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Abstract

Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide. One of the fundamental 

processes driving the initiation and progression of CRC is the accumulation of a variety of genetic 

and epigenetic changes in colon epithelial cells. Over the past decade, major advances have been 

made in our understanding of cancer epigenetics, particularly regarding aberrant DNA 

methylation, microRNA (miRNA) and noncoding RNA deregulation, and alterations in histone 

modification states. Assessment of the colon cancer “epigenome” has revealed that virtually all 

CRCs have aberrantly methylated genes and altered miRNA expression. The average CRC 

methylome has hundreds to thousands of abnormally methylated genes and dozens of altered 

miRNAs. As with gene mutations in the cancer genome, a subset of these epigenetic alterations, 

called driver events, is presumed to have a functional role in CRC. In addition, the advances in our 

understanding of epigenetic alterations in CRC have led to these alterations being developed as 

clinical biomarkers for diagnostic, prognostic and therapeutic applications. Progress in this field 

suggests that these epigenetic alterations will be commonly used in the near future to direct the 

prevention and treatment of CRC.
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INTRODUCTION

Colorectal cancer (CRC) is common worldwide and remains the second leading cause of 

cancer-related deaths in Western countries1. Despite recent improvements in screening 

strategies and the development of more effective treatments for CRC, the prognosis of 

advanced CRC is still poor. Furthermore, the newest line of molecularly-targeted therapeutic 

agents, appear to only have activity in metastatic CRC and do not cure the patient, but they 

have exponentially increased treatment costs and the economic burden of CRC care. 

Therefore, robust diagnostic, prognostic and predictive biomarkers are clearly and urgently 

needed to detect advanced colon polyps and early stage CRC, which are most effectively 

treated with current therapies, and to identify the most effective treatments for specific CRC 

patients.

Gene mutations have long been known to be important in cancer formation. However, 

epigenetic alterations have only recently been recognized as significant contributors to 

cancer development. “Epigenetics” was first described by the developmental biologist 

Conrad H. Waddington, in 1942, as “the study of heritable changes in gene expression 

mediated by mechanisms other than alterations in primary nucleotide sequence of a gene” 

and is now considered as broadly referring to heritable alterations in gene expression that are 

not mediated by changes in the DNA sequence2, 3. Epigenetic alterations frequently found in 

cancer include aberrant DNA methylation, abnormal histone modifications, and altered 

expression levels of various non-coding RNAs, including microRNAs (miRNAs). With 

regards to the role of epigenetic alterations in the normal-polyp-cancer sequence, as with 

gene mutations, it appears that a subset of the hundreds-thousands of alterations found in the 

typical cancer cell drives the initiation and progression of CRC formation through the 

sequential accumulation of genetic and epigenetic changes in key tumor-suppressor and 

oncogenes4.

The prevailing consensus suggests that epigenetic alterations in CRC occur early and 

manifest more frequently than genetic alterations. In addition, advances in genomic 

technologies have led to the identification of a variety of specific epigenetic alterations as 

potential clinical biomarkers for CRC patients. This review briefly outlines the fundamental 

basis of epigenetic alterations in cancer, and details the current state of the field regarding 

the promise and clinical usefulness of various epigenetic alterations as biomarkers for early 

detection, diagnosis, prognosis and management of CRC patients.

DNA METHYLATION

Overview of DNA Methylation in Cancer

The most widely studied epigenetic alteration in cancer is aberrant DNA methylation. 

Although DNA hypermethylation has received the most attention recently, DNA 

hypomethylation was the first reported DNA methylation abnormality in human cancer 

(1983)5. As illustrated in Figure-1, at this time global DNA hypomethylation was identified 

in both colorectal adenomas and CRC6. It was not until several decades later, that Baylin 

and colleagues identified site-specific hypermethylation- of the Calcitonin (CALCA) gene in 

lung cancer and lymphoma7. Later, RB (Retinoblastoma), a known tumor suppressor gene, 
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was found to silenced by aberrant DNA methylation, providing support for a functional role 

for epigenetic alterations in oncogenesis8–10. This landmark discovery was followed by the 

discovery of other hypermethylated tumor suppressor genes in cancer, including CDKN2A, 

MLH1, and CDH111–13.

DNA methylation is one of a host of epigenetic modifications that can regulate gene 

expression. In humans, DNA methylation occurs at cytosine residues that precede guanines, 

called CpG dinucleotides (C-phosphodiester-G bond)14, 15. The majority of CpG 

dinucleotides in the human genome are methylated, however, there are CpG rich sequences 

called CpG islands, which are typically unmethylated in normal healthy cells. CpG islands 

are found in the promoter regions of ~40–60% of tumor suppressor genes, are generally 

200–2000 bps long, have a CG content >50%, and are involved in the regulation of gene 

expression14–16. Methylated CpG dinucleotides are usually found in gene bodies and large 

repetitive sequences (LINE-1, SINE/Alu sequences etc.) that are found in centromeres and 

other retrotransposon elements17–19. In one sense, this normal methylation pattern is 

essentially reversed as cancer cells.

DNA methylation is mediated by DNA methyltransferases (DNMTs) that facilitate the 

catalytic addition of methyl groups to the 5th position of the cytosine rings of CpG 

dinucleotides. DNA methyltransferases are classically considered to be either maintenance 

methyltransferases (e.g. DNMT1), which preserve existing methylation patterns during 

DNA replication, or de novo DNMTs (e.g. DNMT3A and DNMT3B), which preferentially 

catalyze the methylation of previously unmethylated CpGs3. Although the way in which 

methylation represses gene transcription is still under investigation, proposed mechanisms 

include alterations in chromatin complexes and the recruitment of methyl-CpG domain-

binding proteins (MBD) around the CpG islands of the corresponding gene(s)20, 21. MBD 

proteins at gene promoters impede access of the regulatory proteins required for active gene 

transcription. DNA methylation can directly inhibit cis-binding elements, including the 

transcriptional factors Activating Protein 2 (AP-2), CCAAT enhancer-binding protein C/

EBF, cAMP response element-binding protein (CREB), E2 promoter binding factor (E2F), 

and nuclear factor kappa-light-chain-enhancer of B cells (NF-κB). Furthermore, emerging 

evidence indicates that extensive DNA methylation changes at CpG island “shores” ― 

regions with relatively lower CpG density and located within 2 kb of CpG islands, strongly 

correlates with loss of gene expression22–24. CpG island shores are methylated in a tissue-

specific manner, and contain 70% of the differentially methylated regions involved in 

cellular reprogramming. The mechanism behind differential methylation of CpG shores 

regulating gene expression remains poorly understood and is an area of active investigation.

Aberrant DNA Hypermethylation in Colorectal Cancer

Advances in our understanding of the molecular pathogenesis of CRC led to the initial 

observation that these neoplasms primarily arise through two major molecular pathways of 

genomic instability ― chromosomal instability (CIN) and microsatellite instability (MSI). 

However, more recently a third class of CRCs characterized by a high frequency of DNA 

hypermethylation has been identified. These cancers have been defined as having a “CpG 

island methylator phenotype (or CIMP)”, and their identification provided a significant 
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advance in our understanding of the molecular mechanisms that orchestrate colorectal tumor 

formation.

The CIMP was first described in colorectal tumors in 1999 and was characterized as having 

an exceptionally high frequency of hypermethylated CpG dinucleotides25. Weisenberger and 

colleagues later introduced the prevailing method used to identify CIMP in CRC, which is 

based on the methylation status of five genes, CACNA1G, IGF2, NEUROG1, RUNX3, and 

SOCS126. CIMP-positive tumors exhibit unique clinicopathological and molecular features, 

including a predilection for proximal location in the colon, female gender, poor and 

mucinous histology, and the presence of frequent KRAS and BRAF mutations25, 27–30.

MSI generally results from inactivation of the DNA mismatch repair (MMR) system 

through hypermethylation (80% of MSI CRCs) or mutations in the genes MLH1, MSH2, 

MSH6, and PMS2 (20% of MSI CRCs). Inactivation of these genes results in the 

accumulation of DNA replication errors in repetitive microsatellite sequences, some of 

which are located in the exons of potential tumor suppressor genes. MSI CRCs represent 

~12–15% of all tumors and >90% of familial Lynch syndrome CRCs, which account for 2–

3% of all MSI CRC31, 32. The remaining MSI CRCs (10–12%) are sporadic33, 34. Eighty 

percent of sporadic CRCs with MSI harbor biallelic hypermethylated MLH1 

alleles12, 26,12, 25.

While there exists a significant overlap in the clinical features between sporadic MSI and 

Lynch syndrome cancers, patients with sporadic MSI have an older age of onset, and higher 

frequency of the BRAF V600E mutations and hypermethylated MLH1, while Lynch patients 

are generally younger and harbor rare BRAF mutations 35, 36.

Aberrant DNA Methylation Occurs Early in “Traditional” and “Serrated” Polyp Pathways

The conventional model of CRC formation as initially proposed by Fearon and Vogelstein 

describes a stepwise normal-adenoma-cancer progression and considers adenomatous polyps 

as the principal pre-neoplastic lesions leading to CRC4, 37. As described previously38, the 

transition from normal mucosa to adenomatous polyp is marked by both genetic and 

epigenetic alterations, some of which deregulate central molecular pathways39. These 

epigenetic alterations include hypermethylation of a variety of genes, such as SLC5A8, 

ITGA4, SFRP2, PTCH1, CDKN2A, HLTF, and MGMT, and some of these play a role in the 

initiation and progression of adenomas to CRC11, 40–45. The identification of methylated 

genes in colon polyps has led to their use as biomarkers in early detection assays for CRC46.

More recently recognized, the “serrated pathway” is another route for the formation CRC. It 

was originally described as “an alternative pathway” to the conventional adenoma-to-CRC 

pathway because of the unique morphological and histological characteristics of the sessile 

serrated polyps that give rise to CRCs via this route47. Mutations in BRAF and KRAS, along 

with CIMP, are common features of polyps in the serrated pathway. In contrast to classic 

adenomatous polyps, sessile serrated polyps and traditional serrated adenomas do not 

typically have genetic alterations in APC or CTNNB1 (gene for β-catenin)48–50 indicating 

that these two pathways are distinct and employ different molecular processes. In addition to 

BRAF/KRAS mutation-induced activation of the MAPK-ERK pathway51, serrated polyps 
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evolve through methylation-mediated transcriptional inactivation of various genes belonging 

to the β-catenin/WNT pathway (SFRP family, CDX2, MCC)52–54, p53 signaling pathway 

(IGFBP7)55, cell cycle control proteins (CDKN2A)56, and DNA Mismatch repair (MLH1)55 

family.

Aberrant DNA Hypomethylation in Colorectal Cancer

While DNA hypermethylation can silence tumor-suppressor genes, global DNA 

hypomethylation is believed to influence CRC development by inducing chromosomal 

instability and global loss of imprinting (Figure-2A)57–60. Genome-wide hypomethylation 

generally occurs within repetitive transposable DNA elements such as the LINE-1 or short 

interspersed nucleotide elements (SINE, or Alu) sequences in many cancers, including 

CRC61–65. LINE-1 hypomethylation inversely associates with MSI and/or CIMP65, 66. 

Furthermore, a number of studies have demonstrated that a high degree of LINE-1 

hypomethylation correlates with worse patient survival67–70. One hypothesis is that 

hypomethylation of LINE/SINE sequences may induce inadvertent activation of potential 

proto-oncogenes71, which implies that LINE-1 hypomethylation has a functional role in 

CRC formation72.

With regards to the mechanism responsible for cancer associated DNA hypomethylation, the 

prevailing belief is that it results from a passive process secondary to inadequate 

maintenance of methylation during DNA replication in most cancers. Recent studies have 

demonstrated that DNA hypomethylation in cancer can be secondary to an active process in 

some tumors. The ten-eleven translocation enzymes (TET) can catalyze the formation of 5-

hydroxymethylcytosine (5-hmC) from 5-methylcytosine, which is recognized by the Base 

Excision Repair (BER) proteins for removal and replacement with unmethylated cytosine. 

The ten-eleven translocation (TET) family members TET1 and TET2 are mutated in 

leukemia and a biochemically associated enzyme, isocitrate dehydrogenase (IDH1) is 

mutated in some gliomas. It has been proposed that mutant TET1 and TET2 and mutant 

IDH1 are the mechanisms for DNA hypermethylation in leukemias and gliomas, 

respectively.73–75. Of interest, global loss of 5-hmC is reported in several types of solid 

tumors, including CRC76. Recently, downregulation of TET1 expression was found in early 

stages of colon cancers, and loss of its expression was shown to inhibit WNT signaling 

pathway and suppression of tumor proliferation77, 78. However, the biological significance 

of 5-hmC and the TET proteins with regards to LINE-1 hypomethylation in CRC still 

remains unclear, and requires further investigation. IDH1 and TET1 or TET2 mutations do 

not appear to be a common cause of aberrant DNA methylation in CRC79.

Methylated DNA as a Biomarker for Colorectal Cancer

The term “biomarker” or “biological marker”80 was defined in 1998 by The National 

Institutes of Health Biomarkers Definition Working Group as “a characteristic that is 

objectively measured and evaluated as an indicator of normal biological and pathological 

processes, or pharmacologic responses to a therapeutic intervention”81. However, the 

definition of biomarker remains dynamic, and is constantly under revision in response to our 

evolving understanding of cancer. Based on current clinical criteria, CRC biomarkers can be 

described as substances: a) that are measured easily and inexpensively to identify a patient’s 
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cancer; b) that identify a patient’s prognosis independent of conventional classifications (i.e. 

TNM classification and tumor markers) to improve their outcome; and c) that predict a 

patient’s response to a specific treatment, thereby improving their prognosis and quality of 

life.

Methylated DNA as a Diagnostic Biomarker

Despite recent advances in treatment options, early detection and removal of precancerous 

lesions (advanced colorectal adenomas, A-CRA) remains the most effective strategy for 

reducing mortality associated with CRC. However, current screening modalities are limited 

by invasiveness, expense and poor patient compliance, leading to the late detection of 

cancers and subsequently unfavorable prognoses. The most widely used fecal screening 

tests, FOBT and FIT, have suboptimal diagnostic accuracy, highlighting the need for more 

robust and reliable non-invasive biomarker assays for the detection of early CRC.

During early stages of colorectal carcinogenesis, epigenetic alterations appear to exceed the 

frequency of genetic mutations, suggesting their greater potential for the next generation of 

diagnostic biomarkers for the detection of colonic polyps and cancers.

Stool-based biomarkers—Specific biofluids, such as blood (plasma or serum) and feces 

are the most common analytes used in CRC screening tests. Since the initial discovery by 

Sidransky and colleagues of mutant KRAS in fecal specimens from patients with CRC82, 

numerous studies have supported using fecal DNA for potential screening assays for the 

early detection of CRC. Studies of methylated SFRP2, SFRP5, PGR, CALCA, and IGFBP2, 

in fecal DNA from two independent cohorts identified methylated SFRP2 as a diagnostic 

biomarker for CRC detection with high sensitivity (77–90%) and specificity (77%)83. A 

later study using 111 fecal specimens, including 21 colorectal adenomas, demonstrated that 

methylated SFRP2 can also identify patients with precancerous colonic polyps84.

Another well-studied fecal DNA biomarker for CRC is methylated VIM, the gene for 

Vimentin. Methylated VIM specifically occurs in CRC tissues and is detected in fecal DNA 

with reasonably high sensitivity (46%) and specificity (90%)85. A number of studies have 

demonstrated the potential for using methylated VIM as a biomarker for the early detection 

of CRC86, 87, and these studies led to the development of an assay that detects methylated 

VIM as one of the first commercial fecal-DNA screening test for CRC (ColoSure™, Lab 

Corp, Burlington, NC). To date, a large number of hypermethylated genes including APC, 

ATM, BMP3, CDKN2A, SFRP2, GATA4, GSTP1, HLTF, MLH1, MGMT, NDRG4, 

RASSF2A, SFRP2, TFPI2, VIM, and WIF1 have been analyzed in fecal DNA for the early 

detection of CRC85, 88–95.

As illustrated in Table 1, a large number of stool-based methylation biomarkers, for use in 

CRC early detection assays have been identified in Phase I and II biomarker studies96. 

Perhaps of most clinical importance, this line of investigation has culminated in the 

development of an FDA approved, clinically available stool-based CRC screening test – 

Cologuard® (Exact Sciences Corporation). This stool DNA based assay, which detects 

methylated BMP3, methylated NDRG4, and mutant KRAS, was recently compared to FIT 

and to colonoscopy in nearly 10,000 patients enrolled at 90 sites97. This fecal DNA based 
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assay showed an overall sensitivity of 92% (95% CI, 83–97.5%) for CRC and 93% (95% CI 

83.8–98.2%) for stage I-III CRC, compared to sensitivity of FIT at 74% (95% CI, 61.5–

84%) and 73% (95% CI, 60.3–83.9%), respectively (p=0.002). For advanced adenomas and 

sessile serrated polyps, the sensitivity of the test increased proportionately with lesion size 

and grade. The molecular assay was significantly more sensitive than FIT for advanced 

adenomas: 42% (95% CI, 38.9–46%) vs. 24% (95% CI, 20.8–27%), respectively, for those 

≥1 cm and 66% vs 43% for those ≥2 cm (p< 0.001). Sessile serrated polyps ≥1 cm were 

detected at a rate of 42% for the molecular assay compared 5% for FIT (p< 0.001); In this 

study the test specificity was based on the primary and secondary study endpoints, 

specifically the detection of CRC and advanced pre-cancers. For these endpoints combined, 

the specificity was 87%97.

Blood-based biomarkers—Due to accessibility and high patient acceptance, blood is 

invariably felt to be the most ideal analyte for cancer biomarkers. Table 1 summarizes 

aberrantly methylated genes discovered in the plasma or serum of CRC patients, which are 

candidate biomarkers consequently.

“Circulating DNA biomarkers” were first described in the 1970s when abnormally high 

concentrations of DNA were discovered in the sera of patients with various cancers98. Initial 

studies focused on discovering somatic mutations99, 100; however, since somatic mutations 

are relatively rare compared to DNA methylation alterations in the early stages of CRC 

tumorigenesis, a great deal of effort has gone into the development of blood-based 

diagnostic assays based on circulating methylated DNA.

Following the initial reports of methylated CDKN2A in circulating DNA in a variety of 

human cancers in 1999101–103, a growing number of studies have examined the potential of 

methylated genes to be a blood-based biomarkers for CRC patients. Currently, the most 

established methylated DNA blood biomarker is methylated Septin 9 (SEPT9), which 

belongs to the gene family that encodes a group of GTP-binding104 and filament-forming 

proteins105 involved in cytoskeletal formation. Lofton-Day and colleagues first identified 

methylated SEPT9 as a non-invasive diagnostic biomarker for CRC106. These authors 

reported that methylated SEPT9 had 69% sensitivity and 86% specificity for discriminating 

CRC patients from healthy individuals106. Subsequent studies validated the clinical 

significance of methylated SEPT9 as a potential biomarker for CRC screening, which is now 

commercially-offered as a blood-based screening test in various assays including 

EpiproColon® 1.0 (Epigenomics, Seattle, WA), ColoVantage® (Quest Diagnostics, 

Madison, NJ) and RealTime mS9 (Abbott Laboratories, Des Plaines, IL). Furthermore, a 

recent prospective clinical trial (PRESEPT) demonstrated a comparable sensitivity and 

specificity of this assay for CRC vis-à-vis the conventional fecal occult blood test (FOBT), 

confirming its potential usefulness as a blood-based biomarker for CRC107. This test was 

also recently approved the Chinese FDA for use as a CRC screening assay. However, 

methylated SEPT9 has a limited sensitivity for the detection of advanced adenomas (11%), 

underscoring the need for further improvement of this test for implementation for 

population-based screening of colorectal neoplasia. A recent study demonstrated that the 

methylated SEPT9 assay was superior to fecal immunochemical (FIT) at detecting CRC 

neoplasms, but both approaches were suboptimal for diagnosing patients with advanced 
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adenomas108. To date, several other blood-based diagnostic methylation biomarkers have 

been identified for CRC detection, including ALX4109, APC95, CDKN2A93, HLTF110, 

HPP1111, hMLH1110, MGMT95, NEUROG1112, NGFR, RASSF2A95, SFRP2, VIM113, and 

WIF195. It is conceivable that a robust biomarker panel of methylated genes will be 

developed into a clinically viable CRC screening method in the near future.

Methylated DNA as a Prognostic Biomarker

Currently, the most accurate means for assessing CRC patient prognosis requires 

pathological staging of the tumor and the assessment of specific histological features of the 

tumor. However, the heterogeneity of survival times in patients with the same stage of CRC 

is well known and highlights the need for a more accurate system for determining CRC 

patient prognosis. As shown in Table 2, multiple, large and sufficiently powered clinical 

studies with independent external validation cohorts have demonstrated the feasibility of 

using specific methylated DNA signatures for developing prognostic biomarkers in CRC.

Among all biomarker candidates, CIMP status has undoubtedly been the most promising 

indicator for prognosticating CRC patients. CIMP-positive cancers correlate with an overall 

unfavorable prognosis70, 114–117. Rijnsoever and colleagues showed in a cohort of 206 stage 

III CRC patients that CIMP-positive status associated with poor survival118. Another 

independent study analyzed more than 600 CRC patients and also found that CIMP 

associated with poor prognosis in MSS CRC patients119. Some studies suggested that poor 

prognosis in CIMP-positive CRCs is from coexisting V600E BRAF mutations36, 119–121, 

however, in addition to CIMP, MSI status remains an important confounding factor that 

likely underlies the difference in prognosis of CIMP-positive MSS vs. MSI cancers122, 123. 

These data highlight that the prognosis of patients with CIMP CRCs also depends on the 

MSI status of the tumor.

In addition to hypermethylation of various genes/loci, growing evidence suggests that DNA 

hypomethylation status associates with the prognosis of CRC patients. Ogino and colleagues 

have reported a correlation between LINE-1 hypomethylation and poor survival in 

prospective cohort studies of CRC patients67. Subsequent studies not only validated this 

association for LINE-1 hypomethylation and CRC prognosis68–70, but also identified other 

potential genes that correlate with adverse outcomes124–129. In aggregate, these studies 

provide evidence that aberrantly methylated DNA has potential for use as prognostic 

biomarkers for CRC; however, further investigation is required to develop clinically robust, 

“locked-down” assays based upon standardized and reproducible prognostic biomarkers in 

order for these assays to be used in clinical care.

Methylated DNA as a Predictive Biomarker for Response to Treatment

Despite recent advances in the development of cancer therapeutics, the current generation of 

chemotherapeutic drugs are suboptimal because of modest efficacy and intrinsic or acquired 

resistance. This limitation highlights the need for predictive biomarkers that can be used to 

identify patients with low or high likelihoods of a response to specific treatments in order to 

maximize the overall treatment success with these chemotherapeutic drugs.
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Over the last decade, a number of aberrantly methylated genes have been proposed to serve 

as predictive biomarkers for CRC patients undergoing various chemotherapeutic regimens 

(Table 2). The majority of these studies have not progressed beyond Phase I/II discovery 

phase and thus will not be discussed further in this article. CIMP as a predictive marker has 

been intensively studied for more than a decade. In 2003, van Rijnsoever and colleagues 

first reported that CIMP-positive CRC patients benefited from 5-flurouracil (FU) based 

adjuvant chemotherapy and that this association with survival was independent of MSI or 

TP53 mutation status118. These findings were validated in a subsequent study when stage II 

and III CRC patients with CIMP-positive tumors were also shown to derive survival benefit 

following 5-FU treatment130. However, these results were challenged in a later study that 

examined a large patient cohort and reported that those patients with CIMP-positive tumors 

that did not receive 5-FU treatment survived longer when compared to patients with CIMP-

negative CRCs131. Another study showed CIMP-positive CRC patients had a shorter DFS 

after 5-FU treatment compared with patients with CIMP-negative tumors131. Recently, in 

another prospective study, the addition of irinotecan to adjuvant 5FU/LV in stage III, MSS, 

and CIMP-positive colon cancers improved overall survival132. Although the differences 

between these studies may reflect differences in CIMP criteria or inherent differences 

between patient cohorts; these studies suggest promise for the use of CIMP as a predictive 

marker and also highlight the need for additional studies of the interaction between CIMP 

status and therapeutic response to various treatments.

Although still in the early phase of development, some promising pharmaco-epigenetic 

biomarkers, such methylated MGMT for temozolamide treatment in gliomas, have been 

identified in various cancers133. A recent study showed the feasibility of using 

hypermethylated Transcription Factor AP-2 Epsilon (TFAP2E) as a predictive biomarker for 

response to 5-FU based chemotherapy in CRC patients134. Furthermore, DNA methylation 

microarray profiling of oxaliplatin sensitive vs. resistant CRC cell lines revealed that 

oxaliplatin-resistant cells exhibited hypermethylation of the BRCA1 interactor SRBC gene; 

which was subsequently shown to associate with poor progression free survival (PFS) in 

CRC cohorts treated with oxaliplatin135. The ability to develop reliable assays for 

methylated genes and the results of early phase studies using methylated genes as predictive 

markers will continue to drive the investigation of methylated genes as response predictors 

for CRC therapy.

Methylated DNA as a Colorectal Cancer Risk Biomarker: “Field Cancerization” and 
‘Epigenetic Drift’

The concept of “field cancerization” (or field effect) was first proposed in 1953 by Slaughter 

et al136. Field cancerization is characterized by the occurrence of genetic and epigenetic 

alterations in histologically normal-appearing tissues, and is believed to lead to an increased 

risk for synchronous or metachronous primary tumors. While genetic alterations are 

common in CRC cells, these are believed to be rare in normal cells. In contrast, some studies 

suggest somatic epigenetic dysregulation occurs not only in cancer tissues, but also in non-

cancerous and pre-neoplastic tissues. Considering that epigenetic alterations could 

contribute to the early events predisposing to malignant transformation, these studies 

suggest epigenetic events are potentially more promising somatic CRC risk markers than are 
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gene mutations. Methylation changes in tumor-suppressor genes and the estrogen receptor 

(ER) occurs in an age- and region-specific manner in normal colonic mucosa. The proposed 

age-related epigenetic alterations in tumor-suppressor genes may be one of the earliest 

events that predispose normal mucosa to tumorigenic transformation in CRC137. Loss of the 

insulin-like growth factor-II (IGF2) gene imprinting occurs at a higher frequency in the 

normal mucosa adjacent to cancer tissue, compared to normal mucosa in patients without 

CRC138, emphasizing the potential of IGF2 imprinting as a molecular signature to identify 

patients at greater risk for CRC development. In line with this concept, other studies have 

revealed that both hypermethylation of tumor-suppressive genes such as SFRP, ESR1, 

MYOD, and MGMT, as well as LINE-1 hypomethylation in normal colonic mucosa 

correlates with an increased risk of CRC, in contrast to patients without these traits139–142.

Accumulating evidence supports that the landscape of DNA methylation can be modified as 

a “function of age”. DNA methylation has been proposed to result from a gradual stochastic 

age-dependent dysregulation caused by a combination of external environmental factors and 

internal spontaneous random errors in the maintenance of methylation. This process of age-

dependent alterations in methylation is defined as “epigenetic drift”143. Interestingly, such 

age-associated DNA methylation often targets the promoters of tumor-suppressive 

genes144, 145. In monozygotic twins, epigenetic divergence with age suggests the underlying 

epigenetic drift may in part help explain the disease discordance146–148. Since this new 

concept closely relates to the “field effect”, identification of biomarkers that overlap both 

the “epigenetic drift” and “field effect” in colorectal mucosa may allow development of 

next-generation biomarkers for determining risk for CRC development in the future.

HISTONE MODIFICATIONS: A POTENTIAL CLASS OF CRC BIOMARKERS

DNA in eukaryotic cells is found in chromatin, which is a complex of macromolecules 

consisting of DNA, RNA and protein. The primary functions of chromatin are to facilitate 

DNA compaction, to reinforce the DNA macromolecule during mitosis, to protect against 

DNA damage, and to control gene expression and DNA replication. The primary protein 

components of chromatin are histones, which regulate DNA compaction and gene 

expression. Histones are protein octamers that consist of two copies of four core proteins - 

H2A, H2B, H3, and H4. Each histone octamer contains approximately 147 bp of DNA to 

form the nucleosome149. As illustrated in Figure-2B, each core histone protein has specific 

histone tails, which are subject to modifications including acetylation, methylation, 

ubiquitination, phosphorylation, and sumoylation150. Various modifications alter the three-

dimensional structure of the nucleosome and affect the transcriptional control of associated 

genes by creating an “inactive”, compacted, heterochromatin state, or an “active”, open 

chromatin, euchromatin conformation. For example, the active transcriptional state is 

recognized by di- and tri-methylation of histone H3 lysine 4 (H3K4me2, and H3K4me3), 

histone H3 lysine 36 (H3K36me2, and H3K36me3), and acetylation of H3 and H4, while 

trimethylation of H3 lysine 9 and 27 (H3K9me3 and H3K27me3) are enriched in 

heterochromatin and associate with inactive transcription151. After the initial discovery of 

the dysregulation of histone modifications in CRC152, studies have revealed that this 

dysregulation likely alters gene expression patterns in CRC. However, due to the technical 

limitations of assays that assess the post-translational histone modification state, it has been 
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difficult to determine the histone modification state in primary cancer tissues. Therefore, 

efforts to determine if histone modifications can be used as disease biomarkers have been 

limited (Supplementary Table 1). Global alterations of specific-histones in primary tissues 

have been the focus for biomarker development in CRC. Studies of H3K4me2, H3K9ac, and 

H3K9me2 alterations detected by immunohistochemical staining in liver metastases suggest 

that high H3K4me2 expression levels inversely correlate with poor prognosis153. 

Additionally, other studies in CRC suggest that histone modifications, such as acetylation of 

H3 lysine 56 and di- or tri-methylation of H3 lysine 9 and 27, have potential to be 

prognostic markers in CRC.151–156. Similarly, studies of histone modifications in circulating 

nucleosomes have identified reduced levels of H3K9me3- and H4K20me3 as potential 

diagnostic biomarkers for CRC157, 158. However, thus far, these studies are all Phase I 

biomarker studies and should be considered “proof of principle”. Further research is needed 

to determine whether any of these modifications will be clinically useful diagnostic or 

prognostic biomarkers in CRC.

NONCODING RNAS

Noncoding RNA overview

The central dogma of molecular biology, which describes the sequential transfer of genetic 

information and the concept that “DNA makes RNA and RNA makes protein”, was 

developed in 1956 and provided a fundamental framework for modern molecular biology 

until recently159. Advances in our understanding of the regulation of gene expression has 

been provided by the Encyclopedia of DNA Elements Consortium (ENCODE) 

transcriptome project, which recently revealed that protein-coding genes represent less than 

2% of total genome and approximately 80% of the genome is actively transcribed into non-

coding RNA (ncRNA)160. Although ncRNAs were previously believed to be “background 

transcriptional noise” related to “junk DNA”, mounting evidence indicates that ncRNAs 

play a significant role in many biological processes, including the regulation of oncogenes 

and tumor suppressor genes in cancer161. NcRNAs are broadly categorized into two groups 

based upon their size: small ncRNAs, that are shorter than <200 nucleotides, comprising of 

miRNAs (miRNAs), piwi-interacting RNAs (piRNAs), and small nucleolar RNAs 

(snoRNAs); and long ncRNAs (lncRNA) that are longer than 200 nucleotides162. Recent 

studies have elucidated the functional role of ncRNAs, particularly miRNAs, in human 

cancers and have not only revolutionized our understanding of their biological contribution 

to cancer pathogenesis, but have also provided important insights into the feasibility of their 

use as clinically relevant biomarkers in cancer.

Overview of miRNAs

Over the last decade, in the family of ncRNAs, the role of miRNAs has been best 

established in the context of carcinogenesis. MiRNAs are endogenous single-stranded small 

RNAs that are 18–25 nucleotides in length that were first discovered in 1993 as negative 

post-transcriptional regulators in Caenorhabditis elegans163, 164. During their biogenesis, 

premature-miRNAs are exported from the nucleus to the cytoplasm. Subsequent processing 

of the pre-miRNA generates mature-miRNA, which binds to 3’UTR “seed sequence” of 

target mRNAs, a process that is catalyzed by the RNA-induced silencing complex (RISC). 
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The binding of miRNA to the target mRNA can result in degradation of the target mRNA or 

inhibition of its translation into protein, with the degree of sequence complementarity 

between the miRNA and mRNA determining which mechanism is employed165–167 (Figure 

2C). The role of miRNAs in cancer was first shown in 2002 by Croce and colleagues, who 

demonstrated decreased expression of miR-15 and miR-16 in patients with chronic 

lymphocytic leukemia168. Since then, hundreds of miRNAs have been shown to be 

deregulated in other human malignancies, some of these deregulated miRNAs appear to 

have a functional role in tumorigenesis by regulating the expression of important oncogenes 

and tumor-suppressor genes169.

Dysregulation of miRNA Expression in CRC: Role in “Traditional” and “Serrated” 
Pathways

Commonly deregulated miRNAs have been identified that appear to participate during each 

step of the “traditional” (normal-adenomatous polyp-cancer) and “serrated” (normal-serrated 

polyp-cancer) pathways of CRC development. For instance, the miR-17-92a cluster, 

miR-135b, miR-143, and miR-145 regulate WNT/β-Catenin signaling pathway, which is 

involved in colorectal neoplasia initiation 170–173. Genes associated with the RAS-MAPK 

and PI3K/AKT cascades, that appear to drive the transition from early to advanced 

adenoma, are found to be regulated by specific miRNAs (e.g. RAS-MAPK by miR-143, 

let-7, miR-21, and miR-31; and PI3K/AKT by miR-1, miR-21 and miR-143) 174–180. 

Likewise, p53, a tumor suppressor protein frequently inactivated/silenced during the 

evolution from advanced adenoma to adenocarcinoma, is controlled by miR-34a/b/c, 

miR-133a, miR-143, and miR-145174, 181–183. In contrast, genes such as LIN28 drive CRC 

progression through inhibition of let-7 miRNA biogenesis, highlighting the complexity of 

miRNA-gene interaction in cancer184, 185. In addition, miR-21, miR-155 and miR-200 

family members regulate the TGF-ß pathway 186–188.

miRNAs also appear to play a role in the serrated pathway of carcinogenesis. The 

identification of increased expression of miR-21 and miR-181 in hyperplastic polyps (HP) 

and sessile serrated adenomas (SSAs), yielded the first clues for a potential role of miRNAs 

in the serrated pathway189. A recent, comprehensive miRNA expression profiling study of 

CRCs with or without BRAF mutations identified elevated miR-31-5p expression in BRAF 

mutant cancers190. A significant correlation between miR-31 overexpression and specific 

types of serrated polyps, sessile serrated adenomas (SSAs) vs. traditional serrated adenomas 

(TSAs) 191 highlights the possible functional role for this miRNA in the serrated 

pathway190. These findings were corroborated in a follow-up study that analyzed 381 

serrated and 222 non-serrated adenomas and identified a CIMP-independent association 

between miR-31 overexpression and BRAF mutations192. Interestingly, expression of 

miR-31 was progressively increased in the histologically more advanced lesions arising 

from SSAs but not from TSAs. Furthermore, miR-31 expression, BRAF mutation, CIMP-

positive status, and MLH1 methylation showed a gradual increase from rectum to cecum in 

SSA lesions 193, 194.
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MiRNAs as Clinically Useful Biomarkers for Colorectal Cancer

Over the last five years, miRNA biomarker research in human cancer has increased 

exponentially. The underlying reasons for this burgeoning interest are based upon some of 

their unique characteristics. First, miRNAs are remarkably stable under a variety of 

experimental and laboratory conditions. Second, due to their small size and the hairpin-loop 

structure, miRNAs are protected from RNase-mediated degradation195, and thus are easily 

extractable from a wide variety of clinical specimens, including formalin-fixed paraffin 

embedded (FFPE) tissues, and a variety of body fluids including blood, saliva, urine, feces 

etc. Third, cell-free miRNAs are often protected from degradation because of being in high 

density lipoprotein particles, apoptotic bodies, microvesicles, and exosomes, and through 

their binding to argonaute-2 (Ago-2), which results in increased stability196–199. Fourth, in 

addition to the stability in various human specimens, miRNAs are actively secreted by 

cancer cells into the circulatory system and digestive tract200, 201. Taken together, the 

stability of miRNAs coupled with their presence in a variety of compartments in the body 

(blood, feces, cancer cells, cells near the cancer, etc.), has led to an intense line of research 

on the use of miRNAs as cancer biomarkers.

MiRNAs as Diagnostic Biomarkers in Colorectal Cancer

Detection of pre-malignant polyps and early-stage neoplasms currently is one of the major 

goals of CRC screening strategies. The identification and treatment of polyps and cancers in 

their earliest stages leads to the most successful outcomes. In the following sections and 

Table 3, we summarize some of the key findings with regards to circulating cell free-

miRNAs and fecal-miRNAs and their potential as diagnostic biomarkers in CRC.

Blood-based biomarkers—The discovery of miRNAs in extracellular body fluids202 

triggered a growing number of studies that evaluated dysregulated expression of circulating 

miRNAs in various cancers. The first systematic and comprehensive miRNA expression 

profiling study was conducted by Ng and colleagues203, who evaluated miRNA expression 

alterations in tissue and plasma samples from CRC patients and healthy subjects. This study 

revealed that high expression of two miRNAs, miR-92a and miR-17-3p, could discriminate 

patients with CRC from healthy study subjects (sensitivity: 64%, 89%, specificity: 70%, 

70%, AUC: 0.72, 0.89, for each miRNA respectively). This landmark study further reported 

that the plasma levels of both miRNAs decreased significantly following surgical resection 

of the primary tumors, and that plasma miR-92a levels were also elevated in patients with 

gastric cancer and inflammatory bowel disease. Their findings have been replicated in other 

studies of CRC patients204.

MiR-21 is another well-characterized oncogenic miRNA, which is considered as one of the 

promising non-invasive biomarkers for the early detection of CRC owing to the following 

attributes: a) dysregulation of miR-21 occurs frequently in early stages of the adenoma-

carcinoma sequence205 b) miR-21 is one of the most highly expressed miRNAs in CRC206, 

and c) miR-21 is highly secreted by cancer cells and can be measured in exosomes or as free 

miRNAs in plasma or serum200, 201. One of the first studies utilizing miRNA expression 

profiling on primary CRC tissues and the adjacent normal mucosa identified miR-21 as 

differentially expressed in CRC (n=30)207. Validation studies in an independent set of 
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plasma samples (“test” set; 20 CRCs and 20 healthy controls) demonstrated that plasma 

miR-21 could be used to discriminate patients with CRC from normal control patients with 

high sensitivity (90%) and specificity (90%). Furthermore, the diagnostic and prognostic 

potential of serum miR-21 in CRC patients was recently addressed in another study200, 

which revealed that tumor-derived circulating miR-21 expression not only accurately 

discriminated patients with CRC from healthy subjects, but allowed identification of patients 

with advanced adenomas, which are “bonafide target lesions” for an ideal CRC screening 

test (sensitivity: 91.1%, 81.1%, specificity: 81.1%, 76.7%, AUC: 0.92, 0.81, for cancer and 

adenoma detection, respectively). This study also confirmed the significant association 

between lower miR-21 expression in serum and CRC tissues following curative resection of 

the primary tumor. Consequently, several studies confirmed the potential of miR-21 for use 

as a single miRNA biomarker for the early detection of CRC201, 208.

Although increasing number of miRNAs have been identified as potential biomarkers for the 

early diagnosis of CRC204, 209–211, it seems unrealistic that a single miRNA will adequately 

capture the underlying disease heterogeneity in colorectal polyps and cancers. Accordingly, 

several studies have proposed combining miRNAs into a biomarker panel to improve the 

detection accuracy of colorectal neoplasms212–215.

Although miRNAs appear to be promising CRC biomarkers, there are several challenges 

that must be borne in mind while considering their potential as diagnostic CRC biomarkers. 

The lack of consistency between biomarker panels in independent studies highlights a major 

obstacle for the development of robust miRNA biomarkers. This variability in miRNA 

biomarkers/biomarker panels among studies may in part be due to lack of standardized 

sample handling and processing steps, use of inconsistent normalization approaches as well 

as to the differences in ethnic and racial makeup of patient populations in the various 

studies. Once these issues are resolved, validation studies utilizing standardized assays in 

large population-based cross-sectional and prospective cohort studies are needed to identify 

optimal miRNAs and marker panels that can be used in clinical care.

Stool-based biomarkers—Similar to blood-based biomarkers, the use of stool-based 

miRNA biomarker assays for the early detection of colorectal neoplasia has been assessed 

recently. In 2010, one of the first studies of stool-based miRNAs demonstrated the 

feasibility of a one-step miRNA extraction and amplification method defined as “direct 

miRNA analysis” (DMA), and showed dysregulated expression of miR-21 and miR-106a as 

potential candidate biomarkers for CRC screening216. A subsequent study that assessed fecal 

miR-21 and miR-92a levels found that fecal miR-92a expression could differentiate patients 

with CRC or adenoma from those with lower-risk polyps or healthy subjects217. A more 

recent study evaluated fecal miRNA expression in residual material collected from FOBT 

kits and determined that miR-106a expression enhanced the sensitivity of FOBT in 

identifying patients with CRC218.

Another potential stool-based miRNA biomarker assay employed the extraction of RNA 

from fecal colonocytes using immuno-magnetic beads conjugated with the epithelial cell 

adhesion molecule (EpCAM) monoclonal antibody. This assay was used to study a cohort of 

197 CRC patients and 119 healthy volunteers219 and the expression of the miR-17-92a 
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cluster and miR-135b in feces was found to discriminate patients with CRC from healthy 

subjects with a high sensitivity (69.5%, 45.7%) and specificity (81.5%, 95%), further 

highlighting the potential use of stool as a source for miRNA biomarkers in CRC screening 

tests.

MiRNAs as Prognostic Biomarkers in Colorectal Cancer

Recognition of the probable functional role miRNAs play in human cancers and their 

remarkable stability in a variety of clinical specimens has made them attractive candidates as 

prognostic biomarkers in CRC220. The first study in this regard was conducted by Schetter 

and colleagues in 2008205, who used a microarray-based approach to evaluate the expression 

levels of 389 miRNAs in 84 CRC and matched normal colonic tissues. This study identified 

and validated 37 differentially expressed miRNAs, including miR-20a, miR-21, miR-106a, 

miR-181b and miR-203. A seminal finding of this study was that high expression of miR-21 

in CRC patients associated with poor survival, which has since been independently 

confirmed in several other reports200, 221–225. As shown in Table 4, although several other 

overexpressed (miR-10b, miR-17–92a cluster, miR-29a, miR-31, and miR-182)190, 226–236 

and under-expressed miRNAs (miR-143 and miR-124)237–239 have been proposed to be 

prognostic biomarkers, currently miR-21 has the best potential to be a clinically useful 

miRNA-based prognostic biomarker in CRC.

Based upon current guidelines, the majority of stage II CRC patients are treated surgically 

without adjuvant chemotherapy. However, a significant proportion (approximately 15%) of 

these patients experience tumor recurrence and death due to disease progression240, 241, 

highlighting the need for biomarkers that can identify high-risk stage II CRC patients who 

could benefit from adjuvant chemotherapy. Schepeler and colleagues found that miR-320 

and miR-498 miRNA- distinguish high-risk from low-risk stage II patients242 and correlate 

with recurrence free survival. Similarly, miR-21 expression appears to identify high-risk 

population in stage II CRC patients, which has been confirmed in several independent 

investigations222, 243–245.

In addition to individual markers, a miRNA panel has been developed to identify stage II 

CRC patients with a high risk of recurrence. The expression of 1849 miRNA probes in 40 

paired stage II colon tumors and adjacent normal mucosa tissues was examined225. A 

miRNA-based classifier comprising of miR-20a-5p, miR-21-5p, miR-103a-3p, 

miR-106a-5p, miR-143-5p and miR-215 was developed, which discriminated high risk of 

stage II CRC patients in a “testing cohort” (138 patients) and an independent “validation” 

cohort of patients (460 patients)225.

Although several miRNAs have thus far been identified as potential prognostic biomarkers 

in CRC, this field is still rapidly evolving. In addition to high-risk stage II patients, 

identification of low-risk stage III CRC patients is another potential use of miRNA risk 

stratification/prognostic biomarkers..

Predictive Biomarkers for Response to Treatment in Colorectal Cancer

The treatment options for advanced CRC patients have improved considerably over the last 

decade as a result of the development of novel targeted therapies246. 5-FU based regimens 
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remain the mainstay for adjuvant therapy, while advanced metastatic disease is often treated 

with newer antibody-based drugs targeting the vascular endothelial growth factor (VEGFA) 

and epidermal growth factor receptor (EGFR)247–249. In spite of therapeutic advances, the 

prognosis of patients with unresectable CRC still remains poor, with the median overall 

survival of only 18–21 months250. The development of biomarkers that can accurately 

predict a patient’s response to a specific chemotherapeutic regimen prior to initiation of the 

chemotherapy is of clear value and an area of active investigation.

Currently, the majority of the results related to the role of miRNAs in drug resistance are 

based on in vitro studies and remain to be assessed in clinical sample sets (Table 4). 

MiRNAs shown to mediate 5-fluorouracil resistance include miR-10b226, miR-19b251, 

miR-20a252, miR-21253–255, miR-23a256, miR-31257, miR-34258, 259, miR-129260, 

miR-140261, miR-145262, miR-192/-215263, miR-200 family264, and miR-497265. MiRNAs 

have also been identified that mediate irinotecan-resistance (miR-21254 and miR-451266) 

and oxaliplatin resistance, (miR-20a252, miR-21254, miR-133a183, miR-143267, miR-153268, 

miR-203269 and miR-1915270). However, as noted above, most of these findings are 

primarily based upon in vitro studies, and clinical data supporting these miRNA biomarkers 

as drug resistance markers are limited or nonexistent. Let-7g and miR-181b expression in 

primary tissues has been shown to associate with S-1-based response to chemotherapy271, 

while overexpression of miR-21 in CRC tissues has been associated with a poor response to 

5-FU-based chemotherapy205, 243, 272. Furthermore, both expression and methylation levels 

of miR-148a are linked with lack of response to 5-FU and oxaliplatin chemotherapies in 

advanced CRC patients273. A recent comprehensive array-based interrogation of tumor 

tissues collected from KRAS wild-type metastatic CRC (mCRC) patients treated with anti-

EGFR therapy identified miR-31-3p as a negative predictor of progression free survival 

(PFS)274.

Importantly, the studies of predictive miRNA biomarkers have been done using 

retrospective study designs and archived tissue samples. This is a limitation in our 

understanding of miRNA biomarkers as these studies have not accounted for intratumoral 

heterogeneity in the primary tissues and carry the biases inherent in retrospective study 

designs. Nonetheless, based on the in-vitro studies and on their presence in blood, 

circulating miRNA biomarkers in serum or plasma have potential to be used in blood based 

assays for predicting or monitoring response to chemotherapy. Although in its infancy, the 

development of promising miRNA biomarkers for predicting response to chemotherapeutic 

treatment in CRC patients could usher in a new era in the era of personalized management 

of cancer patients.

Long Non-coding RNA Biomarkers in Colorectal Cancer

Recent improvements in our understanding of the role of ncRNAs in carcinogenesis have led 

to their assessment as CRC biomarkers. Long non-coding RNAs (lncRNAs) are the second 

most commonly studied ncRNAs, following miRNAs. In 2012, the ENCODE Project 

Consortium identified 9640 lncRNA loci in the human genome and this number continues to 

grow160, 275. LncRNAs are classified generally into five broad categories based on their 

orientation and genomic location with relation to protein-coding genes: sense, antisense, 
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bidirectional, intergenic, and intronic275–277. Although the biological role of most lncRNAs 

still is unknown, a growing body of literature suggests that they have a wide variety of roles 

in controlling the expression of genes and miRNAs in cancer. These studies have shown that 

lncRNAs are involved in a variety of regulatory activities including chromatin remodeling, 

transcriptional activation, decoy (transcriptional repressor), and RNA degradation. They can 

also act as miR sponges and affect translational efficacy (Figure 2D)278.

In addition, dysregulation of lncRNA expression occurs in a tissue-specific and organ-

specific manner279–281, and appear to contribute to CRC tumorigenesis282, as summarized in 

Supplementary Table 2. In 2001, lncRNA dysregulation was identified in CRC in the setting 

of loss of imprinting of the long QT intronic transcript 1 (LIT1/KCNQ1OT1)283. Emerging 

evidence indicates that the aberrant expression of lncRNAs may have a functional role in 

CRC pathogenesis which would have obvious clinical implications 284. For instance, the 

oncogenic lncRNA, HOX Antisense Intergenic RNA (HOTAIR) is a 2158 bp gene residing 

in the mammalian HOXC locus on chromosome 12q13.13. HOTAIR binds PRC2 and LSD1 

complexes in the 5’ and 3’ regions, and represses transcription of the HOXD cluster by 

acting as a scaffold for histone282. Koga and colleagues were the first to demonstrate that 

high expression of HOTAIR significantly correlated with distant metastasis and poor 

prognosis in CRC patients285, a finding later validated by another group286. Another 

lncRNA, Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) was first 

identified as a predictive biomarker of metastasis in non-small cell lung cancer patients287, 

and subsequently was found to be prognostic in CRC patients288. LncRNAs were recently 

detected in extracellular vesicles and were successfully measured in the serum or 

plasma289–294, indicating their potential to serve as minimally-invasive biomarkers in CRC.

CONCLUSION AND PERSPECTIVES

Advances in our understanding of the natural history of CRC and the epigenetics of colon 

polyps and CRC has led to the development of epigenetic biomarker assays for CRC 

diagnosis, prognosis, and prediction of treatment response (Figure 3). The last two decades 

of research have demonstrated the potential of aberrant DNA methylation and alterations in 

noncoding RNAs to be used as biomarkers for colon polyps and CRC. Continued 

investigation of these promising class of biomarkers promises to lead to an high 

performance assays that can be used to prevent and manage patients with CRC.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A historical perspective illustrating key milestones associated with the discovery of various 

epigenetic alterations in colorectal cancer from 1983 to the present. Individual epigenetic 

alterations are listed in color-coded boxes; aberrant DNA methylation (red), non-coding 

RNAs including microRNAs (green), and histone modifications (yellow).
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Figure 2. 
An illustration of various epigenetic alterations in colorectal cancer. A) This figure 

illustrates the concept of aberrant DNA hypermethylation in the context of a “cancer cell”. 

Double helix DNA represents a tumor suppressor gene, with CpG islands and CpG shores in 

its promoter region. Hypermethylation of CpG sites (shown as black lollipops) leading to 

gene silencing and closed chromatin in the cancer cells is shown. In contrast, CpG 

dinucleotides within introns as well as in intergenic regions are frequently hypomethylated, 

which may lead to the increased expression of oncogenes and oncomiRNAs, and resulting 
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open chromatin conformation. B) This figure illustrates histone modifications in a cancer 

cell. The left panel depicts heterochromatin, which is a closed chromatin conformation that 

is often associated with DNA methylation and inactive gene transcription. In contrast, the 

euchromatin state is in an open conformation and associates with active gene transcription, 

presumably secondary to increased transcription factor binding. C) A schematic 

demonstrating miRNA biogenesis in cancer cells and how miRNAs inhibit and/or cause 

degradation of their mRNA targets. D) This figure illustrates various activities of long-

noncoding RNAs (lncRNAs) in cancer cells, including i) their ability to regulate chromatin 

conformation; ii) induce transcription by binding to appropriate transcription factors; iii) 

function as decoy and inhibit gene transcription; iv) act as miRNA sponges; v) cause mRNA 

decay and vi) induce mRNA translation.
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Figure 3. 
A schematic view of bench-to-bedside aspects of colorectal cancer epigenetics. This figure 

illustrates how a normal colonic epithelium undergoes a series of genetic and epigenetic 

alterations and transitions into an adenomatous polyp (via the “traditional pathway), or a 

serrated polyp (via the “serrated pathway’). Thereafter, these polyps acquire additional 

epigenetic alterations and genetic alterations and develop into primary CRCs. This normal-

polyp-cancer multi-step cascade is governed by the acquisition of gene mutations and 

epigenetic alterations, including aberrant DNA methylation and dysregulated expression of 
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several miRNAs. The molecular alterations during each step of colorectal cancer 

development can be measured in tissues (tissue-based biomarkers), as well as non-invasively 

in serum/plasma (blood-based biomarkers) and stool (stool-based biomarkers) and thus have 

potential to be diagnostic, prognostic and predictive biomarkers for colorectal cancer.
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Table 4

List of miRNAs as potential prognostic and predictive markers in colorectal cancer

Prognostic markers

miRNA Source Dysregulation in CRC Notable confirmed target genes*

Tissue-based b iomarker

Mature miRNA ID Previous miRNA ID

miR-10b-5p miR-10b Tissue Up regulated TIP30, SDC1, NF1, KLF4, HOXD10, PPARA, 
CDKN2A, CDKN1A, TFAP2C, BCL2L11

miR-17-5p miR-17 Tissue Up regulated PTEN, DLC1, ZBP1, p130, CDKN1A, PTPRO, 
PKD2, BCL2L11, E2F1, MAPK9, TGFBR2, VIM, 
CCND1

miR-21-5p miR-21 Tissue Up regulated PTEN, PDCD, RECK, JAG1, BCL2, TIMP3 DKK2, 
SOX5, MTAP, TGFBR2, E2F1, TPM1, APAF1

miR-29a-3p miR-29a Tissue Up regulated KLF4, DNMT3a, DNMT3b, CDK6, BACE1, MCL1, 
BCL2, PPM1D, LPL1

miR-31-5p miR-31 Tissue Up regulated FIH1, RhoBTB1, RASA1, FOXP3, ITGA5, MMP16, 
RDX, FZD3, DKK1, CREG1, RASA1

miR-92a -3p miR-92a Tissue Up regulated PTEN, P63, RECK, DUSP10, ITGA5, BMPR2, 
KAT2B

miR-155-5p miR-155 Tissue Up regulated MLH1, MSH2, MSH6, APC, TP53INP1, TAB2, 
MEIS1, MECP2, SOCS1, INPP5D, SMAD5, 
HIVEP2, BACH1

miR-181a-5p miR-181a Tissue Up regulated PTEN, E2F5, SMAD7, ATM, BCL2, PROX1, 
KAT2B, CDKN1B, RNF2, RALA, KLF6

miR-182-5p miR-182 Tissue Up regulated NDRG1, RECK, MTSS1, SMAD4, CDNK1A, 
FOXO3, FOXO1, MITF, CYLD, BCL2, CCND2

miR-191-5p miR-191 Tissue Up regulated TIMP3, BASP1, CDK6, SATB1, NDST1

miR-221-3p miR-221 Tissue Up regulated SUN2, RECK, CDKN1B, BMF, FOXO3, KIT, 
CDKN1C, TMED7, DDIT4, BNIP3L, TBK1

miR-224-5p miR-224 Tissue Up regulated SMAD4, CXR4, PHLPP1, PHLPP2, KLK10, 
CDC42, AP15, EYA4, EDNRA, DIO1

let-7i-5p let-7i Tissue Down regulated TLR4, SOCS1, BMP4, IL13

miR-16 -5p miR-16 Tissue Down regulated BMI1, WIP1, CDK6, HMGA1, ACVR2A

miR-34a-5p miR-34a Tissue Down regulated CD44, MYCN, PD-L1, MET, JAG1, MYC, MET, 
CDK4, CCNE2, MYCN, CCND1, E2F3, SIRT1, 
BCL2, NOTCH1

miR-124-3p miR-124 Tissue Down regulated SLUG, STAT3, EZH2, IL6R, EFNB1, CEBPA

miR-133a/b miR-133a/b Tissue Down regulated LASP1, RFFL, FSCN1, CXCR4, MET, KCNQ1, 
PNP, KCNH2,

miR-137 miR-137 Tissue Down regulated LSD1, FMNL2, CDC42, CDK6, KDM1A, NCOA2, 
CTBP1, MITF

miR-143-3p miR-143 Tissue Down regulated KRAS, DNMT3A, TLR2, MACC1, MYO6, MAPK7, 
FNDC3B, FSCN1, SERPINE1, JAG1, AKT1

miR-148a-3p miR-148a Tissue Down regulated BCL2, MMP7, ROCK1, DNMT1, TG1F2, DNMT3, 
RPS6KA5

miR-149-5p miR-149 Tissue Down regulated FOXM1, ZBTB2

miR-200a-3p miR-200a Tissue Down regulated CTNNB1, ZEB2, SIRT1, ZEB1, ZFPM2, GDAP1, 
MAPK14, KEAP1

miR-340-5p miR-340 Tissue Down regulated MET, PLAT

miR-378a-3p miR-378 Tissue Down regulated IGF1R, MYC, VEGFA, NPNT, GALNT7

Blood-based biomarker
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Prognostic markers

miRNA Source Dysregulation in CRC Notable confirmed target genes*

miR-21-5p miR-21 Serum Up regulated PTEN, PDCD, RECK, JAG1, BCL2, TIMP3 DKK2, 
SOX5, MTAP, TGFBR2, E2F1, TPM1, APAF1

miR-29c-3p miR-29c Serum Up regulated KLF4, DNMT3a, DNMT3b, CDK6, BACE1, MCL1, 
BCL2, PPM1D, LPL1

miR-92a-3p miR-92a Serum Up regulated PTEN, P63, RECK, DUSP10, ITGA5, BMPR2, 
KAT2B

miR-141-3p miR-141 Plasma Up regulated ZEB2, ZEB1, SFPQ, CLOCK BRD3, UBAP1, 
PTEN, ZFPM2, E1F4E

miR-155-5p miR-155 Serum Up regulated MLH1, MSH2, MSH6, APC, TP53INP1, TAB2, 
MEIS1, MECP2, SOCS1, INPP5D, SMAD5, 
HIVEP2, BACH1

miR-200c-3p miR-200c Serum Up regulated TUBB2, BMI1, ZEB2, ZEB1, FN1, ZFPM2, 
PTPN13, RNF2, BRD7

miR-221-3p miR-221 Plasma Up regulated SUN2. RECK, CDKN1B, BMF, FOXO3, KIT, 
CDKN1C, TMED7, DDIT4, BNIP3L, TBK1

miR-345-5p miR-345 Blood Up regulated CDKN1A, ABCC1

miR-885-5p - Serum Up regulated CDK2, MCM5

Predictive markers for response to treatment

miRNA Specimen Purpose of therapy Endpoint Treatment

Tissue-based biomarker

Mature miRNA ID Previous miRNA ID

miR-21-5p miR-21 Tissue NeoAdjuvant/Adjuvant/Palliative Prognosis 5FU-based chemotherapy

miR-148a-3p miR-148a Tissue Adjuvant/Palliative Prognosis 5FU/5FU+oxaliplatin

miR-150-5p miR-150 Tissue Adjuvant Prognosis 5FU with/without LV/levamisole/CDDP

- miR-200 family Tissue Adjuvant Prognosis Fluoropyrimidines

- miR-215 Tissue Adjuvant Prognosis 5FU-based chemotherapy

let-7c, g let-7c, g Tissue Palliative Response, Prognosis S-1 with or without CDDP, anti-EGFR

miR-31-3p miR-31* Tissue Palliative Prognosis anti-EGFR

miR-99a-5p,-3p miR-99a, -99a* Tissue Palliative Prognosis 5FU-based chemotherapy, anti-EGFR

miR-107 miR-107 Tissue Palliative Prognosis 5FU-based chemotherapy

miR-125b-5p miR-125b Tissue Palliative Prognosis anti-EGFR

miR-126-3p miR-126 Tissue Palliative Response, Prognosis XELOX, bevacizumab (anti-VEGF-A)

miR-181a,b miR-181a,b Tissue Palliative Response, Prognosis S-1 with or without CDDP, anti-EGFR

miR-625-3p miR-625* Tissue Palliative Response, Prognosis XELOX/FOLFOX

Blood-based predictive biomarker

miR-27b, -106a, -130b, -148, -326, -484 Plasma Adjuvant Response/Prognosis 5FU+Oxaliplatin

miR-19a-3p miR-19a Serum Palliative Response FOLFOX

*
miRTarBase Ver. 4.5 (http://mirtarbase.mbc.nctu.edu.tw) was used to list confirmed miRNA target genes
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