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Understanding how transcriptional regulators are themselves controlled is important in attaining a complete picture of the in-
tracellular effects that follow signaling cascades during early development and cell-restricted differentiation. We have addressed
this issue by focusing on the regulation of EKLF/KLF1, a zinc finger transcription factor that plays a necessary role in the global
regulation of erythroid gene expression. Using biochemical affinity purification, we have identified the DEK oncoprotein as a
critical factor that interacts with an essential upstream enhancer element of the EKLF promoter and exerts a positive effect on
EKLF levels. This element also binds a core set of erythroid transcription factors, suggesting that DEK is part of a tissue-re-
stricted enhanceosome that contains BMP4-dependent and -independent components. Together with local enrichment of prop-
erly coded histones and an open chromatin domain, optimal transcriptional activation of the EKLF locus can be established.

Studies of the erythroid lineage have led to the successful char-
acterization of intracellular regulators that act as transcription

factors to generate red-cell-specific expression (1). However, in
many cases it remains unresolved how these factors are themselves
regulated. Based on this notion, we have been studying the regu-
lation of erythroid Krüppel-like factor (EKLF or KLF1 [2]), a zinc
finger hematopoietic transcription factor that plays a global role in
activation of genes critical for genetic control within the erythroid
lineage (3–5). It performs this function by binding to its cognate
DNA 5=CCMCRCCCN3= element and recruiting chromatin-re-
modeling proteins and histone modifiers.

Regulation of EKLF itself is of interest because of a number of
functional properties and expression characteristics. EKLF ex-
pression remains tissue specific throughout early development
and in the adult. Its onset in the yolk sac is strictly limited to the
mesodermal, primitive erythroid cells that populate the blood is-
lands at the early headfold stage (embryonic day 7.5 [E7.5]),
switching by E9.5 to definitive cells within the hepatic primordia
and then to the red pulp of the adult spleen and the bone marrow
(6). During definitive hematopoietic differentiation, EKLF is ex-
pressed at low levels in multipotent progenitors (MPP) and re-
tains an expression pattern restricted to the common myeloid
progenitor (CMP) and megakaryocyte erythroid progenitor
(MEP) prior to eventual segregation to erythroid progeny (7–9).

We have demonstrated that a 950-bp region adjacent to the
EKLF start site of transcription, encompassing two critical ery-
throid hypersensitive sites (EHS1 and -2) and the proximal pro-
moter (10), contains all the information needed for developmen-
tally regulated, blood-cell-specific expression of a linked reporter
in vivo in mice (11). The tissue specificity and enhancer properties
of hypersensitive sites in this region are also seen in human ery-
throid cells (12). The EHS1 enhancer element contains a very
highly conserved (7 species) cluster of Smad, Gata, and E box
elements that are critical for optimal promoter function (10, 13–
15) and have been shown to bind their cognate proteins (15–18).
Removal of the endogenous 49-bp EHS1 enhancer decreases KLF1
levels by 50-fold in mice (19).

Recruitment of transcription factors to enhancers can be de-

pendent on and regulated by growth factor signals. In this context,
BMP4 has been shown to play a necessary role in the induction of
EKLF transcription, and the BMPR/Smad pathway is critical (20).
The importance of the Gata and Smad elements in EHS1 and the
proximal promoter has been verified by mutational analyses using
a 950-bp KLF1 promoter/green fluorescent protein (GFP) trans-
gene that faithfully recapitulates the onset of endogenous KLF1
expression during mouse embryoid body (EB) differentiation
(15). Chromatin immunoprecipitation (ChIP) of GATA proteins
reveals a switch from GATA2 to GATA1 in Gata site occupancy
(21, 22) when comparing early and late times of EB differentiation
(15). In addition, the use of a doxycycline-inducible small hairpin
RNA (shRNA) line directed against Smad5 verified its critical im-
portance for KLF1 expression. Together with the promoter anal-
yses, these data led to the proposal of a two-tiered mechanism for
transcriptional regulation of KLF1, with GATA2 and SMAD5 pro-
teins initially generating low transcript levels, followed by upregu-
lation of KLF1 expression after GATA1 protein is produced (15).

The slow kinetics of BMP4 induction of EKLF (20) raised the
possibility that other factors are corequired prior to EKLF onset.
Therefore, we focused on isolating proteins that interact with the
particularly strong enhancer element located within EHS1. Using
a biochemical affinity purification approach, we have identified
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one of these factors as the DEK oncoprotein (23). DEK was orig-
inally identified as a fusion with the CAN (now called Nup214
[24]) protein in a subset of patients with acute myeloid leukemia
(AML) who carry a t(6;9)(p23;q34) translocation (25). We now
show that DEK plays a critical role within the protein complex at
EHS1 and enables optimal levels of EKLF transcription.

MATERIALS AND METHODS
Cell culture. Murine erythroleukemia (MEL) line 745A, 32DEpo1, and
293T cells were grown as previously described (10, 26).

Purification of EHS1-binding proteins. Competitive gel shifts were
performed with oligonucleotide 2 (oligo2), oligo3, and oligo4 (10) to help
us determine which one to select for purification of EHS1-binding pro-
teins. Use of competitive gel shifts continued during our determination of
the optimal purification procedure and in the subsequent follow-through
(e.g., see Fig. 2C). M280 magnetic Dynabeads coupled with streptavidin
(Life Technologies) were incubated with biotinylated oligonucleotides to
create the oligonucleotide Dynabeads using buffers, washes, and condi-
tions as recommended by the manufacturer’s protocol. oligo1 and oligo2
sequences have been described previously (10). The 32DEpo1 cell lysate
(prepared as described in reference 10) was added, and incubation was
continued for 2 to 3 h at room temperature with rotation. A magnetic
apparatus was used for all washes. The beads were sequentially washed in
0.2 M NaCl (which removes most of the nonspecific binding proteins)
and 0.5 M NaCl before elution in 1 M NaCl. Eluted protein was dialyzed
and concentrated by acetone precipitation prior to SDS-PAGE. Proteins
were visualized by staining with colloidal blue, and bands of interest were
excised. Mass spectrometry analyses of the gel slices were performed by
the Rockefeller University Protein and DNA Technology Center using the
Sonar MS/MS search engine coupled with statistical scoring methods
(27). DEK was significantly enriched in two separate analyses.

Electrophoretic mobility shift assay. EHS1 DNA oligonucleotides
were fill-in labeled with [32P]dCTP, incubated with purified His-
tagged human recombinant DEK protein (pET-28a vector [28]) or
with 32DEpo1 extracts, and analyzed on 5% or 8% native polyacryl-
amide gels as described previously (10, 26, 29). We also performed
purified DEK DNA binding reactions in 20 mM HEPES (pH 7.9), 60
mM KCl, 3% Ficoll, 0.5 mM MgCl2, 0.06% Nonidet P-40, 1 mM di-
thiothreitol, and 20 ng of double-stranded poly(dI-dC). Mouse oligo1
and oligo2 sequences were as described previously (10); human oligo2
(5=-AGCTTCTAGCTGGCCTGGGCCC) and scrambled (5=-AGCTG
CGCTGCTCGTACGTTAG) were also used (the top strand only is
shown; the EKLF sequence is underlined). The DEK10 sequence was 5=
AGCTTATGGTAATTATAGACCC (the italicized bases were changes
from the mouse wild type).

shRNA knockdowns. A 21-nucleotide (nt) stretch within the mouse
DEK mRNA sequence was identified according to the RNA interference
(RNAi) target design rules put forth by reference 30 (bp 392 to 412 of
mouse DEK mRNA, NCBI accession no. NM_025900) and incorporated
into a double-stranded DNA 70-mer to encode an anti-DEK small hairpin
RNA (shRNA) according to the design rules described in reference 31:
5=-AGATCCCCCTGCTTTACAACAGGCCGGTTCAAGAGACCGGCC
TGTTGTAAAGCAGTTTTTGGAAAAGCTT. This 70-mer was cloned
into the pSUPER vector via its BglII and HindIII sites and verified by
sequencing. The resulting plasmid, the empty vector (carrying a neomycin
resistance gene), or a GFP-expressing control plasmid (carrying a neomy-
cin resistance gene) was transfected into the murine erythroid leukemia
cell line MEL 745A and selected for G418 resistance. Stable clones were
expanded and monitored for DEK and EKLF protein expression levels by
immunoblotting (mouse monoclonal anti-DEK antibody [BD Transduc-
tion Laboratories]) of cell lysates. This yielded “sh1” as used in Fig. 4.

Additionally, “verified” lentiviral vectors containing shRNAs target-
ing mouse DEK cloned in pLKO.1 (32) were obtained from Sigma (Mis-
sion shRNA Library). Lentiviral supernatants were produced in Phoenix
cells by transient transfection with Fugene 6 (Roche). Two rounds of

transduction of 25 � 104 murine erythroleukemic cells were carried out as
described previously (33), followed by selection in 1 �g/ml puromycin
(Sigma). After 4 days, samples were prepared for mRNA and protein
analysis. This yielded “sh2” and “sh3” as used in Fig. 4. The sequence for
sh3 is 5=-CCGGCGAACTCGTGAAGAGGATCTTCTCGAGAAGATCC
TCTTCACGAGTTCGTTTTTG. For control experiments, cells were in-
fected with either empty viral vector or vector expressing a scrambled
shRNA.

mRNA levels were detected via semiquantitative or quantitative re-
verse transcription-PCR (RT-PCR) as previously described (20). DEK
mRNA was detected using 5=-AAAGGAACGGAACAGTTCTGG (for-
ward) and 5= TTGTGACTTCTTCCAAGTTAGC (reverse) primers.

Chromatin analysis. Chromatin immunoprecipitation analyses were
performed as described previously (15, 34) using anti-DEK (rabbit anti-
body; kind gift from F. Kappes [35]), anti-Tal1 (Santa Cruz; sc-12984X),
or anti-P300 (Santa Cruz; sc-585X). Quantitative DNA analyses focused
on EKLF EHS1 using 5=-AAGGAGGAACAGAGCTATGGTTGT (for-
ward) and 5=-CAGGCATTATCAGACACACCAGAT (reverse) primers.
The specificity of the rabbit anti-DEK antibody has been tested by show-
ing that shRNA knockdown of DEK expression in HEK293 cells leads to
loss of signal on a Western blot (36).

Cell and in vivo analyses. Embryonic stem (ES) cell differentiation
into embryoid bodies followed established protocols (15, 37, 38). The ES
cell line containing the 950-bp EKLF promoter directly upstream of GFP
(Peklf-GFP) is as described previously (15); a variant line containing a
deletion of the oligo2 site (Peklf-1x�Dek-GFP) was established after
transfection/selection as previously described (15). The parental line is
engineered to enable insertion of the entire reporter unidirectionally and
in single copy into the same homing site, thus eliminating position effect
variegation (39). Postimplantation embryos dissected from pregnant fe-
male CD1 or ICR mice (40, 41) were staged according to morphological
landmarks (42). Total cellular RNA was isolated as described previously
(43). Procurement and yolk sac isolation from CRE/loxP matings were
performed as described previously (44). Quantitative analyses of RNA
(45) used primers previously described (15).

Cell manipulations. Transfections, extractions, coprecipitation, and
Western blot analyses were performed as described previously (33, 45, 46)
using pFLag-Smad5 and pHA-DEK.

Gene editing of MEL cells. The CRISPR (clustered regularly inter-
spaced short palindromic repeat) design tool at http://tools.genome
-engineering.org (47) was used to identify the proper guide sequence with
the fewest predicted off-target sites that was closest to the target DEK site
to be edited. This web tool enabled selection of the sequence used in Fig. 6,
which was cloned into the pX330 vector (48). In addition, a 150-nt (sin-
gle-strand) donor DNA strand was synthesized (IDT), containing changes
in 5 bases of the DEK target sequence that altered the most conserved
residues. MEL cells were cotransfected with the pXM330/DEK plasmid,
the donor polynucleotide, and a red fluorescent protein (RFP)-expressing
plasmid using the Neon transfection system (Life Technologies) set at
1,450 V and 3 pulses with a bandwidth of 10 ms. RFP-expressing cells were
single cell sorted with a FACSAria II (Becton Dickinson) into 96-well
dishes for growth. Genomic DNA from these clonal populations was iso-
lated and directly sequenced across the region of interest. Because nonho-
mologous end joining is more efficient than homologous recombination,
most of the clones contained deletions in one or both alleles at the DEK
binding site even though we had included donor DNA; we selected one
clone with an identical deletion in both alleles (indel8) and one with a
perfectly recombined target (DEK10) for analysis.

Data sets analyzed. Databases used as part of this study include his-
tone modification (49–51), transcription factor (49, 50, 52–54), and ery-
throid expression (55) sources and are indicated within the relevant figure
legends.
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RESULTS
The conserved EKLF upstream enhancer element is the site of
epigenetic modulation. We have shown by cotransfection and in
vivo analyses that the small 950-bp region adjacent to the EKLF
transcription start site is sufficient for tissue-restricted expression
(10, 11) and wished to address whether the epigenetic profile of
this region supports its importance. Database perusal of modified
histone H3 interactions within the critical 950-bp region of the
EKLF promoter/enhancer during hematopoiesis (51, 56) shows
that levels of the H3K4me1 active enhancer mark increase exactly
in parallel with activation of EKLF expression during hematopoi-
esis (7), that is, low within the hematopoietic repopulating cells
(long-term [LT] and short-term [ST] hematopoietic stem cells
[HSC]) and in myeloid (CMP and MPP) progenitors but high in
MEPs and erythroblasts (Fig. 1A). High levels of the active
H3K4me2 and H3K27ac marks are also evident in this region of
the EKLF promoter in erythroblasts (57, 58), as is a wider
H3K4me3 mark (59) within the body of the gene (Fig. 1A).

Other erythroid database analyses (49, 50) support this pattern
and additionally show that the active H3K36me3 mark is prefer-
entially associated with the 3= end of the gene and that the repres-
sive H3K27me3 mark is not present (Fig. 1B). Although EKLF
levels are high in the bipotent MEP, its expression in MEP progeny
changes such that it is transcribed at 80-fold-greater levels in ery-
throid than in megakaryocyte cells (7). Active H3 histone marks at
the EKLF gene show a smaller breadth of H3K4me3 and a virtual
absence of H3K4me1 and H3K36me3 marks in megakaryocytes
compared to erythroblasts (Fig. 1B). Together, these data demon-
strate that the EKLF gene, along with its proximal control region,
is dynamically altered in activated histone occupancy, consistent
with changes in its expression pattern during hematopoiesis.

Isolation of proteins that bind the core fragment in EHS1.
Within the evolutionarily conserved 950-bp region adjacent to the
EKLF transcription initiation site, our in vitro analysis of the 49-bp
EHS1 region (�715 to �666) (10) found unique DNA binding
proteins when oligonucleotides spanning this region were used in
gel shift assays with extracts from 32DEpo1 erythroid cells. We
had originally used these cells because of their high transfection
efficiency in reporter assays; as a result, we retained the same cells
for the biochemical purification of binding proteins. We focused
on the 18-bp oligo2 binding activity (Fig. 2A) because its DNA/
protein complex was more resistant to dissociation than that
formed with oligo3, there was not any detectable complex formed
with oligo1, and oligo3/oligo4 span two Gata factor sites already
known to bind the Gata1-Scl/Tal1 complex (14).

In our approach, double-stranded oligonucleotide 2 (or oligo-
nucleotide 1 as a negative control) is 5= biotinylated at one end and
attached to a streptavidin/magnetic bead column, which provides
the solid-state matrix to which the protein(s) is to be bound (60,
61). This column was sequentially washed in 0.2 M NaCl (which
removes most of the nonspecific binding proteins) and 0.5 M
NaCl before elution in 1 M NaCl, which contains almost all of the
specific DNA binding responsible for the oligonucleotide 2 probe
shift in the crude extract. Elution is efficient, as active DNA bind-
ing material is recovered from the oligonucleotide 2 column but
not from the oligonucleotide 1 column (Fig. 2B and C), and a
second elution does not recover any additional activity (not
shown). Based on DNA binding activity and protein estimates,
this step represents an �5,000-fold purification.

We performed two analyses to ascertain whether any proteins
had been sufficiently enriched for subsequent analysis by this pro-
cedure. First, we prepared extracts from [35S]methionine-labeled

FIG 1 Database histone H3 modifications associated with the EKLF (Klf1) transcription unit. (A) Histone H3K4me1 association data during hematopoietic
differentiation, along with those of H3K4me2, H3K4me3, and H3K27ac from erythroblasts, are compared (iChIP database from reference 51). The shaded area
is the adjacent enhancer/promoter region of mouse EKLF that is the focus of the present study. (B) Histone H3K4me1, H3K4me3, H3K27me3, and H3K36me3
association data from the ENCODE/PSU analysis (49, 50) are compared between erythroblasts and megakaryocytes.
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cells and performed the affinity purification. Analysis of labeled
proteins indicates that two proteins (molecular masses of �60 and
33 kDa) are uniquely present in the oligonucleotide 2-purified
fraction (Fig. 2D), demonstrating that we can well resolve the
proteins that are specific to oligonucleotide 2. Second, we scaled
up the protocol and monitored a portion of the eluted material on
a higher-percentage, silver-stained SDS gel. This higher-resolu-
tion analysis confirmed that the two proteins seen previously are

uniquely present in the oligonucleotide 2-derived material com-
pared to that from oligonucleotide 1 (not shown).

We purified protein from �10 liters of 32DEpo1 cells, per-
formed matrix-assisted laser desorption ionization (MALDI-
TOF) and tandem mass spectrometric analysis, and focused on the
material that migrated at �35 kDa and that is uniquely present in
the oligonucleotide 2-derived preparation. This preparation (but
not the negative control) yields the expected gel shift with a labeled

FIG 2 oligo2 binding proteins within EKLF EHS1. (A) (Top) Schematic (15) of conserved Eklf cis-regulatory elements (upstream enhancer and proximal
promoter) together with erythroid hypersensitive sites (EHS1 and EHS2), the Gata-E box-Gata site (GEG) at EHS1, the Gata and Cp1 sites at the proximal
promoter, and potential Smad binding motifs (SBM). (Bottom) Detail of EKLF upstream enhancer (EHS1) region. Blocks of conserved sequence homology
between seven mammalian species are color coded for their transcription factor binding sites (if known); locations of oligo1 through -4 sequences as identified
by reference 10 within EHS1 are as indicated, along with evidence of their in vitro ability to bind proteins in cell extracts. (B) Enrichment of oligo2 binding protein
after affinity chromatography with an oligo1 or oligo2 (3 samples) probe as indicated was monitored by a gel shift assay with radioactively labeled oligonucleotide
2. Input is nonenriched 32DEpo1 cell extract. (C) Competitive gel shifts were performed during the purification to assess specificity of binding by extracts to
oligonucleotide 2. Specific (S) or nonspecific (NS) competitor DNA was included at a 100-fold excess as indicated. (D) DNA binding proteins that interact with
oligo2 were monitored by SDS-PAGE analysis of [35S]methionine-labeled proteins after oligo1 or oligo2 affinity purification. Purified material derived from
�5 � 106 cell equivalents is shown. The arrow marks the protein unique to the oligonucleotide 2 preparation that is the focus of this study, along with the
mass spectrometry data (Sonar MS/MS analysis: a:b:y ratio is of the fragmentation ions; zm/zm�a is the chargemass/chargemeasured�calculated mass; the vertical
bar between amino acid pairs indicates the ion intensity within the peptide fragment [27]) and peptide sequences used in its identification; molecular
masses are indicated in kilodaltons on the left.
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oligonucleotide 2 probe. Using the mass spectrometry data, soft-
ware tools enabled appropriate database searches and determina-
tion of which subset of peptides gives the specified ion fragments
(62). Of particular interest are two peptides that match the mam-
malian DEK oncoprotein with high significance (Fig. 2D).

DEK is a protein of particular relevance to the present studies
as it is predicted to be involved in the induction of mesoderm
during early embryonic development (63), and it plays a role in a
subset of myeloid leukemia as a translocation protein fusion prod-
uct with Nup214 (25). Database inspection shows that all DEK
exons are strongly expressed in primitive and definitive erythroid
cells at all stages, including erythroid progenitors and the pro-
erythroblast, with an expression pattern that parallels that of
EKLF; although it dips in the reticulocyte, this remains at a rela-
tively high level (Fig. 3A). In the gastrulating embryo, DEK ex-
pression increases dramatically between E6.5 and early E7.5 (Fig.
3B), just prior to or coincident with the onset of EKLF at E7.5 (6),
at the time when the blood islands of the yolk sac are first appar-

ent. DEK onset is also coincident with that of EKLF during EB
differentiation at a time when hematopoiesis initiates (Fig. 3C). As
a result, DEK is appropriately present to exert an effect on EKLF
expression, both in the erythroid cell and during early develop-
ment and differentiation.

DEK binding to its target site is important for optimal EKLF
expression. Sequence inspection indicates that oligonucleotide 2,
although not absolutely conserved across its entire length, con-
tains a core region that is identical across KLF1 promoters from
seven vertebrate species (Fig. 4A). In addition, this core region
matches nicely (only one mismatch) with the HIV-2 enhancer
peri-ets site (pets site) bound specifically by DEK in vitro (28) (Fig.
4A). We used in vitro DNA binding assays to test whether recom-
binant DEK protein can bind oligonucleotide 2 sequences derived
from mouse or human EKLF genomic DNA. These sequences are
not identical (5/18 bp are different), but as shown in Fig. 4B, each
interacts specifically with DEK in vitro as monitored by gel mobil-
ity shift experiments. We addressed by chromatin immunopre-

FIG 3 Erythroid and developmental expression of DEK. (A) (Top) DEK RNA expression in mouse erythroid progenitors and erythroblasts and RNA polymerase
II density (total and elongation phospho-Ser2 forms) from the genome browser (50, 52). (Bottom) Data from the Erythron database (55) show expression levels
of DEK during mouse primitive and definitive (fetal liver or bone marrow) differentiation. P, proerythroblasts; B, basophilic erythroblasts; O, orthochromati-
philic erythroblasts; R, reticulocytes. (B) Semiquantitative RT-PCR analysis of DEK expression was performed with RNA from staged whole embryos at E6.5 (S,
streak) and early or late E7.5 (B, bud) as indicated; water was used as a negative (neg) control; 32DEpo1 RNA was used as a positive (pos) control. Results are
representative of two experiments. (C) Levels of EKLF (left scale) or DEK (right scale) were measured in RNA from EBs harvested at the indicated day of
differentiation using quantitative RT-PCR and normalized to glyceraldehyde-3-phosphate dehydrogenase. Values are presented relative to day 0, which is set to
1. Results are the averages of triplicates from a single experiment that is representative of two experiments.
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cipitation (ChIP) whether DEK is bound to the EKLF EHS1 in vivo
in erythroid cells; Fig. 4C shows that it does.

A prediction from these analyses is that manipulating DEK
expression should have a direct effect on EKLF levels. To test this
idea, DEK mRNA was targeted for degradation via RNAi. Using
two different vectors (pSUPER [31] and pLKO.1 [32]) with
either transfection/selection- or infection/selection-based ap-
proaches, we monitored the effects of stably expressing three
DEK shRNAs in MEL (line 745A) cells (shDEK lines). Expres-
sion analyses from two of the three shDEK lines (but not the
empty vector or the nonspecific control lines) show a strong
decrease of expression of EKLF protein, which correlates with
the loss of DEK protein (Fig. 4D). EKLF but not Gata1 RNA
levels are decreased (Fig. 4E).

Collectively, these studies demonstrate that DEK is required
for EKLF expression and directly interacts in vitro and in vivo with
its cognate site in the EKLF EHS1 enhancer.

Relevance of BMP4 pathway to transcription factor expres-

sion. Studies of the EKLF promoter have implicated the BMPR/
BMP/Smad pathway in its regulation (15, 18, 20, 64). This con-
clusion was supported by the demonstration that BMP4 was nec-
essary and sufficient to induce EKLF during serum-free ES cell
differentiation and that interference with the pathway by domi-
nant negative BMPR1B or constitutive Smad6 expression pre-
vented EKLF expression even during serum-containing ES cell
differentiation (20). At the same time, the Smad complex has been
shown to play a direct role in EKLF induction via Smad5 (15, 18).
However, it takes 2 to 3 days for BMP4 to induce EKLF in differ-
entiating EBs (20). The delayed nature of this effect led us to pos-
tulate the presence of a required protein that either is synthesized
independently or is codependent on BMP4 induction.

To examine whether DEK might fit into such a scheme, we
used the Flk1�/CRE (65) and the floxed BMPR1A (Alk3) and
Smad4 (44) mouse lines to address whether DEK and EKLF ex-
pression is altered specifically within the Flk1� population of the
developing embryo after conditional ablation. Flk1 is expressed by

FIG 4 DEK is critical for EKLF expression. (A) DEK consensus motif. Multispecies EKLF EHS1 oligo2 shares significant similarity with the peri-ets (pets) site
bound by DEK in the HIV-2 enhancer. (B) DEK protein interacts with EHS1 in a sequence-specific manner in vitro. DEK binding to oligonucleotide 2 was
monitored by gel shift analysis of purified recombinant DEK protein with labeled human (Hs) (lanes 1 to 3) or murine (Mm) (lanes 4 to 7) oligonucleotide 2.
Incubations were neat (lanes 1 and 5) or included self (lanes 2 and 6) or scrambled (lanes 3 and 7) cold oligonucleotide 2 at a 100-fold excess. The arrow indicates
the band of interest. (C) Quantitative analysis of chromatin immunoprecipitation of DEK protein at the EKLF EHS1 (upstream enhancer) region. Isotype IgG
was used as a negative control. Results are the averages of triplicates from two experiments. (D) MEL cells were stably transfected (sh1) or infected (sh2 and sh3)
with DEK shRNA-expressing constructs and their appropriate empty vector controls (V) or a nonspecific gene (NS). Untransfected MEL cells (745A) served as
an additional control. Results of Western blotting of extracts probed with the indicated antibodies are shown; Hsp90 was used as a loading control. (E) RNA
isolated from the same experiment as in panel D was semiquantitatively analyzed for expression of DEK, EKLF, and Gata1 expression; hypoxanthine phospho-
ribosyltransferase served as a control. Note that sh1 must be exerting its effect by translational repression (114), as DEK RNA levels are not affected in spite of
effective protein knockdown.
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E7.0 in the extraembryonic and paraxial-lateral embryonic meso-
derm (66, 67), and Flk1� cells are critical for formation of blood
vessels and hematopoietic cells (68, 69). Embryos that result from
a cross between Flk1�/CRE and floxed Alk3 or Smad4 mice die by
E11 (44). RNA was isolated from either E10.5 or E9.5 yolk sacs and
analyzed by quantitative RT-PCR for expression of EKLF, Gata1,
and DEK. The results (Fig. 5) show that normalized EKLF and
Gata1 levels drop by 70 to 90% in the absence of Alk3 or Smad4 in
vivo, consistent with our previous studies in differentiating ES
cells (20). Of relevance to our test model, DEK levels do not
change, or are even slightly elevated, under these ablation condi-
tions, showing that DEK expression in erythroid cells is not regu-
lated by the BMP4 pathway. These data provide in vivo genetic
evidence for the requirement of the BMPR/Smad pathway for
EKLF and Gata1 expression, independently of DEK expression.

Establishment of a multiprotein activation complex at EHS1.
The DEK binding site is located within a conserved Smad-DEK-
Gata-E box-Gata-Smad cluster in EHS1 (Fig. 2A) that is critical
for EKLF transcription (10, 13–15, 19). We have shown that Gata2
and Gata1 sequentially interact with that site in vivo during the
early-to-late transition in developing EBs (15). Several other
groups have also shown that Gata1, Gata2, and Smad5 proteins
bind the KLF1 promoter in vivo (16–18, 70, 71). Examination of
genome browser data shows that Gata1, Tal1, Ldb1, and P300
interact with EHS1 (Fig. 6A), consistent with formation of a
“core” erythroid transcription network (56, 72–76), which helps
to explain the erythroid cell-specific enhancer properties of EHS1
(10). Its importance is further underscored by analysis of this re-
gion in primary megakaryocyte cells that do not express EKLF:
these do not show Gata1 or Tal1 protein interaction at EHS1,
unlike that of primary erythroblasts analyzed in the same series
(Fig. 6B).

To test whether the 18-bp oligonucleotide 2 site plays a role in
maintenance of this complex, we used a CRISPR/Cas9 gene-edit-
ing approach (47, 48) to modify the endogenous oligonucleotide 2
site in MEL cells. This resulted in a series of indels of various
extents, of which one (indel8) contains a biallelic deletion that
overlaps oligonucleotide 2 (Fig. 6C). We investigated the status of
DEK and two of the core erythroid components in this line and
found that the low level of DEK interaction with the oligonucleo-
tide 2-edited EHS1 site was mirrored by a dramatic decrease in
occupancy by P300 and Tal1 (Fig. 6D).

The DEK consensus target site within oligonucleotide 2 is fairly
loose (Fig. 4A and B), and its DNA recognition properties are
unusual (see Discussion), making a directed mutagenesis design
less straightforward. Nevertheless, we used CRISPR/Cas9 under
homologous recombination conditions to establish a MEL cell
line with five substitutions within the most conserved nucleotide
residues (DEK10 [Fig. 6C]). Interestingly, although DEK binding
is not affected, binding by P300 and Tal1 is decreased by �70%
(Fig. 6D), suggesting that the core erythroid complex does not
remain intact in the midst of this DEK-directed mutation. Direct
testing by in vitro analysis supports the lack of effect of the mutated
DEK10 site on DEK binding, which maintains specificity, as it is
not competed by a scrambled oligonucleotide 2 variant (Fig. 6E).

We next addressed the importance of the oligonucleotide 2
sequence on EKLF expression level in the edited MEL lines, indel8
and DEK10, where we find a small (�40%) but significant effect
on expression, at both the RNA and protein levels (Fig. 7A). This
quantitative effect was further supported by analysis of the previ-
ously characterized ES cell line containing the 950-bp EKLF pro-
moter linked to a GFP reporter that faithfully reproduces endog-
enous activation (15). We precisely deleted the oligonucleotide 2
sequence within the promoter and quantified expression levels
during embryoid body formation. The data reveal a 2-fold drop in
promoter-directed expression in the oligonucleotide 2-deleted
cells (Fig. 7B).

Together, these results demonstrate that the oligonucleotide 2
sequence is vital for formation of the critical core erythroid en-
hanceosome complex within EHS1 that minimally includes Tal1,
P300, and DEK (Fig. 8). Although removal of the 49-bp EHS1 site
has a dramatic effect in vivo, removal of the DEK/oligo2 element
yields a more nuanced effect on adjacent gene expression and yet
remains necessary to establish optimal levels of EKLF RNA and
protein expression.

DISCUSSION

We have used a biochemical approach to identify the DEK onco-
protein as a critical factor for EKLF expression via its interaction
with the 18-bp oligonucleotide 2 region of the 49-bp EHS1 en-
hancer element. Removal of the oligonucleotide 2 target site yields
a significant disruption of the core erythroid complex at EHS1,
and removal of DEK protein (via shRNA constructs) has a dra-
matic effect on EKLF expression. Our studies suggest that DEK
forms a critical part of the core erythroid complex that is formed at
EHS1.

Unusual and relevant regulatory properties of DEK. DEK
was first identified as a fusion protein expressed from the t(6;
9)(p23;q34) translocation found in a subset of patients with AML
(25; see references 23 and 77 to 79 for recent reviews). The DEK
gene encodes a 375-amino-acid nuclear protein whose only struc-
tural relatedness to known proteins is a well-conserved SAP do-

FIG 5 Effects of yolk sac (YS)-specific ablation of Alk3 or Smad4 on selected
targets. EKLF (left), Gata1 (middle), and DEK (right) transcript levels were
monitored in yolk sac cells derived from Flk1-Cre (Flk1�/Cre) � Smad4 (wild-
type or fl/fl) E9.5 embryos (bottom) or Flk1-Cre (Flk1�/Cre) � Alk3 (wild-type
or fl/fl) E10.5 embryos (top). Samples were processed for RNA isolation and
analyzed by quantitative RT-PCR. Levels are normalized to glyceraldehyde-3-
phosphate dehydrogenase and then set to “1” for wild type. Results are aver-
ages from two to three independent biological replicates performed each in
triplicate.
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main (35, 80, 81), which forms one of its two DNA binding do-
mains (82). DEK plays a role in gene control via its binding of
nucleic acids, although the specific nature of these interactions
remains complex. For example, while there is evidence that it may
play a non-sequence-specific scaffolding function leading to in-
duced alterations of chromatin topology (81, 83, 84), there is also
evidence that it recognizes specific target DNA sequences, notably
within the HIV-2 enhancer peri-ets sequence (28, 85) and in the
class II major histocompatibility complex (MHC) gene promoter
at its Y box sequence (86). These target sequences are activation
elements and are both homologous to the oligonucleotide 2 se-
quence of the EKLF promoter (Fig. 4).

The association of DEK with Daxx and histone deacetylase
(HDAC) suggests that it plays a role in gene repression (87) and in
maintaining heterochromatin integrity via HP1	 (36). However,
and of most relevance to the present studies, DEK interacts with
AP-2	 and stimulates transactivation (88) and also interacts with
C/EBP	, an important coactivator of myeloid target genes (89),
where DEK knockdown disrupts granulocyte differentiation.
DEK, accompanied by AP-2	 recruitment, becomes enriched at a
site proximal to the CD21 promoter upon its transcriptional acti-
vation in B lymphocytes (90). DEK plays a critical role in enabling
activation of myogenic satellite cells and their exit from quies-
cence (91) and binds to highly expressed genes within open chro-
matin in U937 cells (92). Drosophila DEK is found at ecdysone-
induced puffs and is a coactivator for the ecdysone receptor (93).

Although the levels of hematopoietic stem cells (HSC) and pro-
genitors are slightly but significantly enhanced in the absence of
DEK, engraftment of HSC is curtailed (94).

Given the divergence in functions attributed to DEK, no direct
connection to the regulation of the EKLF gene was apparent at
first. However, the pets site motif that is occupied by DEK in the
HIV-2 enhancer is almost identical to the oligo2 sequence of
EHS1, which in turn is highly conserved between species. Further-
more, DEK is predicted to play a role in the induction of meso-
derm during early embryonic development (63). Together, these
properties provided us with a compelling reason to more fully
investigate DEK as a functional component of the EKLF pro-
moter, specifically via an interaction with the oligo2 region of
EHS1. Based on its expression pattern during erythroid differen-
tiation and development, on the activating role of its target DNA
site, and on the negative effects of its knockdown, our findings are
most consistent with a stimulatory function for DEK during
erythropoiesis, similar to its role in myeloid gene activation.

As summarized in Fig. 8, DEK onset occurs independently of
the BMP4 pathway, suggesting that its expression is separate but
possibly coordinately required with BMP4 activation of Smad5 to
fully induce EKLF. We have previously proposed that Gata2 is
required for EKLF’s initial activation, which is then activated to
higher levels once Gata1 is fully induced by Gata2 (15). An intact
Gata1 protein is required for full activation of EKLF, as Gata1s is
deficient (95). The requirement of the BMP4 pathway for Gata1

FIG 6 Critical importance of the oligonucleotide 2 region for erythroid core complex formation. (A) EKLF/Klf1 genome browser data (49, 52–54) showing EKLF
transcript levels and location as they relate to Gata1, Tal1, Ldb1, and P300 binding to EHS1 (gray shading). (B) EKLF/Klf1 genome browser data (49, 50) showing
Gata1 and Tal1 binding in erythroblasts and megakaryocytes. (C) CRISPR-Cas9 transfection of MEL cells was used for genomic editing. The top panel shows the
guide sequence (blue) along with the PAM sequence (red). The DEK sequence is in bold, and the oligonucleotide 2 region is underlined. The bottom panel shows
the deletion or substitution identified after genomic sequence analysis of two selected clones, indel8 and DEK10. (D) ChIP analysis of DEK (top), P300 (middle),
and Tal1 (bottom) protein binding to EHS1 in wild-type (WT), indel8, or DEK10 MEL cells as indicated. (E) DEK binding to wild-type oligonucleotide 2 (left)
or oligonucleotide containing the DEK10 altered sequence (right) was monitored by gel shift analysis with purified recombinant DEK protein. Samples also
contained self or scrambled cold oligonucleotide 2 at a 100-fold excess as indicated. The arrow indicates the band of interest.
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expression suggests a coherent type 1 feed-forward mechanism on
EKLF induction between BMP4/Smad5 and Gata1 once Gata1 is
induced by Gata2 (96, 97). Based on our earlier studies, this re-
quires high levels of BMP4 (20).

Extended protein/DNA complex interactions. The oligonu-
cleotide 2 target site is situated within the EKLF EHS1 enhancer
region (Fig. 8) that is known to interact with “core” erythroid
transcription components that consist of Gata1 or -2, Tal1, Ldb1,
and P300 (56, 72–75, 98). Of relevance to the present study, a
recent analysis shows that the accuracy of enhancer prediction is
improved by including Smad binding to this core set (99). The
sequence and protein layout are highly reminiscent of the beta
interferon (IFN-
) enhanceosome (100, 101), a conserved 50-bp
sequence with overlapping binding sites that associate with a spe-
cific set of transcriptional activators. Using DNA- and protein-
dependent mechanisms, these cooperate to synergistically activate
transcription. CBP/P300 is a strong coactivator that interacts with
many of these regulators and stabilizes the complex. Supporting
this analogy, global analyses of blood-cell-specific expression
demonstrate that motifs with preferential spacing are prevalent in
hematopoietic promoters and that they interact with multiple
transcription factors (102). The spacing among these motifs is
critical for maximal activity (102); for example, the Gata/E box
motif pair retains an �9-bp spacing, a property also seen within
EHS1. Gata2 and Smad4 (the partner of Smad5) form part of a
combinatorial interaction network (103), and we also find that
DEK and Smad5 can interact after cotransfection (unpublished
observations).

Our studies suggest that DEK is a critical non-tissue-specific
component that supports formation of a complex structure of
core erythroid activators at selected promoters/enhancers that
contain Smad/Gata/E box/Gata DNA sequences (73–75, 98). DEK
may or may not be needed for the integrity of the other compo-
nents of the complex; the ChIP data (Fig. 6) suggest that it con-
tributes to it but also that the DNA site plays a significant role in its
coherence, such that the DEK10 mutant site is just not optimal for
maximum transcription efficiency even though it binds DEK. In
addition, other proteins may be involved (e.g., CTCF [104]). It
will be of interest to query other erythroid sites that also interact
with these core components to determine the extent of overlap
with DEK.

Although we have focused our attention on the importance of
EHS1, it is essential to remember that the proximal promoter is
absolutely required for EKLF expression in cell culture and in vivo
(10, 11, 15), and there is evidence that a conserved intron 1 ele-
ment contributes to full activity as well (15). EHS1 and intron 1
may each provide quantitative contributions to expression that
together with the crucial proximal promoter element are needed
for full EKLF induction in vivo.

How might DEK function be so critical for EKLF transcrip-
tional activation? DEK properties suggest a number of speculative
scenarios. For example, DEK’s ability to interact with altered DNA
and chromatin structures may come into play within any ery-
throid “activation hubs” (e.g., see references 105 to 107) that
might form at the EKLF genetic region. Given that Scl/Tal1, a
protein that is known to play a critical role in the formation of
such 3-dimensional structures in erythroid cells via the Ldb com-
plex (108), also binds at EHS1, it is not far-fetched to imagine such
a scenario. In addition, DEK interacts with histone H3.3, particu-
larly after its phosphorylation by CK2, and preferentially enriches

FIG 7 Importance of the oligonucleotide 2 sequence for optimal EKLF expres-
sion. (A) Total RNA was isolated or whole-cell extracts were prepared from wild-
type (WT), indel8, or DEK10 MEL cells and analyzed for expression of EKLF RNA
(quantitative RT-PCR; analysis of 11 analytical replicates each from two experi-
ments) or protein (Western blotting) as indicated. “C” is an additional loading
control to balance the EKLF protein signals across the gel. (B) (Top) Schematic of
constructs containing the KLF1 promoter or one that has the oligonucleotide 2
sequence removed that were stably integrated into mouse ES cells adjacent to a
GFP reporter, yielding two stable ES lines (“Peklf-GFP” and “Peklf-1x�Dek-
GFP”). These are single-copy, unidirectional integrations into the same homing
site, which thus avoids position effect variegation. Locations of the mapped up-
stream enhancer, proximal promoter, and intronic enhancer are as indicated.
(Middle and bottom) ES cells from each were differentiated to EBs for the indi-
cated number of days, and samples were quantitatively analyzed for expression of
endogenous KLF1 (red) or exogenous reporter (green). The data show that the
two cell lines differentiated and expressed endogenous KLF1 normally but that the
Peklf-1x�Dek-GFP line generated a significantly lower relative level of reporter
than did the Peklf-GFP line. Data are from three experiments analyzed in
triplicate.
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H3.3 localization to actively transcribed regions (93). Finally,
DEK is found associated with splicing complexes (80, 109, 110),
where it enables accurate discrimination of potential 3= splice sites
via its interaction with U2AF (110), thus potentially linking pri-
mary transcription to effective accumulation of the processed
EKLF transcript (discussed in references 111 to 113).
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