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Table 2

OR (95% CI) for worse stage or grade of CRC if KRAS, BRAF, PIK3CA mutation are present, analyzed by 

race.

All
Reference (1.0)

All adjusted*
Reference (1.0)

AA
Reference (1.0)

Caucasian
Reference (1.0)

KRAS

Stage 1.30 (0.74, 2.31) 0.99 (0.50, 1.96) 3.31 (1.03, 10.61) 1.09 (0.55, 2.17)

Grade 1.46 (0.68, 3.11) 1.42 (0.53, 3.83) 5.60 (1.01, 30.95) 1.00 (0.38, 2.59)

BRAF

Stage 1.95 (0.88, 4.33) 3.99 (1.43, 11.12) 6.12 (0.94, 40.02) 1.56 (0.63, 3.86)

Grade 4.72 (1.80, 12.37) 3.93 (1.05, 14.69) 4.75 (0.66, 34.16) 4.82 (1.60, 14.55)

PIK3CA

Stage 2.22 (0.85, 5.76) 2.93 (0.90, 9.54) 2.65 (0.27, 25.76) 2.14 (0.74, 6.16)

Grade 2.00 (0.55, 7.22) 2.91 (0.56, 15.09) 5.69 (0.36, 90.48) 1.54 (0.36, 6.69)

Referenced to those without KRAS, BRAF or PIK3CA mutations in the respective race categories.

*
Adjusted for age, smoking and MSI status.
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