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Abstract

Background

Each lung structure exhales a unique pattern of aerosols, which can be used to detect and
monitor lung diseases non-invasively. The challenges are accurately interpreting the
exhaled aerosol fingerprints and quantitatively correlating them to the lung diseases.

Objective and Methods

In this study, we presented a paradigm of an exhaled aerosol test that addresses the above
two challenges and is promising to detect the site and severity of lung diseases. This para-
digm consists of two steps: image feature extraction using sub-regional fractal analysis and
data classification using a support vector machine (SVM). Numerical experiments were
conducted to evaluate the feasibility of the breath test in four asthmatic lung models. A high-
fidelity image-CFD approach was employed to compute the exhaled aerosol patterns under
different disease conditions.

Findings

By employing the 10-fold cross-validation method, we achieved 100% classification accu-
racy among four asthmatic models using an ideal 108-sample dataset and 99.1% accuracy
using a more realistic 324-sample dataset. The fractal-SVM classifier has been shown to be
robust, highly sensitive to structural variations, and inherently suitable for investigating aero-
sol-disease correlations.
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Conclusion

For the first time, this study quantitatively linked the exhaled aerosol patterns with their
underlying diseases and set the stage for the development of a computer-aided diagnostic
system for non-invasive detection of obstructive respiratory diseases.

Introduction

The ability to diagnose lung cancer at an early stage is crucial to patients’ survival. Despite
extensive research, there is still a severe lack of techniques capable of early cancer detection.
Even though diagnostic tools such as chest radiography, computed tomography, and biopsy
are accurate in diagnosis, they have not been recommended for screening purposes. The bene-
fits of these tools outweighing their invasive nature and potential risks to the patients have not
been substantiated to be extensively used for screening purposes.

Exhaled breath contains clues to many lung diseases, which can be related either to the met-
abolic changes in cancer cells or lung structure remodeling[1]. Analyzing exhaled breath from
individuals who are at a high risk of lung cancer could be an inexpensive and non-invasive
method of diagnosing the disease. Breath analysis has been conducted in either gas phase as
exhaled breath or liquid phase as exhaled breath condensates (EBCs)[2]. In the first approach,
a unique gas “fingerprint” is correlated with a particular disease. Examples include increased
concentrations of antioxidants for chronic obstructive pulmonary disease (COPD)[3], nitric
oxide for asthma[4], and isoprene for non-small cell lung cancer (NSCLC)[5]. However, these
gas-fingerprint based devices, such as electronic noses[6], only measure the concentration of
exhaled gaseous chemicals. They do not provide information regarding where these chemicals
are produced (the cancer site) or the level of lung structural remodeling, both of which are
essential in treatment planning. In the second approach, non-volatile molecules exhaled from
the fluid that lines the lung are collected as condensates. This method has been shown to be
useful in studying inflammatory and oxidative processes on the surfaces of the respiratory tract
[7]. However, this method is limited by the lack of standardization. Exhaled water vapor causes
considerable dilution of the non-volatile biomarkers and accounts for more than 99.99% of the
collected EBCs[8]. As a result, collection devices can notably influence the collected biomarker
levels and values obtained with different instruments are not directly comparable. Saliva and
nasal contamination also add to this problem. More importantly, EBCs are from various parts
of the respiratory tract, and there is no way to distinguish the EBC fraction from each part.
There also exist a third approach, the aerosol bolus dispersion (ABD)[9,10], which uses aero-
sols to measure lung functions. However, ABD does not provide any new information of the
lung health beyond current pulmonary function tests[10].

A new exhaled aerosol test was recently introduced by Xi et al.[11], which is promising to
detect a lung disease, grade the severity, and pinpoint the disease site. The underlying hypothe-
sis of this method is that each lung structure has a signature aerosol fingerprint (AFP), in con-
trast to the gas finger-prints discussed previously, and that any alteration to the normal pattern
is suggestive of a structural variation inside the lung. The AFP-based breath test will be much
like using a personal air sampler. The subject first inhales particles at a prescribed speed and
depth. During exhalation, the particles are collected on a mouth-filter, which will be further
analyzed to evaluate the lung health conditions.

Questions remain regarding this method. For instance, how does one quantify an AFP pat-
tern and distinguish different AFP patterns accurately? How does one determine the
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information (presence, site, grade, etc.) of a lung disease from a given AFP sample? Will this
method be sensitive to small airway changes? Will this method be robust enough to tolerate
test uncertainties? The first question was addressed in Xi et al.[12,13] where multiple morpho-
logical measures were exploited to differentiate AFP patterns in a quantitative manner, such as
the spatial distribution, lacunarity, fractal dimension, and multifractal spectrum. Fractal
dimension (FD) is a measure of the complexity or irregularity of an object’s structure. FD was
selected to describe the complex AFP patterns because human lungs are actual space-filling
fractal structures[14,15,16] and have an in vivo measured FD of 1.57 or so [17]. Therefore, it is
expected that exhaled aerosols also exhibit fractal characteristics. In addition, lung cancer
growth is accompanied by airway remodeling and structural irregularities, which can be readily
described using FDs. Fractal features have been probed in the pathology and grading of cancers
in lungs[18], breasts[19], kidneys[20], among others. It provides a simple tool to describe com-
plex systems and allows objective evaluations that do not rely on the experience of the
examiner.

This study will aim to address the remaining three questions, namely how to link exhaled
aerosol patterns to internal lung diseases? Is the new method accurate? Is it robust? To this
aim, we will introduce an image-CFD-fractal-SVM model and evaluate the feasibility of the
proposed exhaled aerosol test using this model. This new model includes four steps: sample
acquisition, fractal feature extraction, database quality evaluation, and SVM classification (flow
chart in Fig 1). The performance of the proposed model will be assessed in four asthmatic mod-
els (Fig 1) using two datasets that represent ideal and more realistic testing conditions
(Table 1). Specific aims of this study include: (1) database development of aerosol samples to
train and test the classification model, (2) fractal feature extraction to quantitatively describe
exhaled aerosol images, (3) SVM classification to correlate exhaled aerosol features to the asth-
matic grade, and (4) analysis of data quality (before test) and misdiagnosed samples (after test)
to minimize misclassifications. This new model will set the stage for developing a non-invasive,
computer-aided diagnostic system that is capable of rapid detection and location of asthmatic
bronchitis using exhaled aerosol tests.

Methods
Study design

A database containing two datasets will be developed using four asthmatic models and nine
particle sizes (Table 1). The first dataset contains 108 samples and represents an ideal test envi-
ronment with small respiration fluctuations (30+£10% L/min) and no upper airway variation.
The second dataset contains 324 samples and allows for more realistic scenarios such as large
fluctuations in both respirations (30+33% L/min) and upper airway geometries (5% oral cavity
expansion, and 8% tracheal contraction). To evaluate the uncertainties from potential varia-
tions in the upper airway geometry, airway models with oral expansion (5%) and tracheal con-
traction (8%) were considered relative to the control cases (Fig 1B). The flow chart (Fig 1C)
shows the three major steps: physiology-based modeling to generate exhaled aerosol images,
image feature using fractal analysis, and SVM classification.

Physiology-based simulation of the exhaled aerosol test

An image-based mouth-throat airway model developed by Xi and Longest[21] was used to rep-
resent the normal airway. Details of the geometry dimensions and modeling procedures were
given in Xi and Longest[21,22]. The usage of scan images has been approved by the Virginia
Commonwealth University Institutional Review Board. All patient records were de-identified
prior to analysis. This model geometry was modified to produce the three asthmatic models by
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Fig 1. Asthmatic models (a), upper airway variation (b), and flow chart (c) of the proposed method methodology. The airway constriction level in the
asthmatic models ranges from 0% (DO0) to 75% (D3). The shape variations represent the potential uncertainties in the upper airway during breath tests. There
is 5% oral expansion and 8% tracheal contraction relative to the control cases. Physiology-based modeling was undertaken to generate exhaled aerosol
images; the images were characterized using fractal analysis to extract salient features; a SVM classifier was trained with extracted feature vectors and
tested with extra samples. CFD: computational fluid dynamics; SVM: support vector machines.

doi:10.1371/journal.pone.0139511.9001

progressively decreasing the diameters of two segmental bronchioles, as illustrated in Fig 1A.
The information on location, size, and airway blockage rate of the three asthmatic models is
listed in Table 1.

Table 1. Test variables and their ranges.

Experiments Test variables Range of variables
108-sample (= 3x4x9) Flow rate (L/min) 27, 30, 33
Asthmatic model DO (normal), D1 (25%), D2 (50%), D3 (75%)
Particle diameter (um) 0.2,0.4,0.6,08,1,2,3,4,5
324-sample (= 3x4x9x3) Flow rate (L/min) Do, D1, D2, D3
Asthmatic model Do, D1, D2, D3
Particle diameter (um) 0.2,0.4,0.6,0.8,1,2,3,4,5
Upper airway (UA) Upper airway (UA)

doi:10.1371/journal.pone.0139511.t001
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In order to acquire images of the exhaled aerosol patterns, both inhalation and exhalation
were simulated, with particles first inhaled and then collected at the mouth exit during exhala-
tion. A blunt profile of the inlet velocity was adopted to approximate the smooth transition
from the core flow to the no-slip wall condition[23]. The inlet particle profiles were generated
using a stochastic algorithm[24]. For each airway model, five inlet particle profiles were tested
for later statistical analysis. In human respiratory flows, both laminar and turbulent flows are
expected. The multiple flow regimes were simulated using a large eddy simulation model LES--
WALE[25]. A Lagrangian-tracking algorithm was used to simulate the particle motion by inte-
grating the particle transport equation[21],

v, _ f

dt - E (ui - Vi) +gi<1 - O‘) +.fi.Brownian +fi.let (1)
where u; is the local fluid velocity, v; is the particle velocity, 7, is the particle characteristic time,
fis the drag factor[26], and C, is the Cunningham correction factor[27]. User defined functions
(UDFs) were developed to account for the effects of near-wall damping[22] and finite particle
inertia[28]. The UDF-enhanced Lagrangian-tracking model had provided close agreements
with in vitro measurements in our previous studies for both submicrometer[28] and micron
aerosols[24,29,30]. The computational meshes of the airway models were generated with
ANSYS ICEM CFD (Ansys, Inc). A grid sensitivity analysis was conducted by testing the effects
of different mesh densities[11,12]. The final mesh consisted of about 2 million elements with a
height of 0.05 mm of the first near-wall cell.

Feature extraction via fractal analysis

In the second step, the numerically predicted aerosols (or AFPs) were visualized in terms of
both particle locations and concentration distributions. The resultant images were then quanti-
fied using the box-counting fractal dimension analysis. The box-counting fractal dimension
(Dg) measures the complexity of the aerosol pattern and can detect subtle pattern evolutions
among asthmatic models, thus allowing effective detection and grading of the disease. The
value of Dy was calculated as the regression slope of the logarithmic plot between the box size €
and the number of boxes N, that contain image pixels[31].

D, =InN, /Ine (2)

To extract a feature vector that could adequately represent the aerosol pattern, the image
was divided into a 6x6 matrix, with fractal analysis being conducted on each grid. An open
source code Image] with FracLac plugin was used to calculate Dg[31].

Disease classification via support vector machine (SVM)

Preprocessing procedure. The original dataset consisted of 396 samples with different dis-
ease levels (D: D0, D1, D2 and D3), respiration rates (Q: 20, 27, 30, 33, 40 L/min) and upper
airway (UA) variations (control, oral expansion, and tracheal contraction). Each sample was
presented as 36 continuous-valued feature vectors. Four features with zero-variance were
removed (i.e., the four corners of the image). The remaining 32 features were utilized for classi-
fication analysis.

To check the quality of the database, principal component analysis (PCA) was implemented
to project the feature variables into a new mutually orthogonal space, where the new eigenvec-
tors (PC1, PC2, PC3) were uncorrelated[32]. The advantage of PCA is that it can reduce the
number of feature variables of the database without losing major information. This is particu-
larly useful when the scatter of a high-dimensional data set is of interest. PCA is a second order
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statistical method and only requires information in the covariance matrix of the input data to
compute the principal components[32]. One-way analysis of variance (ANOVA) and Tukey’s
method with stacked data were used to evaluate the variability of samples and determine the
major influential factors. Minitab 17 (State College, PA) was used for PCA transformation and
statistical analysis on the image feature database.

Classification. A support vector machine (SVM) classifier was selected to correlate the
images with diseases based on its high classification accuracy than traditional algorithms, such
as decision trees, k-nearest neighbors, and neural networks[33]. SVM aims to obtain a hyper-
plane separating different data with maximum-margin in a transformed feature space[34].
Support vectors are the data samples closest to the hyperplane. In 1995, Cortes and Vapnik([34]
introduced a soft margin method that allowed for mislabeled samples and used a soft margin
parameter C to penalize clustering errors. The optimized classification becomes a tradeoff
between a larger margin and a smaller error penalty by simultaneously maximizing the geo-
metric margin and minimizing the classification error. The SVM performance depends on the
selection of the kernel and the soft margin parameter C. In this study, the Gaussian radial basis
function k(x;, x;) = exp(-y||xi—x;] |*) was selected as the kernel function, where x; is the feature
vector and vy is the Gaussian kernel parameter[34]. The soft margin parameter C and kernel
parameter y was selected as 100 and 1/32, respectively. It is noted that SVM is inherently a
two-class classifier. A multi-class SVM classifier can be developed by comparing every pair of
classes. Classification is achieved by a max-wins voting strategy, where each two-class classifier
assigns the test sample to one class; the class with the most votes determines the test sample’s
classification[35].

In this study, a multi-class SVM algorithm and 10-fold cross-validation were used for the
classification analysis. In the 10-fold cross-validation, the dataset was randomly divided into 10
subsets and the SVM algorithm was run 10 times. In each run, 9 subsets were used as a training
set to obtain a SVM classifier, and the remaining one subset was used as a testing set of the
obtained SVM. The number of misclassified samples was recorded for each run. After 10 runs,
each subset was tested once and trained 9 times. The final accuracy was calculated as follows:

total number of misclassified samples

Accuracy =1 = total number of samples 3)
The function “svm” in R package “e1071” was utilized to train and test the classifier.
Distance matrix. Distance matrix analysis was also performed on the dataset. The selected

32 features were used to represent samples. The dissimilarities between samples were measured

by Euclidean distance and the values ranged from 0 to 1. The samples were subsequently rear-

ranged through the hierarchical clustering based on dissimilarities between samples. The

results of the hierarchical clustering were presented in a heat-map graph.

Results
Airflow field

The predicted expiratory airflows among the four asthmatic cases are compared in Fig 2 in the
form of streamlines, cross-sectional contours, and 2-D velocity plots. The asthmatic airway
constriction noticeably distorts the streamlines and airflow field (Fig 2A and 2B). In contrast to
the two peaks in the velocity contour at Slice 1-1 for the normal case (DO0-1 in Fig 2B), one of
the peaks diminishes with increasing constriction level and becomes invisible for D2 and D3.
At the same time, a low-speed zone forms near the bifurcation ridge that is next to the con-
stricted bronchioles, which is most obvious in D3 (D3-1 in Fig 2B). These flow disturbances
will be conveyed further downstream by the expiratory flow. Due to reduced flow areas from

PLOS ONE | DOI:10.1371/journal.pone.0139511 September 30, 2015 6/19



D)
@ : PLOS | ONE Detect Lung Diseases Using Fractal Analysis and SVM Classification

(a) Steamlines (b) Cross-sectional velocity contours

Speed (cm/s)
F

()} zz 45 67 90
Speed (cm/s) D1-1

150
112
75
37

Speed (cm/s)

L

0 45 90 135 180

L

D0-2 D1-2 D2-2
b 4
I:I , Speed (cm/s)
0 45 90 135 180
D0-3 D1-3 D2-3
(c) Velocity profiles
1001 Cross-section 1 120 - Cross-section 2 [ Cross-section 3
sol 150
2 | Q)
60
8 S100
= 2
8 40l 3
3 a0 g
I 50
20
i M 1 " N 1 1 L 1 " 1 " " 1 " 1 I P | PR P P |
0 3.8 r3 Y ry 0 15 2 25 03 05 0 0.5 1
Horizontal distance (cm) Horizontal distance (cm) Horizontal distance (cm)

Fig 2. Numerically predicted expiratory flows for the four asthmatic models with varying airway constriction levels. (a) Streamlines, (b) cross-
sectional velocity contours, and (c) horizontal velocity profiles.

doi:10.1371/journal.pone.0139511.g002

asthmatic constrictions, higher flow resistances are expected; under the same breathing efforts,
the respiratory flow rate will be lower. The airway loss prevents aerosols from being inhaled
and exhaled smoothly and is expected to noticeably alter the exhaled aerosol profiles. Fig 2C
shows the velocity profiles at Slice 1-1" among the four models in two different directions (a-a’
and b-b’). As expected, flow velocity progressively decreases as the airway constriction level
increases. The differences in airflows diminish progressively towards the mouth. It is noted
that particle profiles depend on both local flows and particle histories. Although the down-
stream airflows may appear similar, the particle profiles can still be different because of their
time-integrative natures.
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Fig 3. Comparison of exhaled aerosol fingerprints (AFPs) among asthmatic models with varying
constriction levels. (a) Particle distribution, (b) particle concentration distribution, and (c) fractal dimension

distribution in a 6x6 matrix. The region of interest in (b) is outlined by the dashed contour and represents the
most pronounced variations in exhaled aerosol patterns among the four models.

doi:10.1371/journal.pone.0139511.g003

Patterns and fractal feature extraction of exhaled particles

Exhaled particles collect into a unique pattern on the filter and can be seen as the “fingerprint”
of the lung. The exhaled particle patterns of the four asthmatic models are illustrated in Fig 3A
for 1 um particles at 30 L/min. Both similarities and disparities in the particle distribution pat-
terns were observed among models, the latter of which was presumably caused by the increas-
ing level of airway constrictions. There were increasing particle attenuations in the upper
image, which eventually grew into a crescent-shaped region depleted of particles. This observa-
tion was reasonable as there was a gradual airway loss in the four asthmatic models. The
amount of particles exhaled from the constricted bronchioles also decreased gradually from DO
to D3. In the extremely constricted scenario (D3, 80% constriction), very few particles could be
exhaled. Therefore, the particle-attenuation region is directly related to the disease site and can
be selected as the region of interest (ROI) for later analysis. In light of the similarities, two vor-
tices were apparent in the left lower and right lower areas. These two vortices were asymmetric
along the central line of the circle, which might result from the right-left lung asymmetry. Con-
sidering the possibilities of particle overlapping that prevents an accurate visual interpretation
of particle distributions, particle concentrations are also calculated, as shown in Fig 3B. Here
blue represents zero concentration and red represents the maximum concentration. Two parti-
cle hot spots are apparent in Fig 3B, with one above the left vortex and the other at the right
upper corner bordering the crescent-shaped particle-depletion region.

To further characterize these APF images, each image was divided into a 6x6 grid and the
fractal dimension on each sub-region was calculated (Fig 3C). In each sub-region, the color is
based on the ratio o(i) = FD(i)/FD(DO0), i = D0, D1, D2, D3, with dark blue representing the
lowest and red the highest. Again, the 6x6 color arrays are unique to each asthmatic model.
Each sample was described using a 36-dimensional feature vector, with each feature being the
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Fig 4. Comparison of exhaled distributions of the particles released from the diseased sites among conditions with different particle sizes,
inhalation flow rates, and upper airway geometries. Each column represents a comparison among the four asthmatic models for a given test condition.
Each color comprises two columns and represents a comparison by varying one test parameter. Both similarities and differences were observed among the
cases.

doi:10.1371/journal.pone.0139511.g004

FD in one sub-region. Four features with zero-variance at the four corners of the image were
discarded and the remaining 32 features were used for classification analysis.

Fig 4 presents examples of exhaled profiles of the particles released only from the con-
stricted bronchioles. For comparison purposes, images were arranged in a matrix format so
that the evolution of particle profiles for a given test parameter could be shown, while other
test parameters were fixed. Each column represents a comparison among the four asthmatic
models for a given test condition. Each color is comprised of two columns and represents a
comparison between two variants of one test parameter, such as particle size, breathing condi-
tion, and upper airway geometry. Both similarities and differences were observed among the
cases. In particular, dramatic differences exist among D0-D3 for all test conditions, with a pro-
gressive particle loss from DO to D3. Furthermore, exhaled aerosols are very complex and irreg-
ular in pattern. Some of them are not readily distinguishable. Because of this, it is a significant
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doi:10.1371/journal.pone.0139511.g005

challenge to quantitatively characterize the images and correlate these exterior images to the
interior lung diseases. An automated technique is also needed to quickly quantify the images
that generally have an extensive database.

Data quality evaluation

There were two datasets generated via physiological modeling. The first dataset contained 108
samples and represented ideal test conditions with small respiration fluctuations (+10%) and
no upper airway variation. The second dataset contained 324 samples and allowed for more
realistic scenarios such as large variations in both respirations (+33%) and upper airway geom-
etries (5% oral cavity expansion, and 8% tracheal contraction). Principal component analysis
(PCA) was performed to assess the quality of the 324-sample dataset. PCA projected the fea-
ture variables (36 in this study) into three mutually orthogonal eigenvectors (PC1, PC2, and
PC3), and thus reduced the number of feature variables for better visual inspection (Fig 5). In
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other words, PCA reduced 36 dimensions into 3 dimensions that better present the data vari-
ance. Varying degrees of clustering were noted among the four categories. The most apparent
data separation was observed in flow rate (Q = 20, 30, 40 L/min), followed by the airway con-
striction level (D0-3) and upper airway variation (Fig 5A, 5B and 5D). Considering the effects
of upper airway variations, oral expansions were found to separate themselves more clearly
from the control cases than tracheal contractions (Fig 5D). No clear separation was noted
when varying the particle size (Fig 5C).

As opposed to assessing the overall data quality via PCA, the 324-sample dataset was also
evaluated in selected regions of interest (ROI) using the analysis of variance (ANOVA). Fig 6
shows the box plots of the local fractal dimension (FD) distributions as a function of different
categories. The selected ROI is the fourth cell in the 6x6 grid in Fig 3. Statistically significantly
lower FDs were found in the three asthmatic cases (D1-3) than the FDs for the non-asthmatic
controls (DO0), indicating a decrease in space-filling ability (Fig 6A). Similarly, there were signif-
icant variations in FD for both the inhalation flow rate and upper airway geometry (Fig 6B and
6D). No significant difference in FD was found for the particle size in the range of 0.2-5.0 um
that was considered in this study (Fig 6C).
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doi:10.1371/journal.pone.0139511.g006
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SVM classification

Two numerical experiments were conducted to evaluate the performance of the proposed
exhaled aerosol test methodology. The first experiment utilized the 108-sample dataset, which
has a respiration range of 30+3 L/min with no upper airway variation. In order to compare the
influences between the local airway loss and the breathing variation, the samples were labeled
with both D-features (D0, D1, D2 and D3) and Q-features (Q27, Q30 and Q33). Each sample
was represented as a 32-dimenionsal feature vector. SVM classification analysis was conducted
using 10-fold cross-validation (CV), and included two parts. The first part evaluated the dataset
with respect to the asthmatic level (D-feature) while the second part to the flow rate (Q-fea-
ture). In both analyses, the classification accuracy was 100% (Table 2), showing that both D-
and Q-features affect the sample patterns.

The distance matrix for the 108-sample dataset is shown in Fig 7A, with the main feature
dendrogram tree shown on the right side. Detailed dendrograms showing hierarchical cluster-
ing for particle sizes have been cut off for visual clarity. The color histogram is shown in Fig 7B
and an example of the particle dendrogram at the location ([12, 12]: Q30, D2) is shown in Fig
7C. From Fig 7A, the 108 samples were divided into 12 subgroups; each subgroup shares a
given combination of D- and Q-features, as displayed on the left side of the heat-map. As a
result, the selected 32-dimenisonal feature vectors were adequate in capturing the differences
between the D- and Q-feature samples. On the other hand, it was also observed in Fig 7A that
the distributions of D- or Q-feature subgroups were mixed in the heat-map. This mixed distri-
bution indicated that in the original space (32-dimensional space), samples with the same D-
or Q-feature could not be readily distinguished. Rather, a new transformed space was needed
to classify these specimens. Our classification analysis results showed that by mapping samples
into high dimensional space, the SVM algorithm could accurately distinguish the samples with
different D- or Q-features. The feature classification accuracies were 100% (10-fold cross-vali-
dation) in this 108-sample dataset (Table 2).

In the second experiment (324 samples), test conditions were loosened up to include further
uncertainties in breathing (30+10 L/min) and upper airway geometry (5% oral cavity expan-
sion, and 8% upper tracheal contraction). In this experiment, only the D-feature (i.e., D1, D2,
D3, and D4) was used as the sample label to evaluate the SVM performance in the four-con-
striction-level classification. The classification results using 10-fold cross-validation are listed
in Table 2. A total prediction accuracy of 99.1% was achieved, with only three misdiagnosed
samples. To be comparable with other studies, the sensitivities and specificities were also calcu-
lated in this experiment. The two-class control-asthma classification sensitivity was 99.6% (1
false negative or Type II error out of 243 positives), and the two-class specificity was 100% (no
false positive or Type I error). The four-level classification sensitivity was 100% for DO, and
was 98.8% for D1, D2, and D3, with each level (81 samples) having one misclassified sample.

Table 2. The number of misclassified samples for each run and the final accuracy using 10-fold cross-validation.

Run

108-sample (D-feature) Training
Testing
108-sample (Q-feature) Training
Testing
324-sample (10-fold CV 1) Training
Testing
324-sample (10-fold CV 2) Training
Testing

doi:10.1371/journal.pone.0139511.t002
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Fig 7. Distance matrix and dendrogram for the 108-sample-experiment which has a respiration range of 303 L/min with no upper airway variation.
Detailed dendrograms showing hierarchical clustering of particle sizes have been cut off for visual clarity in (a). The color histogram is shown in (b) and an
example of the particle dendrogram at the location ([12, 12]: Q30, D2) is shown in (c). The prediction accuracy is 100% in this idealized condition. Q30:

inhalation flow rate = 30L/min.

doi:10.1371/journal.pone.0139511.g007

Analysis of misclassified samples

We detected three misclassified samples in the 10-fold cross-validation with 324 samples (Fig
8A): $247 (a D3-feature sample being predicted as D2: D3 — D2), S97 (D2 — D0), S229 (D1
— D3). The images and test parameters are shown in Fig 8B. In order to discover the causes of
these misclassifications, a detailed analysis was conducted on the above three samples. Fig 8C
shows the locations of these three samples in the distance matrix and Fig 8D shows their
zoom-in plots. Considering case I (5247), there were three outliers in the lower left corner, one
of them being S247 (the third from the right). The other two were S134 and S204, both of
which had a D2-feature. Due to large dissimilarities from all other samples, these three samples
were clustered into one subgroup, which led to the misclassification of the $247 (D3) as D2. In
light of case II (S97), the misclassification of the D2-feature sample as DO was explained by the
dendrogram in Fig 8D. This sample bordered between the DO and D2 samples, but showed
more affinity with the DO sub-group.

The reason for the third example (case III: D1-labeled $229 being misdiagnosed as D3) was
intricate. This time S229 was correctly amalgamated into a D1-subgroup; however, its two
neighboring subgroups were both D3-labeled. This might partially explain the misclassification
of $229 (D1) as D3. However, another question arose: Why haven’t other samples in the same
D1-sub-group as S229 been misclassified? Noticing the secondary similarities (light blue color)
among these three subgroups in Fig 8D case III, we speculated that samples in the D1-subgroup
could also possibly be misclassified as D3. However, this possibility had been minimized by the
selected SVM algorithm, which weighed more toward akin-sample similarities and penalized
the influences of apparent outliers. As discussed in Methods, this was achieved by including a
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Fig 8. Analysis of misclassified samples in the 324-sample-experiment which has a respiration range of 30+10 L/min and two upper airway
variations. The prediction accuracy is 99.1% with three misclassified samples in total (a). The image, sample number, and test parameters of the

misclassified samples are listed in (b). The locations of the three misclassified samples are marked in the distance matrix (c), and their zoom-in plots are
shown in (d).

doi:10.1371/journal.pone.0139511.g008

Gaussian kernel and a soft margin parameter C to maximize the geometric margin and there-
fore minimize the classification errors.

To test the robustness of the classifier, the 10-fold cross-validation test was repeated by rear-
ranging the 324-dataset into 10 random groups. The same prediction accuracy was obtained
(99.1%, with three misclassifications in total). In particular, the same three misclassified sam-
ples were identified (this time, $229: D1 — D3 in Test 1, S247: D3 — D2 in Test4, and S97: D2
— DO in Test 8). This performance consistency instills confidence that (1) the developed classi-
fier performs consistently, and (2) the classifier is sufficient to identify all true outliers (the
above three samples in this study).

Discussion

In this study, a paradigm of an exhaled aerosol test for lung diagnosis was presented and its
accuracy was demonstrated. We evaluated its performance using two datasets generated via
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physiologically-based modeling in four asthmatic lung models. The diagnosis accuracy was
100% under an ideal test condition and 99.1% under more realistic test conditions. Even
though the test samples are limited in number, the proposed aerosol breath test shows promis-
ing results to be a new tool for screening and diagnosing lung diseases.

The novelty of the aerosol breath test can be established by three aspects. First, compared to
current diagnostic tools such as chest radiography, CT and biopsy, this method is non-invasive
and easy to perform; therefore, it is well suited for use in screening purposes for subjects with a
high level of occupational exposure such as coal mine workers. Second, compared to other
breath test techniques in development, such as electronic noses, exhaled breath condensate,
and aerosol bolus dispersion, this new method has the unique potential to locate the disease
site, which is highly desirable for site-specific drug delivery. Finally, compared to standard clas-
sification studies that require images of cancerous tissue samples, this method only requires an
image of exhaled aerosol pattern, which can be obtained easily.

Our conventional understanding of the fractal lung is that FD decreases in asthmatic lungs
[18]. However, this study reported a more complex correlation between the aerosol FD and
asthmatic constriction level. With increasing constriction levels, the aerosol FDs initially
decreased and then started to increase for severely constricted conditions (Fig 6A). This finding
might appear counter-intuitive, considering that lung FD declined with aggravating asthma
and that the FD of exhaled aerosol patterns was expected to decrease in a similar way. This
seeming contradiction can be reconciled by considering both the local and global lung features
that interactively determine the exhaled aerosol profiles. As asthma exacerbates, the surface
irregularity, as well as the structural complexity, at the disease site progressively increases,
while the ventilation capacity of the airway tree continuously decreases. The FD increase in D3
(75% constriction) (Fig 6A) may reflect these two competing factors where the local effect
becomes predominant. A similar argument has been made in Boser et al.[36], who observed a
monotonic decrease in FD in asthmatic lungs but speculated a positive contribution to the
overall FD variation if the local surface features were considered. They suggested that an overall
FD might not provide a complete description of the diseased airways and recommended addi-
tional measures (e.g., local features) be adopted[36]. Indeed, including both the local and global
features of the histological images has been shown to remarkably improve the diagnosis of
prostate cancers[37]. The saddle point observed in the ROI-based FD in Fig 6A may correctly
reflect the two competing factors of global loss in ventilation units vs. local increase in surface
irregularities. In this study, a 6x6 matrix of sub-regional FDs was implemented to describe the
exhaled aerosol features. Considering that asthmatic constrictions may vary vastly in size and
location, a multi-resolution matrix scheme can be used for improved search accuracy. Images
will be quantified at different scales so that the asthma-associated airway abnormity can be
detected with one of these scales.

Particle size in the range of 0.2—5.0 um was found to have little influence on exhaled aerosol
patterns, as shown in Figs 5C and 6C. This insignificant influence may be attributed to the spe-
cific physical properties of particles in this range that neither inertia impaction nor molecular
diffusion is predominant in particle transport and deposition. This finding is desirable in that
polydispersed aerosols around 1.0 pm, which is much easier to generate than monodispersed
aerosols, can be used as diagnostic agents without noticeably sacrificing diagnosis outcomes.
However, this doesn’t mean that particles of any size are suitable as the diagnostic agents.
Large inertial particles (10 um) was found to cause remarkable differences in exhaled aerosol
patterns compared to small particles (< 5 um) as considered in this study [11] and therefore,
was not appropriate for this application.

The fractal-SVM classifier developed in this study has been shown to be highly sensitive to
geometric variations. Through the exhaled images, it can detect not only major changes in
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respiratory activities, but also subtle modifications that may not be visually detectable. Employ-
ing two databases of computer-generated exhaled aerosol samples and the 10-fold cross-valida-
tion method, we achieved 100% accuracy in the 4-grade (D0-3) classification with the ideal
108-sample dataset and 99.1% accuracy with the more realistic 324-sample dataset. It is
acknowledged that the high accuracy in this study is presumably attributed to the limited num-
ber of disease models (four) considered herein and should not be interpreted as evidence that
the proposed breath test outperforms current diagnostic techniques. However, this high predic-
tion accuracy does show the promise of the aerosol breath test to be a sensitive lung diagnostic
tool. Considering the complexity of the lung pathology, a large database is needed to include
lung diseases of different types, with different grades, and at various locations.

Even with limited sample sizes and relatively ideal test conditions, chances of misdiagnosis
still remain. Three misclassified samples were detected in the 324-sample test; their error
sources were individually examined using the distance matrix. Specifically, the same three sam-
ples were identified in repeated 10-fold cross-validation tests. This consistency indicates a
robust performance of the fractal-SVM classifier, which can be a powerful tool for outlier
detection. Knowing the origins leading to misclassification is crucial in developing reliable clas-
sifiers. Only by minimizing the sources of errors can the classifier be optimized for reliable
diagnosis. It is noted that the robustness of the proposed technique was only tested on one
asthmatic lung with four constriction levels. Further robustness analyses are needed by testing
the technique on more types of lung diseases and a large cohort of patients.

It is noted that the lung disease-aerosol correlation cannot be established in the original fea-
ture vector space. A statistical clustering algorithm such as SVM is essential to amalgamate
similar samples and separate dissimilar ones. As evident in the two distance matrices in Figs 7
and 8, not all D-feature subgroups have been clustered into one region. Rather, their distribu-
tion along the diagonal is somewhat mixed with the Q-feature subgroups, indicating significant
influences on classification from both lung structure and respiration flow rate. However, the
results demonstrate that the SVM algorithm can distinguish the four-class data with a high
accuracy. The fractal-SVM classifier has exhibited a satisfactory robustness. Despite the exis-
tence of multiple outliers in the database, SVM is still able to distinguish >99.1% samples in a
324-sample dataset.

An inherent limitation of the proposed diagnostic method is that it relies on image compari-
sons to diagnose lung diseases and needs a baseline aerosol “fingerprint” of the patient to start
with, which the patient may not necessarily have at his/her first visit. This challenge can be par-
tially addressed using a two-step pre-diagnosis, as follows. First, the range of fractals that repre-
sents the normal lungs can be obtained from population statistics, which can be further used to
determine whether an airway anomaly exit or not. Second, a database containing the image
fractals of known obstructive lung diseases can be developed as a reference in hope to prelim-
inarily diagnose the type of the disease. Once the first exhaled aerosol image was recorded,
images subsequently acquired can be used to validate the original diagnosis or to monitor the
progression of the disease. Moreover, the database development is an on-going process. As
more data are collected, the accuracy for both pre-diagnosis at the initial clinic visit and disease
monitoring during the treatment could be improved.

Other limitations that may compromise the physiological realism of this study include the
assumption of steady flows, rigid airway walls, a constant glottal aperture, a limited number of
disease models, and numerical modeling only. Tidal breathing, compliant walls, and a dynamic
glottis all will alter the exhaled aerosol patterns and act as compounding factors that lower the
diagnosis accuracy at varying degrees. In practice, a standardized aerosol breath test should be
established regarding the breath and sitting position to minimize the impacts from such com-
pounding factors. Moreover, the algorithm of this proposed method is based on the differences
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among images, rather than the image itself. These compounding factors will affect the patterns
of the exhaled aerosol images, but will not significantly affect the level of difference among
these images. In this sense, assuming steady flows and rigid airways has greatly simplified the
modeling process while still capturing the essence of the involved physics. Further studies with
more physiologically accurate boundary conditions are desirable to quantify their respective
impacts on the prediction accuracy. Concerning the limited number of disease models, future
development of a database categorizing more diseases and their respective fractal patterns is
necessary. Complementary in vitro and in vivo tests are needed to validate the numerical pre-
dictions in this study.

In summary, the performance of the proposed aerosol breath test was numerically assessed
in four asthmatic lung models. The exhaled aerosol patterns were generated using a high-fidel-
ity image-CFD approach and were statistically correlated to their underlying lung diseases
using a fractal-SVM model. Results of this study provide the proof-of-concept in developing a
computer-aided diagnostic system for rapid detection and localization of asthmatic bronchitis
in a non-invasive nature. This diagnostic system can also potentially be used in lung cancer
patients.

Supporting Information

S1 Table. Data set for 108 samples. This folder contains tables of Image fractals of 108 sam-
ples, the training and test sub-datasets, and the 10-fold cross-validation test results.
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$2 Table. Data set for 324 samples. This folder contains tables of Image fractals of 324 sam-
ples, the training and test sub-datasets, and the 10-fold cross-validation test results.
(RAR)
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