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Abstract

Schizophrenia (SCZ) is a common complex disorder with poorly understood mechanisms and no 

effective drug treatments. Despite the high prevalence and vast unmet medical need represented 

by the disease, many drug companies have moved away from the development of drugs for SCZ. 

Therefore, alternative strategies are needed for the discovery of truly innovative drug treatments 

for SCZ. Here, we present a disease phenome-driven computational drug repositioning approach 

for SCZ. We developed a novel drug repositioning system, PhenoPredict, by inferring drug 

treatments for SCZ from diseases that are phenotypically related to SCZ. The key to PhenoPredict 

is the availability of a comprehensive drug treatment knowledge base that we recently constructed. 

PhenoPredict retrieved all 18 FDA-approved SCZ drugs and ranked them highly (recall = 1.0, and 

average ranking of 8.49%). When compared to PREDICT, one of the most comprehensive drug 

repositioning systems currently available, in novel predictions, PhenoPredict represented clear 

improvements over PREDICT in Precision-Recall (PR) curves, with a significant 98.8% 

improvement in the area under curve (AUC) of the PR curves. In addition, we discovered many 

drug candidates with mechanisms of action fundamentally different from traditional 

antipsychotics, some of which had published literature evidence indicating their treatment benefits 

in SCZ patients. In summary, although the fundamental pathophysiological mechanisms of SCZ 

remain unknown, integrated systems approaches to studying phenotypic connections among 

diseases may facilitate the discovery of innovative SCZ drugs.
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1. Introduction

Mental illness causes enormous personal and societal burdens [1]. In fact, mental illnesses, 

such as schizophrenia (SCZ), bipolar disease, depression and other psychiatric disorders, is 

the leading cause of impairment and disability in the United States and world-wide, 

accounting for around one-third of the disabilities in the world [2, 3]. SCZ is arguably the 

most intractable among all psychiatric disorders [4]. SCZ has a life-time prevalence of 1%, 

typically beginning before age 25 years and persisting throughout the life of the individual 

[3]. Currently, effective drugs do not exist for treating SCZ [5]. Despite the vast unmet 

medical need, many drug companies have moved away from SCZ drug development, in part 

because of the high costs, high failure rates in clinical trials, lengthy development processes, 

and a poor understanding of underlying mechanisms of the disease [5, 6, 7].

In this study, we present a computational drug repositioning approach towards discovering 

innovative drug candidates for the treatment of SCZ. Psychiatric drug discovery has 

traditionally come from repositioning existing drugs based on serendipitous clinical 

observations [8]. For example, lithium, originally approved as a sedating agent, is now used 

in the treatment of mania [9]. Chlorpromazine, originally approved as an antihistamine, is 

now used in the treatment of schizophrenia [10]. Iproniazid, originally approved as an anti-

tuberculosis agent, is now used in the treatment of depression [11]. Ketamine, originally 

approved as an anesthetic agent, has rapid antidepressant effects in patients with major 

depression [12]. Computation-based repositioning approaches that automatically reason over 

vast amounts of genetic, genomic, chemical, and phenotypic data can greatly speed up the 

timeline of traditional serendipity-based psychiatric drug discovery process and facilitate the 

identification of truly innovative drug treatments for SCZ and other psychiatric disorders 

[13, 14, 15]. However, computational drug repositioning approaches for identifying novel 

drug candidates for SCZ has not been fully explored.

Computational drug repositioning approaches can be classified as either drug-based or 

disease-based [14, 15]. Drug-based approaches leverage on the known molecular structures 
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or functions of drugs, such as chemical structures and properties, molecular docking, gene 

expression, drug treatment indications, and drug side effects [16, 17, 18, 19, 20, 21, 22, 23, 

24]. In the past 50 years, psychiatric drug discovery has been largely drug-based and has 

focused on identifying molecules with which existing drugs interact. Consequently, all 

current antidepressants, antipsychotics, and anti-anxiety drugs developed and marketed from 

the 1950s to the current day have targeted the same molecular pathways in the brain as their 

prototypes [5]. it has been recognized that drug-based discovery, with its focus on finding 

drug candidates based on existing drugs, might by definition fail to identify new therapeutic 

mechanisms [25]. An alternative approach is disease-based discovery, which puts less 

emphasis on existing drugs and focuses more on disease mechanisms and interrelationships. 

Because disease-based approaches look for similarities and interrelationships among 

diseases, these approaches are able to identify innovative drugs. Compared to drug-based 

repositioning approaches, disease-based approaches are surprisingly less explored and 

mainly used disease gene expression data [19, 20].

We hypothesize that higher-level phenotypic overlaps among diseases reflect underlying 

biological commonalities and that insights from one disease may be used to inform our 

developing knowledge of others. We developed a phenotype-driven drug repositioning 

system, PhenoPredict, to exploit drug repositioning opportunities rendered by disease 

phenotype data captured in the Human Phenotype Ontology (HPO) and a comprehensive 

drug-disease treatment relationship knowledge base (TreatKB) that we recently constructed 

[26, 27, 28]. HPO is a standardized vocabulary of phenotypic abnormalities encountered in 

human disease [29]. HPO contains phenotypic descriptions of 7,529 diseases, the majority of 

which were derived from the Online Mendelian Inheritance in Man (OMIM) [30]. Studies of 

phenotypic abnormalities in HPO have advanced our understanding of the genetic bases of 

diseases [31, 32, 33]. In a recent study, Gottlieb et al. used disease phenotypic similarities 

defined in HPO and drug-drug similarities from other databases to construct a classifier 

(PREDICT) and then used it to determine treatment associations between 593 drugs and 313 

diseases, including SCZ [34]. Different from PREDICT, PhenoPredict used a network-based 

approach to systematically exploit phenotypic interrelationships among diseases as defined 

in HPO. More importantly, PhenoPredict used a novel drug prioritization algorithm to 

exploit treatment connections among diseases as defined in TreatKB, which is a key 

component of PhenoPredict. Compared to PREDICT, our study included significantly more 

drugs and diseases (2,482 drugs and 24,511 unique disease concepts). We compared 

PhenoPredict to PREDICT in novel drug predictions using multiple evaluation datasets and 

demonstrated that PhenoPredict achieved consistently better performances.

2. Data and Methods

The experiment framework for PhenoPredict is depicted in Fig. 1 and consists of four 

phases: (1) We constructed a phenotypic disease network (PDN) using disease-disease 

similarity measures from HPO. We then developed a network-based ranking algorithm to 

find diseases that are phenotypically related to SCZ; (2) In order to validate the network 

construction and ranking algorithms of PhenoPredict and to better understand SCZ-related 

diseases, we analyzed disease class distributions among diseases at different ranking cutoffs 

and investigated what kinds of diseases were enriched among top-ranked SCZ-related 
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diseases; (3) We developed a novel drug repositioning algorithm to systematically identify 

drug repositioning candidates from SCZ-related diseases. We evaluated PhenoPredict using 

FDA-approved SCZ drugs. We compared PhenoPredict to PREDICT in novel predictions; 

and (4) In order to better understand top-ranked drug candidates, we examined drug class 

distributions among both top- and intermediate-ranked drug candidates.

2.1. Construct the phenotypic disease network (PDN) and find SCZ-related diseases from 
PDN

2.1.1. Construct phenotypic disease network (PDN)—PDN was constructed by 

directly using the disease-disease similarity matrix obtained from HPO. In HPO, individual 

diseases are often associated with multiple phenotypic terms. Similarity measures for any 

two given phenotypic terms were calculated based upon shared information content 

(frequency among annotations of all diseases) in the set of their common-ancestor nodes. 

The similarity between two diseases was then calculated by matching each phenotypic term 

of one disease with the most similar term of the other disease; the average was taken over all 

pairs of phenotypic terms [29]. We downloaded the HPO disease-disease similarity matrix 

and mapped disease terms to the Unified Medical Language System (UMLS) [35] Concept 

Unique Identifiers (CUIs) in order to facilitate the subsequent linking to drug-disease 

treatment pairs in TreatKBs that were constructed from other data sources. A total of 5708 

out of 7529 disease terms in HPO were mapped to UMLS CUIs. Instead of excluding 

unmapped terms, we used the term names as their unique identifiers. In total, we obtained 

17,523,509 disease-disease pairs, representing 7210 unique disease concepts. The similarity 

scores from the matrix were used as the edge weights of PDN. We also generated ten 

random PDNs by randomly shuffling edges of the real PDN.

2.1.2. Develop network-based ranking algorithm for finding SCZ-related 
diseases—Recently, we developed network-based approaches to prioritize genes for a 

given disease [36] and to prioritize diseases for a given microbial metabolite [37]. In this 

study, we applied these network-based algorithms to prioritize diseases for SCZ. The 

iterative network-based ranking algorithm is defined as: pt+1 = (1 − r)Mpt + rp0, wherein M 

is the column-normalized adjacency matrix of PDN, γ is a preset probability of restarting 

from the initial seed node (γ=0.1 in this study), and pt is a vector in which the ith element 

holds the normalized ranking score of disease i at tth iteration. The initial probability vector 

p0 contains normalized probability values for input. In our study, p0 contains SCZ, with a 

probability of 1.0. Diseases are ranked according to values in the steady-state probability 

vector, which is obtained by iterating the algorithm until the change between pt+1 and pt is 

less than 10−6.

2.2. Analyze disease class distribution at different ranking cutoffs

To better understand ranked diseases, we analyzed disease class distribution at ten different 

ranking cutoffs. Using SCZ as the seed, we retrieved a ranked list of 7204 diseases from 

PDN. We classified these diseases into sixteen categories using the 10th revision of the 

International Statistical Classification of Diseases and Related Health Problems (ICD10), a 

disease classification scheme designated by the World Health Organization (WHO) [38]. 

The ICD10 includes 22 highest-level disease classes (or chapters) such as “Neoplasms” and 
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“Diseases of the nervous system.” We used sixteen chapters and excluded the other six non-

specific disease classes such as “Codes for special purposes” and “Injury, poisoning and 

certain other consequences of external causes.” Because the terms used in ICD10 may differ 

from those in PDN, we expanded disease terms in ICD10 to their synonyms through UMLS 

CUIs. Disease chapters and the numbers of diseases in each chapter are listed in Table 1.

At ten ranking cutoffs (10%, 20%, … 100%), we calculated percentages of these sixteen 

disease classes among retrieved diseases. For example, at the 100% cut-off (all 7204 

retrieved diseases), 3.89% of the diseases were classified as “Mental, behavioural 

disorders.” At the 10% cutoff (top 720 diseases), 87 out of the 720 diseases (12.05%) were 

classified as “Mental, behavioural disorders,” representing a 209.8% increase as compared 

to the 100% cutoff ((12.05-3.89)/3.89 = 209.8%). This means that top-ranked diseases on 

average included more “Mental, behavioural disorders” than lower-ranked diseases. While 

this was expected and demonstrates the validity of the disease ranking algorithm, we found 

that certain other disease classes such as “Endocrine, nutritional and metabolic diseases” 

were enriched among top-ranked diseases.

2.3. Reposition drugs

2.3.1. Drug repositioning algorithm—We developed an approach to systematically 

identify drug repositioning candidates from SCZ-related diseases. We ranked drugs based on 

the number of SCZ-related diseases that they are currently approved to treat as well as the 

ranking scores of these diseases. For example, if drug 1 treats 25 top-ranked diseases, it 

would be ranked higher than drug 2, which treats only one or two lower-ranked diseases. 

The drug ranking algorithm is defined as: , wherein n is the 

number of SCZ-related diseases that are currently approved to treat and R_disease_i is the 

disease ranking score (output from the network-based disease ranking algorithm). During 

the experiment, we found that certain drugs were consistently ranked highly for both the real 

PDN and random PDNs. For example, the drug “chlordiazepoxide” was ranked at top 0.32% 

for the real PDN and on average at top 0.36% for andom PDNs. We designed our 

reprioritization strategy by accounting for rankings of a drug for random PDNs. A drug was 

ranked highly if and only if it was ranked highly based on the real PDN and the ratio of its 

ranking for the real PDN to that for random PDNs is at least 2 fold.

2.3.2. Comparison of four TreatKBs in a de-novo validation setting using 18 
known SCZ drugs as evaluation dataset—In order to systematically reposition drug 

treatments from one disease to another, it is critical to have a comprehensive drug treatment 

knowledge base. In our recent studies, we constructed four large-scale drug-disease 

treatment knowledge bases (TreatKBs) from multiple heterogeneous and complementary 

data sources using advanced computational techniques including natural language 

processing, text mining, and data mining [26, 27, 28]. The databases included 9,216 drug-

disease treatment pairs extracted from FDA drug labels, 111,862 pairs extracted from the 

FDA Adverse Event Reporting System (FAERS), a database supporting the FDA’s post-

marketing drug safety surveillance efforts, 34,306 pairs extracted from 22 million published 

biomedical literature abstracts, and 69,724 pairs extracted from 171,805 clinical trials. The 
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combined TreatKB consists of 208,330 unique drug-disease treatment pairs, representing 

2484 drugs and 24,511 unique disease concepts.

We evaluated PhenoPredict using all 18 FDA-approved SCZ drugs by comparing its 

performance across four TreatKBs. Since SCZ and its associated drug treatment pairs were 

removed from the inputs to the repositioning algorithm (SCZ-related diseases and drug-

disease treatment pairs), the evaluation is in fact a de-novo validation. We calculated the 

rankings of the 18 FDA-approved SCZ drugs among all retrieved drugs and used them as 

our gold standard. We assumed that the higher these gold standard drugs were ranked, the 

better the ranking algorithm was. We compared the performances (recall and average 

rankings) across four TreatKBs separately and in combination.

2.3.3. Compare PhenoPredict to PREDICT in novel predictions—We compared 

PhenoPredict to PREDICT in novel predictions using three evaluation datasets: (1) 195 

drugs that had been tested in SCZ clinical trials; (2) 50 drugs that were in ongoing SCZ 

clinical trials initiated in 2012 and after. These drugs may represent newer SCZ drugs; and 

(3) 114 drugs that the literature implies have been used to treat varying symptoms of SCZ. 

These three evaluation datasets were derived from TreatKBs, which was constructed from 

multiple data resources including 22 million published biomedical literature abstracts and 

171,805 clinical trials [26, 27, 28]. The 18 FDA-approved drugs were removed from these 

three evaluation datasets. Note that all SCZ-related drug treatment information were 

removed from TreatKB before PhenoPredict made predictions for SCZ.

We used Precision-Recall (PR) curves instead of Receiver Operator Characteristic (ROC) 

curves to evaluate and compare PhenoPredict to PREDICT. PR curves are often used to 

evaluate ranked classification results in information retrieval [39]. ROC curves are 

commonly used to evaluate binary classification problems in machine learning and data 

mining [40]. A PR space is defined as precision (fraction of examples classified as positive 

that are truly positive) and recall (true positive rate) as x and y axes, respectively. An ROC 

space is defined by FPR (false positive rate) and TPR (the same as recall) as x and y axes, 

respectively. Studies have shown that in domains where the number of negatives greatly 

exceeds the number of positives, such as in drug repositioning and most other biomedical 

classification domains, ROC curves can present an overly optimistic view of an algorithm’s 

performance as compared to PR curves [41, 42]. Davis et al. proved that a curve dominates 

in ROC space if and only if it dominates in PR space and algorithms that optimize the ROC 

curve are not guaranteed to optimize the PR curve [42]. Therefore, in our study, we used PR 

curves even though most biomedical classification studies use ROC curves.

PREDICT utilizes multiple drug-drug and disease-disease similarity measures for the 

prediction task [34]. PREDICT first trains a logistic regression classifier using known drug-

disease associations. It then classifies additional drug-disease associations based on their 

similarity to the known associations. We compared PhenoPredict to PREDICT in novel 

predictions. A total of 593 drugs were included in PREDICT, among which 79 drugs were 

classified as positives for SCZ. The 79 drugs along with their corresponding probabilities 

(ranging from 0.543–0.994) are publicly available [34]. The remaining 524 drugs were 

predicted by PREDICT as negatives for treating SCZ. We assigned each negative prediction 
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a value that was randomly picked from 0.0 to 0.499. We repeated this process of assigning 

values to negatives for ten iterations and generated ten datasets for PREDICT. PR curves for 

these ten datasets were similar, therefore we did not generate more datasets for PREDICT. 

The PR curves for PREDICT were then averaged across the ten datasets that we generated. 

The output from PhenoPredict is a ranked list of 2484 drugs. Using each of the three 

evaluation datasets as gold standard, we calculated precisions at 10 different recall cutoffs 

(0.1, 0.2, …; 1.0) for both PhenoPredict and PREDICT and plotted the PR curves. The area 

under curves (AUC) was used to compare the two approaches.

2.4. Analyze repositioned drug candidates

It is important to the current study, as well as to future work in the fields of computational 

drug repositioning, to better understand the nature of identified drug repositioning 

candidates. In order to facilitate such an understanding, we examined the class distributions 

of drug repositioning candidates. Drug classes were defined by the Anatomical Therapeutic 

Chemical (ATC) classification system [43]. The ATC system consists of 13 first-level 

codes, 94 second-level codes, 267 third-level codes, 882 fourth-level codes, and 4580 fifth-

level codes. The fifth-level codes are individual drugs. In our study, we used the third level 

ATC codes for the analysis. We examined top ranked drug classes for drug candidates 

ranked in the range of top 0-15% and in the range of top16-30% separately.

3. Results

3.1. Disease class analysis

Using SCZ as the seed, we retrieved a ranked list of 7204 diseases from PDN. We calculated 

percentages of sixteen disease classes among these retrieved diseases at ten different ranking 

cutoffs (10%, 20%, … 100%). Among the sixteen disease classes, three disease classes were 

enriched among top-ranked diseases: “Mental, behavioural disorders,” “Diseases of the 

nervous system,” and “Endocrine, nutritional and metabolic diseases” (Fig. 2). The increase 

for the disease class “Mental, behavioural disorders” was particularly pronounced, with a 

209.8% increase for the top 10% diseases as compared to all retrieved diseases. The 

increases for the other two classes are similar but less prominent. In summary, the 

enrichment of “Mental, behavioural disorders,” to which SCZ belongs, among top-ranked 

diseases, demonstrated the validity of our phenotype-driven network-based disease ranking 

algorithm.

3.2. FDA-approved SCZ drugs were ranked highly

When the TreatKB containing only FDA-approved drug-disease treatments was used, 

PhenoPredict achieved a recall of 0.33 and an average ranking of 30.9%. When the other 

three TreatKBs were used, PhenoPredict achieved a significantly better performance in 

terms of both recalls and rankings (Table 2). Significantly, when all four TreatKB were 

combined, PhenoPredict achieved a recall of 1.00 and an average ranking of 8.49%. These 

results demonstrate that a comprehensive TreatKB is critical component of PhenoPredict.
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3.3. PhenoPredict performed better than PREDICT in novel predictions

We plotted PR curves for PhenoPredict and PREDICT using the 195 drugs extracted from 

SCZ clinical trials as the evaluation set. The PR curve for PhenoPredict clearly dominates 

that for PREDICT. The area under the curve (AUC) for PhenoPredict is 0.489, representing 

a 98.8% improvement as compared to the AUC of 0.246 for PREDICT (Fig. 3).

When evaluated with 50 drugs extracted from ongoing SCZ clinical trials, PhenoPredic 

achieved an AUC of 0.128, representing an 81.1% improvement as compared to the AUC of 

0.071 for PREDICT (Fig. 4).

The PR curves determined using the 114 drugs that the literature implies have been used to 

treat varying symptoms of SCZ as the evaluation set are shown in Fig. 5. PhenoPredict 

achieved of an AUC of 0.289, representing a 41.2% improvement as compared to the AUC 

of 0.208 for PREDICT. In summary, PhenoPredict consistently showed improved PR curves 

compared to those for PREDICT across three different evaluation datasets.

Table 3 shows the top 20 repositioned drug candidates, all of which are implicated as 

promising candidates through evidence from sources other than our experiment, such as 

FDA drug labels, clinical trials, or biomedical literature. Among these 20 drugs, 8 are FDA-

approved drugs. These specific examples further demonstrate the potential of PhenoPredict 

in identifying promising drug repositioning candidates for SCZ.

3.4. Analysis of repositioned drug candidates offers insights to common mechanisms of 
action

The top drug candidates, those ranked in the 0-15% range, were associated with a total of 95 

third-level ATC codes. Figure 6 shows the top 15 drug classes, among which 13 classes are 

related to antipsychotics, including antidepressants, antiepileptics, and dopaminergic agents. 

We have shown in the disease class analysis that mental diseases were highly enriched 

among top-ranked diseases; therefore, it is not surprising that most of the top ranked drug 

candidates are typical antipsychotics. This result also demonstrates that common 

pathophysiologic mechanisms are shared among phenotypically related psychiatric disorders 

and that traditional psychiatric drug discovery may have fully exploited this commonality 

(i.g. the same drugs are used among related diseases).

While top ranked drugs are mainly antipsychotics, drugs with intermediate rankings may 

provide opportunities for discovering innovative drugs. Figure 7 shows the top 15 drug ATC 

codes for drugs ranked in the range of 16-30%. The majority of these top ATC codes are not 

related to antipsychotics. Evidence gleaned from the published biomedical literature shows 

that these drug classes may have treatment potential in SCZ patients. For example, two ATC 

codes “immunodepressants” and “antiinflammatory and antirheumatic” were ranked highly. 

Studies have shown that immune dysfunction and inflammation are involved in patients with 

SCZ [44, 45]. Therefore, anti-inflammatory drugs may represent promising treatments for 

SCZ. In a randomized controlled study, celecoxib, a widely used anti-inflammatory agent, 

was shown to improve symptoms experienced by SCZ patients without major side effects 

[46]. Recent genetic findings from genome-wide association studies (GWAS) also point to 

possible common genetic connections between SCZ and immune disorders [47]. Beta-
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blockers were also ranked highly. Beta blockers are commonly used to treat hypertension 

and cardiovascular diseases. Studies have shown that they may reduce anxiety and 

extrapyramidal symptoms in SCZ and have been suggested as adjunctive therapies to 

antipsychotics in SCZ or similar severe mental disorders [48, 49]. The output of 

PhenoPredict also suggests the potential use of angiotensin antagonists as an atypical SCZ 

treatment. Angiotensin antagonists are primarily used in the treatment of hypertension, 

congestive heart failure, and heart attacks. Interestingly, angiotensin has been shown to 

regulate the central nervous system activity [50, 51]. Neurochemical and anecdotal reports 

suggest that angiotensin antagonists may have mood-elevating and cognitive enhancing 

functions in patients, however mechanisms of actions by which these inhibitors modify 

cognitive performance remain unknown [52].

4. Discussion

We developed a drug repositioning system, PhenoPredict, to exploit the phenotypic 

connections among diseases and applied it to identify drug repositioning candidates for the 

treatment of SCZ. PhenoPredict ranked many traditional antipsychotic drugs highly, 

demonstrating the validity of the algorithms. In addition, we discovered many drug 

repositioning candidates with mechanisms of action fundamentally different from traditional 

antipsychotics, each of which has substantial literature-based evidence implicating its 

potential benefits in the treatment of SCZ patients. However, PR curves for PhenoPredict are 

not optimal and can certainly be improved upon with future research efforts.

First, it will be interesting to test the generalizability of PhenoPredict for other diseases. 

Currently, PhenoPredict included drug-disease treatment relationships for a total of 24,511 

diseases and 2,484 drugs. In theory, PhenoPredict can rank the 2,484 drugs for each of the 

24,511 diseases or vice versa.

Second, it will be interesting to investigate why PhenoPredict outperformed PREDICT. 

Such knowledge can offer insight into how to further improve both systems. Since the 

algorithms as well as the datasets included in both PhenoPredict and PREDICT are integral 

parts of these two systems, it is unclear which (algorithms or datasets or both) contributed to 

the PhenoPredict’s advantage over PREDICT in finding drug candidates for schizophrenia. 

It will be interesting to investigate whether integrating datasets from both PhenoPredict and 

PREDICT can further improve the performances for each system.

Third, a limitation of using disease phenotypes in HPO for drug repositioning is that HPO 

mainly includes rare Mendelian disorders, the majority of which themselves have no 

available drug treatments. Therefore, the success of PhenoPredict in identifying drug 

repositioning candidates from similar diseases to a given input disease largely depends on 

the input disease as well as the treatment availability for top-ranked diseases.

Fourth, disease genetics and genomics, in combination with disease phenotypes, may further 

facilitate the discovery of truly innovative drug candidates for SCZ. Psychiatric disorders are 

among the most heritable of all common complex diseases. Human genomics and genetics 

studies have recently identified a large number of genetic risk factors for psychiatric 
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disorders [47]. Although nearly all of the identified SCZ loci are nonspecific and not fully 

penetrant, recent GWAS studies have demonstrated shared genetic loci among 

phenotypically related psychiatric disorders including SCZ and bipolar disorder. While this 

justifies our approach of using disease phenotype data for drug repositioning, disease 

genetics and genomics may provide additional information not captured by disease 

phenotypes. However, the task of how to combining different level of evidence, including 

genetics, genomics, and phenomics, in order to build compassing predictive models for drug 

repositioning is challenging. We are actively exploring options for how to best accomplish 

this task.

Last but not least, incorporating other types of disease-phenotype relationships such as 

disease comorbidities and disease risk factors may o er additional drug repositioning 

opportunities for SCZ. Recently, we constructed three large-scale disease phenotypic 

knowledge bases, including a disease comorbidity knowledge base, a disease-risk 

relationship knowledge base, and a disease-manifestation knowledge base [27, 53, 54]. 

Unlike HPO, which includes exclusively Mendelian genetic disorders, these disease 

phenotype knowledge bases contain not only Mendelian disorders but also many common 

complex diseases. Currently, we are developing approaches to integrate disease phenotype 

knowledge from these complementary and heterogeneous data resources in an e ort to 

further improve PhenoPredict.
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Highlights (for review)

• Schizophrenia (SCZ) is among the most enigmatic disorders without curative 

drugs.

• Systems approaches to study phenotypic interconnections among diseases can 

lead novel drug discovery.

• We developed a phenome-wide systems drug repositioning approach for SCZ.

• Our approach is effective in finding FDA-approved SCZ drugs as well as in 

novel predictions.

• Our algorithm performed significantly better than one of most comprehensive 

drug repositioning system.
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Figure 1. 
The overall experimental flow chart for PhenoPredict.
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Figure 2. 
Percentages of three disease classes among 7204 diseases retrieved from HPON at ten 

ranking cutoffs (top 10%, 20%, … 100% (all diseases)). For example, ranked diseases at top 

10% cuto (top 720 diseases) contain 12.05% diseases from the class “Mental, behavioural 

disorders”. Thirteen unenriched disease classes are not shown.
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Figure 3. 
Precision-Recall curves for PhenoPredict and PREDICT using 195 drugs from SCZ clinical 

trials as gold standard.
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Figure 4. 
Precision-Recall curves for PhenoPredict and PREDICT using 50 drugs from ongoing SCZ 

clinical trials as gold standard.
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Figure 5. 
Precision-Recall curves for PhenoPredict and PREDICT using 114 drugs extracted from 

biomedical literature (MEDLINE) as gold standard.
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Figure 6. 
Top 15 third level ATC codes (out of 95 codes) and their percentages for drug candidates 

ranked in the range of 0-15%. For example, 9.94% of drugs ranked in the range of 0-15% 

belong to the class “antidepressants”.
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Figure 7. 
Top 15 third level ATC codes (out of 93 codes) and their percentages for repositioned drug 

candidates ranked in the range of 16-30%. For example, 3.31% of drugs ranked in the range 

of 16-30% belong to the class “immunosuppressants.”
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Table 1

Sixteen disease chapters (classes) and the number of diseases (synonym expanded) in each chapter.

Disease Class Diseases
(n)

Disease Classes Diseases
(n)

Certain infectious and parasitic diseases 11,598 Diseases of the circulatory system 5544

Neoplasms 14,158 Diseases of the respiratory system 3156

Diseases of the blood and blood-forming organs
and certain disorders involving the immune
mechanism

3264 Diseases of the digestive system 5960

Endocrine, nutritional and metabolic diseases 5438 Diseases of the skin and subcutaneous tissue 4390

Mental and behavioural disorders 6162 Diseases of the musculoskeletal system and
connective tissue

11520

Diseases of the nervous system 5258 Diseases of the genitourinary system 5247

Diseases of the eye and adnexa 3735 Congenital malformations, deformations and
chromosomal abnormalities

9064

Diseases of the ear and mastoid process 1815 Certain conditions originating in the perinatal
period

3454
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Table 2

Comparing recalls and average rankings of 18 FDA-approved SCZ drugs for four TreatKBs individually and 

combined.

TreatKB Recall Average ranking

FDA-approved 0.33 30.9%

Post-market 1.00 10.48%

ClinicalTrials 0.67 21.65%

Literature 0.83 10.97%

Combined 1.00 8.49%
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Table 3

Top 20-ranked repositioned drug candidates. NCT**: SCZ drugs from clinical trials. PMID**: SCZ drugs 

from biomedical literature.

R Drug Evidence R Drug Evidence

1 risperidone FDA-approved 11 memantine NCT02001103
NCT00757978
NCT00097942

2 methylphenidate NCT00794040 12 buspirone NCT00178971

3 quetiapine FDA-approved 13 paliperidone FDA-approved

4 citalopram NCT00893256
NCT00047450
NCT01032083
NCT01032083

14 haloperidol FDA-approved

5 olanzapine FDA-approved 15 lithium NCT00202306
NCT00183443
NCT00202293

6 sertraline NCT00169988,
NCT00531518

16 amantadine NCT00999505
NCT00975611
NCT00401973

7 aripiprazole FDA-approved 17 levodopa NCT01636037

8 ziprasidone FDA-approved 18 atomoxetine NCT00420498
NCT00222794
NCT00488163
NCT00628394
NCT00161031,
NCT00089869

9 clozapine FDA-approved 19 clomipramine PMID9659874
PMID7635998
PMID7903293

10 valproic acid NCT00194025
NCT01094249
NCT02011750

20 prednisone PMID17245324
PMID23738211
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