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Abstract

Primary tumors often emerge within genetically altered fields of premalignant cells that appear 

histologically normal but have a high chance of progression to malignancy. Clinical observations 

have suggested that these premalignant fields pose high risks for emergence of recurrent tumors if 

left behind after surgical removal of the primary tumor. In this work, we develop a spatio-temporal 

stochastic model of epithelial carcinogenesis, combining cellular dynamics with a general 

framework for multi-stage genetic progression to cancer. Using the model, we investigate how 

various properties of the premalignant fields depend on microscopic cellular properties of the 

tissue. In particular, we provide analytic results for the size-distribution of the histologically 

undetectable premalignant fields at the time of diagnosis, and investigate how the extent and 

geometry of these fields depend upon key groups of parameters associated with the tissue and 

genetic pathways. We also derive analytical results for the relative risks of local vs distant 

secondary tumors for different parameter regimes, a critical aspect for the optimal choice of post-

operative therapy in carcinoma patients. This study contributes to a growing literature seeking to 

obtain a quantitative understanding of the spatial dynamics in cancer initiation.

1 Introduction

The term ‘field cancerization’ refers to the clinical observation that certain regions of 

epithelial tissue have an increased risk for the development of multiple synchronous or 

metachronous primary tumors. This term originated in 1953 from repeated observations by 

Slaughter and colleagues of multiple primary oral squamous cell cancers and local 

recurrences within a single region of tissue [1]. The phenomenon, also known as the ‘cancer 

field effect’ has been documented in many organ systems including head and neck (oral 

cavity, oropharynx, and larynx), lung, vulva, esophagus, cervix, breast, skin, colon, and 

bladder [2]. Although the exact underlying mechanisms of the field effect in cancer are not 
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fully understood, recent molecular genetic studies suggest a carcinogenesis model in which 

clonal expansion of genetically altered cells (possibly with growth advantages) drives the 

formation of a premalignant field [2, 3]. This premalignant field, which may develop in the 

form of one or more expanding patches, forms fertile ground for subsequent genetic 

transformation events, leading to intermediate cancer fields and eventually clonally 

diverging neoplastic growths. The presence of such premalignant fields poses a significant 

risk for cancer recurrence and progression even after removal of primary tumors. 

Importantly, these fields with genetically altered cells often appear histologically normal and 

are difficult to detect; thus, mathematical models to predict the extent and evolution of these 

fields may be useful in guiding treatment and prognosis prediction.

In this work we utilize a stochastic evolutionary framework to model the cancer field effect. 

Our model combines spatial cellular reproduction and death dynamics in an epithelial tissue 

with a general framework for multi-stage genetic progression to cancer. Using this model, 

we investigate how microscopic cellular properties of the tissue (e.g. tissue renewal rate, 

mutation rate, selection advantages conferred by genetic events leading to cancer, etc) 

impact the process of field cancerization in a tissue. We develop methods to characterize the 

waiting time until emergence of second field tumors and the recurrence risk after tumor 

resection. In addition we study the clonal relatedness of recurrent tumors to primary tumors 

by assessing whether local field recurrences (second field tumors) are more likely than 

distant field recurrences (second primary tumors). The key results of our study are 

summarized as follows. (i) We provide analytic results for the size-distribution of the 

histologically undetectable pre-cancerous fields at the time of diagnosis. (ii) We investigate 

how the extent and geometry of these fields depend upon a key meta-parameter of the 

system, Γ, which is defined through a specific relationship between kinetic parameters of the 

tissue and genetic pathways. (iii) We derive analytical results for the relative risks of local 

vs distant secondary tumors for different parameter regimes. These types of predictions are 

important in clinical practice. For example, they help determining the optimal size of 

excision margins at the time of surgery, and the appropriate choice of post-operative therapy 

(which may depend on the type of recurrence expected).

The methodology developed in this work is generally applicable to early carcinogenesis in 

epithelial cancers, and contributes to a growing literature on the evolutionary dynamics of 

cancer initiation, see e.g. [4–13]. Since our work is concerned with analyzing spatial 

premalignant field geometries during the genetic progression to cancer, here we briefly 

describe some existing mathematical models of the stochastic evolutionary process of cancer 

initiation from spatially structured tissue, e.g. [14–19]. In 1977 Williams and Bjerknes 

proposed a spatial Moran model of clonal expansion in epithelial tissue [16] in which cells 

divide according to fitness and replace a neighboring cell at random on the rectangular 

lattice. This model is closely related to the biased voter model from particle systems theory 

[20], and in [21, 22] the growth properties and asymptotic shape of the process were 

established. However, this model did not incorporate the possibility of mutations occurring 

to produce new types in the population. In [14] Komarova proposed a 1D model 

incorporating mutations with fitness advantages, where cells were allowed to divide in 

response to the death of a neighboring cell in contrast to the models mentioned previously. It 

was shown that the probability of mutant fixation and time to obtain two-hit mutants differ 
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from the well-mixed setting. Later, in [17,18] this model was extended to incorporate 

motility, and the relationships between migration, mutation, selection and invasion in a 

spatial stochastic evolutionary model were explored. In [19] the voter model considered in 

[16] was generalized to incorporate neutral mutations, and the waiting time to produce two-

hit mutants was studied in a general dimension setting. Martens and colleagues considered a 

similar model of mutation accumulation on a discrete time hexagonal lattice model, and 

studied the speed of population adaptation [23,24]. In a recent work Antal and colleagues 

consider a stochastic spatial model of cancer progression where cells acquire successive 

fitness advantages along the edge of the tumor. In the context of this model they study the 

shape of the evolving tumor front as well as the number of mutations acquired in the tumor 

[25]. In a recent work, we studied the accumulation and spread rates of advantageous mutant 

clones in a spatially structured population of general dimension [26]. Finally, we note that 

there have also been some studies mathematically modeling the growth of pre-cancerous 

cells via growth factors during early carcinogenesis utilizing reaction-diffusion systems, e.g. 

[27].

Most of the evolutionary models proposed in the field utilize similar descriptions of the 

fundamental processes of birth, selection, mutation and death in a spatially structured 

population (modulo the occasional minor differences in lattice structure and the structure of 

reproduction update rules). However, the studies described above have been aimed at 

studying the rates of invasion, adaptation, and mutation accumulation in these populations. 

In contrast, in this study we obtain analytical results for the spatial and temporal dynamics 

of premalignant fields during carcinogenesis. We consider a generalized spatial Moran 

process in which cells can acquire successive random mutations which confer selective 

advantages, reproduction occurs at rates proportional to cellular fitness, and reproduction 

results in neighbor replacement at random. We analyze this fundamental evolutionary model 

to quantify how field cancerization dynamics and recurrence risks depend on the kinetic 

parameters of the tissue and genetic progression pathway to cancer. To the best of our 

knowledge, this is the first evolutionary modeling effort aimed at mathematically predicting 

the cancer field effect and its consequences.

The article is organized as follows: in section 2 we introduce the stochastic mathematical 

model and describe basic properties regarding the survival and growth rate of mutant clones. 

Using previously derived results on the spread of mutant clones, we introduce a mesoscopic 

approximation to the model. In section 3 we analyze the model to investigate the 

characteristics and extent of local and distant premalignant fields at the time of initiation. In 

particular, we determine how the spatial geometry of the field (e.g. number and size of 

lesions) depends on cellular and tissue properties such as mutation rate, tissue renewal rate 

and mutational fitness advantages. In section 4 we analyze the model to understand the risk 

of recurrence due to local or distant field malignancies, as a function of time and cellular 

parameters.

Throughout the paper we will use the following notation for the asymptotic behavior of 

positive functions,
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Finally, we use the notation X = dF to denote that the random variable X has distribution F.

2 Mathematical framework and basic properties

Cancer initiation is associated with the accumulation of multiple successive genetic or 

epigenetic alterations to a cell [28]. A subset of these genetic events may give rise to a 

fitness advantage (i.e. an increase in reproductive rate of the cell or avoidance of apoptotic 

signals), and subsequently lead to a clonal expansion within the tissue. These expanding 

mutant cell populations form the background for further independent genetic events which 

eventually lead to carcinogenesis. As a result of this spatial evolutionary process, by the 

time of cancer initiation or diagnosis the tissue field surrounding a tumor can be composed 

of genetically distinct premalignant lesions of various sizes and stages.

2.1 Cell-based model

To study the dynamics of this process, we consider a stochastic model which describes the 

accumulation and spread of a clone of cells with genetic alterations throughout a spatially 

structured tissue (e.g. stratified epithelium). Thus, we consider the model on a regular lattice 

 ∩ [−L/2, L/2]d, where L > 0 and d is the number of spatial dimensions of the tissue. Each 

location in the lattice is occupied by a single cell, and each cell reproduces at a rate 

according to its fitness with exponential waiting times. Whenever a cell reproduces, its 

offspring replaces one of its 2d lattice neighbors at random, see Figure 1A. The type of each 

cell corresponds to its fitness, which is related to the number of genetic hits a cell has 

accumulated in a multi-step genetic model of cancer initiation. For example, type-0 cells 

have fitness normalized to 1 and are labeled as wild-type or normal (with no mutations). 

Initially our entire lattice is occupied by type 0 cells. Type-0 cells acquire the first mutation 

at rate u1 to become type-1 cells. The type-1 cell will have a relative fitness advantage to 

type-0 cells, given by 1 + s1, for some constant s1 ≥ 0. In general, type-i cells have a fitness 

advantage of 1 + si relative to type-(i − 1) cells, and they acquire the (i + 1)–th mutation in 

the sequence at rate ui+1 to become type-(i + 1) cells. The process is stopped when a cell 

develops k mutations; we call this the time of cancer initiation. The number of mutation k as 

well as the parameters ui, si for i = 1, …, k depend on the specific cancer type. Although 

many (epi)genetic events are selectively disadvantageous (i.e. they confer a selective 

disadvantage si < 0), the progeny of deleterious mutants die out quickly so here we restrict 

our attention to the case si ≥ 0. Note that this process can be thought of as a spatial version 

of the Moran process, a spatially well-mixed population model that is commonly used to 

describe carcinogenesis (e.g. see [8–12]). In addition, the spatial reproduction and death 

dynamics of this model (without mutation) correspond to the biased voter process which has 

been well-studied in physics and probability literature. In fact, a similar voter model 

approach was previously used to model cellular dynamics in epithelial tissue and found to 
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correlate well with experimental predictions of clone size distribution in the mouse 

epithelium [29].

The total number of cells in the fixed-size population is N ≡ Ld; in most cancer initiation 

settings this number is quite large (at least 106), while mutation rates are quite small (orders 

of magnitude smaller than 1). Therefore we will, unless stated otherwise, restrict our 

analysis to regimes where L ≫ 1 and ui ≪ 1. In Section 2.3, we will briefly discuss the 

specific conditions that we impose on the relationship between these parameters. For 

mathematical simplicity, the lattice is equipped with periodic boundary conditions; however 

in most relevant biological situations the domain size (i.e. cell number) is sufficiently large 

so that boundary effects are negligible.

Note on dimension of the model—We analyze the general model in space dimensions 

d = 1, 2, 3. While all epithelial tissues have an intrinsically three dimensional architecture, in 

some situations considering d = 1, 2 may be a good approximation. For example, cancer 

initiation in mammary ducts of the breast, renal tubules of the kidney, and bronchi tubes of 

the lung could be viewed as approximately one-dimensional processes, due to the aspect 

ratio of tube radius versus length. On the other hand, cancer initiation in the squamous 

epithelium of the cervix, the bladder or the oral cavity can be viewed as two-dimensional 

process, since initiation occurs in the basal layer of the epithelium which is only 1–2 cells 

thick (see e.g. Figure 2). The validity of such approximations poses an interesting problem 

in itself, but will not be addressed in this work.

2.2 Survival and growth of a single mutant clone

We first establish some basic behaviors of mutant cells and their clonal progeny within a 

tissue. Of particular interest are: (i) the survival probability of a mutant clone, and (ii) the 

rate of spatial expansion of the mutant clone through the tissue. In particular, how are these 

characteristics influenced by tissue parameters and the cellular fitness advantage conferred 

by a mutation? We have addressed some of these questions in a previous work [26] and 

restate the results here to make the paper self-contained. In addition, we perform new 

simulations in this work to fill in gaps where theoretical results are currently not available.

Consider the probability that a mutant cell survives to form a viable clone (i.e. does not die 

out due to demographic stochasticity). Let type-1 cells have fitness 1 + s and type-0 cells 

have fitness 1, and let ϕt(x) denote the type of cell at site x in the lattice at time t. Define

In other words, ξt is the set of all type-1 cell locations at time t. We initiate the model with a 

single type-1 cell at the origin surrounded by type-0 cells in all other locations:
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and assume no further mutations are possible (ui = 0). This simplified model is known as the 

Williams-Bjerknes model [16], and if L = ∞ then it corresponds to the biased voter model, 

see e.g. [30]. Let |ξt| denote the number of type-1 cells in the model at time t. Then we can 

define the extinction time of the process T0 ≡ inf{t > 0 : |ξt| = 0}. The probability of survival 

of a single mutant clone with selective advantage s over the surrounding cells is then the 

probability of the event {T0 = ∞}. By looking at the the process |ξt| only at its jump times, 

we note that the embedded process is a discrete time random walk that moves one up with 

probability s/(1 + s) or one down with probability 1/(1 + s). This can be seen by observing 

that the process only changes at boundaries between type-0 and type-1 cells, and the only 

possible resulting events are that the type-0 gets replaced by a type-1 (resulting in a jump up 

in |ξt|) or the type-0 gets replaced by a type-1 (resulting in a jump down in |ξt|). Analysis of 

the overall survival probability of this random walk can then be calculated using elementary 

results for random walks, see Example 1.43 in [31],

where the approximation is valid for s ≪ 1. Thus, the probability that a mutant clone with 

fitness advantage s survives is , and is independent of the dimension of the tissue.

To understand how the expansion rate of a mutant clone depends on the selection strength s 

of the mutant, we first recall a result by Bramson and Griffeath [21, 22], which establishes 

an asymptotic shape for the type-1 clone. More precisely, Bramson-Griffith shape theorem 

says that conditional on the clone never going extinct, the clone has a convex, symmetric 

shape whose radius expands linearly. In a previous work, we studied how this linear rate of 

expansion depends on the selection strength s in the setting of weak selection, see Theorem 

1 of [26]. We found that if we denote by e1 the first unit vector in ℝd and define the growth 

rate cd(s) such that

then as s → 0,

(1)

where β3 is the probability that two simple random walks started at 0 and e1 = (1, 0, 0) never 

hit. In other words, the radius of the asymptotic shape D approximating the type-1 clone 

grows linearly with rate on the order of cd(s).

The previous results hold only in the regime of weak selection or small s. For larger values 

of the selective advantage s, simulations can be used to obtain cd(s) for d = 2, 3 (in d = 1 the 

process can be analyzed directly through simple random walk analysis and we obtain that 

c1(s) = s). For example, Figure 3 shows that the s-dependence of the growth rate is 

approximately linear for s > 0.5; in this case simple regression yields the estimate c2(s) ≈ 
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0.6s + 0.22 (s > 0.5). Thus, a combination of analysis and simulation gives us a complete 

picture of how spatial expansion rate of mutant clones in a tissue depend upon the selective 

advantage s for a wide range of selection strengths.

2.3 Approximating with a hybrid mesoscopic model

Our results regarding the survival and growth of a single mutant clone suggest a hybrid 

mesoscopic model simplification that enables our analysis of the field cancerization process. 

In particular, each successful mutant clone can be well-approximated as a growing d-

dimensional ball with expansion rate cd(s) as calculated in the previous section. Before 

proceeding however, let us clarify the notion of clone ‘survival’ a.k.a. ‘success’ in the full 

model, where multiple mutations can arise and compete in the same finite domain. In 

particular, we consider a mutant clone with selective advantage s over the background to be 

successful if it reaches size ≫ 1/s. This criterion guarantees a negligible chance of 

extinction in an infinite domain with no interference. In particular, if we start with a single 

type-1 cell with selective advantage s in a sea of type-0 cells, and if we define T0 to be the 

extinction time of the type-1 progeny, one can use the embedded discrete time process and 

standard results on biased random walks [31] to show that if the progeny reaches size k ≫ 

1/s, then P(T0 = ∞ | |ξ0| = k) ≈ 1 − e−ks.

Consider the fate of an unsuccessful type-1 clone arising on a background of type-0 cells. 

The clone evolves as a supercritical (s > 1) biased voter model conditioned on extinction. In 

[26] we showed that unsuccessful type-1 mutations typically die out by a time of order

(2)

As seen in the previous section, the survival probability in the biased voter model (starting 

with a single type 1 cell in a sea of type 0 cells) is s/(1 + s), but in the more complex spatial 

Moran model with the possibility of multiple interacting type 1 clones, it is not immediately 

clear that this survival probability is still given by s/(1 + s). However, it was shown in [26] 

that the above survival probability remains a good approximation as long as

(3)

If the total number of type-1 cells is always a negligible fraction of N and (A0) holds, then 

successful type-1 mutations arrive as a Poisson arrival process with approximate rate 

, where N is the total number of cells in the tissue. In particular, these conditions 

hold for biologically reasonable parameter sets, such as the ones used for the numerical 

examples in this article.

We are now ready to introduce a hybrid mesoscopic model approximation as follows: 

Type-1 mutations arrive in the healthy tissue as a Poisson arrival process with rate Nu1, 

distributed uniformly at random in the spatial domain. Each mutation event has two 

potential outcomes:
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• with probability s/(1 + s), the mutation is successful and we approximate the 

subsequent clonal expansion with a ball whose radius grows deterministically. The 

macroscopic growth rate is cd(s), which was derived from individual cellular 

growth kinetics as described in section 2.2. As a representative simulation in figure 

1B suggests, the ball in standard L2-norm in ℝd will be utilized.

• with probability 1/(1+s), the mutation is unsuccessful, and the clone evolves 

according to the full stochastic (cellular-level) model dynamics conditioned on 

extinction.

Note that the remainder of the paper discusses properties of this mesoscopic model.

It will be useful to define γd as the volume of a ball of radius 1 in d dimensions,

Note that although the stochastic fluctuations of the shape of expanding clones are lost in 

this approximation, one gains generality since the mesoscopic model can approximate a 

whole class of microscopic models that admit a shape result.

2.4 Cancer initiation behavior

Although the methodology developed in this work can be generalized to the setting of k-

mutation carcinogenesis models, we will consider for simplicity the classic two-mutation 

model of cancer initiation first introduced by Knudson [32]. Here, type-0 cells are wild-type 

with fitness 1, type-1 cells are premalignant with fitness 1 + s1 relative to type-0 cells, and 

type-2 cells are initiated cancer cells with fitness 1 + s2 relative to type-1 cells. The time of 

cancer initiation σ2 is defined as the time at which the first successful type-2 cell arrives. In 

[26], we studied the situation where s1 = s2 = s > 0 and found that the timing of cancer 

initiation is strongly governed by the limiting value of the following meta-parameter:

Roughly speaking, Γ1/(d+1) represents the ratio of the rate of producing successful type-1 

cells to the subsequent time it take to acquire the first successful type-2. We found that both 

the mechanisms and distribution of the cancer initiation time vary significantly depending 

on the regime of Γ:

• Regime 1 (R1): When Γ < 1, the first successful type-2 mutation occurs within the 

expanding clone of the first successful type-1 mutation (left panel of Figure 4). The 

initiation time σ2 is exponential and does not depend on the spatial dimension.

• Regime 2: (R2) For Γ ∈ (10, 100), the first successful type-2 mutation occurs 

within one of several successful type-1 clones (middle panel in Figure 4). The 

initiation time is no longer exponential and depends explicitly upon the spatial 

dimension.
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• Regime 3 (R3): When Γ > 1000, the first successful type-2 mutation occurs after 

many successful type-1 mutations have occurred (right panel of Figure 4). The first 

successful type-2 can arise from either a successful or an unsuccessful type-1 

family; the initiation time represents a mixture distribution of these two events.

• Note that for Γ ∈ [1, 10] and Γ ∈ [100, 1000] we say that we are in borderline 

regimes R1/R2 and R2/R3 respectively.

We refer the reader to [26] for mathematical details of these statements. Note that these 

‘regimes’ can be thought of as labels highlighting distinct types of initiation behaviors that 

arise as Γ changes. In fact the system behavior continuously varies through the parameter 

space, and borderline cases between these regimes do exist. Figure 5 shows how the 

distribution of the waiting time σ2 varies with changing number of cells N in d = 2. We note 

that as N increases, the waiting time distribution shifts to the left and initiation occurs 

earlier. By comparing Figures 4 and 5 we see that early initiation times are associated with a 

diffuse premalignant field with a large number of independent lesions, whereas late 

initiation times are associated with a single premalignant field harboring the initiating tumor 

cell.

To briefly summarize, we have described first a microscopic model of cellular division, 

mutation and death within a regularly structured epithelial tissue. Analysis of the fine-scale 

dynamics of this model leads to a more tractable hybrid mesoscopic model which 

approximates the microscopic model. In the next section, we analyze this mesoscopic model 

to study the characteristics and extent of premalignant fields at the stochastic time of cancer 

initiation or diagnosis. In the analyses throughout, we will consider parameter ranges 

spanning all three regimes of initiation behavior; however, for simplicity in regime 3 we will 

restrict ourselves to the range of parameter space in which successful type-2 mutations arise 

from successful type-1 mutations (i.e. that do not later die out). The behavior in the final 

remaining portion of the parameter space in regime 3 will be the subject of further work.

3 Characterizing the premalignant field

The time between cancer initiation and diagnosis, which we label here as TD, is a subject of 

great interest, see e.g. [33] for a review. In general, TD is itself a random variable and may 

depend on the natural history of the disease until initiation. However, if we assume that TD 

is independent of σ2, then we can characterize the premalignant field at time of diagnosis, σ2 

+ TD, by means of the field characterization at time σ2, together with the distribution of the 

delay time TD. For this reason, even though the clinically relevant time is σ2 + TD, we focus 

here on characterizing the field at σ2. Note that mathematically, this requires us to condition 

our analyses upon observing σ2 at some time t, i.e. condition upon the event {σ2 = t}.

The starting time of the model (t = 0) is assumed to be at the end of tissue development and 

the start of the tissue renewal phase. However for some tissues it is difficult to estimate this 

time, and thus it may be difficult to ascertain the system time t at the time σ2. In such cases, 

it is simple to adapt our analyses to this scenario and treat σ2 as an unobservable quantity, by 

removing the conditioning on {σ2 = t} and integrating of our results against the density of 

σ2, which is given by (see (24) in section 7.1 for derivation)

Foo et al. Page 9

J Theor Biol. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(4)

where

(5)

The constants in (4) and (5) are the arrival rate of successful type-1 mutations

(6)

and

(7)

where we used the notation s̄i = si/(1 + si).

3.1 Size of the local field at initation

We are first interested in characterizing the size of the local field, i.e. the region of the 

premalignant type-1 clone that gives rise to the first successful type-2 clone (see Figure 6). 

Following the nomenclature of [34], we note the distinction between two different types of 

recurrent tumors: if the recurrence arises from a transformed cell in the premalignant field 

that gave rise to the primary tumor, the recurrence is called a second field tumor, see Figure 

6A. On the other hand, if the recurrence arises from a premalignant field that is clonally 

unrelated to the primary malignancy, it is called a second primary tumor, see Figure 6B. 

These two types of recurrent tumors vary in terms of their degree of clonal relatedness to the 

primary tumor, and this may have some implications for treatment strategies in primary vs. 

recurrent tumors.

We define now Rl(t) to be the radius of the local field at time t, and Xl(t) its corresponding 

area ( ). Note that we will use the terminology ‘area’ to describe clone sizes in all 

dimensions, and reserve the use of the term ‘volume’ for space-time quantities. In the 

following, we are interested in determining the distributions of these two quantities at time 

σ2, conditioned on the event {σ2 = t}. In other words, we are looking for the distributions of 

(Rl(σ2)|σ2 = t) and (Xl(σ2)|σ2 = t), respectively.

At any given time, each clone produces initiating mutations at a rate proportional to its area. 

Hence the probability that clone i (born at time Ti) gives rise to the initiating mutation at 

time t is given by the ratio of clone i’s own area,
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divided by the total area of type-1 clones present. In other words, the size distribution of the 

initiating clone is given by the distribution of a size-biased pick from the different clones 

present at the time the initiated mutation arises.

Definition 3.1 (Size-biased pick)—Let L1, …, Ln be a family of n random variables. A 

size-biased pick from L1, …, Ln is defined as a random variable L[1] with conditional 

probability distribution

The following theorem is the main result of this section and characterizes the size-

distribution of the local field at the time of initiation. This is recognized as a size-biased pick 

from the clones present at time t, conditioned on the event {σ2 = t}.

Theorem 3.2—The distribution of the area of the local field at time σ2, conditioned on {σ2 

∈ dt}, is given by

(8)

for .

The proof of this result is found in section 7.1, and the distribution of the local field radius 

follows easily as

(9)

for r ∈ [0, cd(s1)t].

Note that the distribution of the local field size (8) depends on the rate of successful 

mutations u2s̄2 and the growth rate cd(s1), but is independent of λ, the arrival rate of type-1 

mutations. In Figure 7A, we show how the distribution of the local field area (8) changes 

with arrival time of the first successful type-2 clone. As expected, the support of the 

distribution increases with increasing initiation time, and hence the likelihood of having a 

large local field increases substantially. This suggests that that tumors appearing later have a 

higher recurrence probability if only the malignant portion is removed during surgery. The 

finite support of each probability density function reflects the fact that there is a hard upper 

bound on the size of a premalignant field at finite time t in the system.

In Figure 7B,C we illustrate the sensitivity of the size-distribution of the local field to 

varying mutation rates u1 and u2, conditioned on observing initiation at the expected time t = 

E(σ2). The mutation rates are tuned to vary across parameter Regimes 1, 2, and 3 as 

described in the previous section. Observe that for lower mutation rates, the local field size 
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varies widely (and sometimes close to uniformly) over a large range of values, while 

elevated mutation rates in both cases signify smaller local fields. For the u1 rate (Figure 7B), 

an intuitive explanation for this behavior is that as the mutation rate increases, the system 

moves towards regimes 2 and 3, in which the premalignant field is comprised of an 

increasing number of independent type-1 patches. With more type-1 patches present, the 

space-time volume of type-1 cells that can give rise to the first successful type-2 cell 

increases faster, and hence the size of the patch that eventually gives rise to the first type-2 

decreases accordingly. For u2 (Figure 7C) on the other hand, an increase in the mutation rate 

signifies a move towards regime 1: fewer type-1 clones are required to produce the first 

successful type-2, and the size of the type-1 field that yields the first type-2 decreases with 

increasing u2. Another observation to note is that the local field size varies across the same 

range of orders of magnitude as the mutation rates. This suggests for example, that 

carcinogen exposure or environmental causes changing mutation rates by one order of 

magnitude could result in predicted field sizes impacted similarly by an order of magnitude.

Finally, we demonstrate the sensitivity of the local field size to the selective advantage s of 

mutant cells, see Figure 7D. For a small fitness gain of s = 0.025, the distribution is peaked 

at lower field sizes, but as s increases the field size distribution shifts to the right. High 

fitness gains are usually associated with an aggressive tumor phenotype, and Figure 7D 

suggests that such tumors may also be associated with large surrounding premalignant fields 

and thus higher recurrence risks.

3.2 Size of the distant field at initiation

Next we are interested in analyzing the size distribution of the distant field at initiation, 

which is comprised of premalignant clones that are clonally unrelated to the tumor. Define 

the vector of areas of the distant premalignant lesions at time t to be X̄
d(t). This vector holds 

the areas of all premalignant clones except for the local field clone from which the tumor 

arises. Mathematically speaking, the goal of this section is to characterize the law of X ̄
d(σ2) 

conditioned on the event {σ2 = t}. Before stating the main result some additional notation is 

needed. First, define the mapping αj(i) as follows:

Then, we define the random variable X̃
i ≡ Xα(i), where

Note that using this definition, (X̃
1, …, X̃

M(σ2)−1) represents the vector of sizes of the clones 

present at time σ2, omitting the entry corresponding to the size-biased pick X[1] which 

represents the local field. In other words, the distribution of X̄
d(σ2) is the joint distribution of 
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(X̃
1, …, X̃

M(σ2)−1), which characterizes the size distribution of the clones in the distant field 

at time σ2. We obtain the following result (see section 7.2 for the proof).

Theorem 3.3—The size-distribution of the distant field clones at time σ2 of the first 

successful type-2 mutation, conditioned on {σ2 = t}, is given by

where gt(x) is defined in (26).

Of note, from Theorem 3.3 and Corollary 3.5 below, we see that

Figure 8 shows how the probability density function of the total distant field size (i.e. the 

sum of all distant field patches) changes with increasing mutation rate u1. For a comparison 

to the local field size distribution at the same parameter values, we refer to Figure 7B. We 

note that in regimes 1 and 2 the total distant field size is on the same order of magnitude as 

the local field size, but in regime three the distant field size is significantly larger than the 

size of the local field. As will be investigated in more detail below, this suggests that 

secondary tumor recurrences for cancer types in regime 3 are much more likely to stem from 

the distant field, and thus are more likely to be clonally unrelated to the primary tumor.

3.3 Number of field patches: evolution until initiation

We next analyze the total number of premalignant lesions over time until tumor initiation. In 

particular, the following result holds (see section 7.3 for the proof).

Proposition 3.4—Conditioned on {σ2 = t}, we have that for all ζ ≤ t, the number of field 

patches is distributed as a mixture of a Poisson and a shifted Poisson random variable. In 

particular,

where p1(t, ζ) + p2(t, ζ) = 1 and p1(t, ζ) = (1 − e−θ(t−ζ)d+1
)/(1 − e−θtd+1

). In particular,

It is interesting to observe that as ζ → t we see that p1(t, ζ) → 0, therefore as ζ gets closer to 

time t the process looks more like a shifted Poisson. This is stated in the corollary below.
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Corollary 3.5—

(10)

and P̂(M(t) = m) = 0. In particular,

(11)

where E(M(t)|σ2 > t) is discussed in Lemma 7.2.

Using Proposition 3.4, we can study the expected number of field patches of a certain size 

over time. Figure 9 shows the temporal dynamics of clone-size distribution in each regime. 

In regime 1 the expected number of small clones peaks and then declines as larger clones 

begin to dominate (consistent with the notion that a single premalignant clone exists prior to 

initiation), whereas in regimes 2 and 3 we see longer coexistence of large and small clones 

over time.

Finally, we would like to point out that the result in Proposition 3.4 can be extended to a 

result about the entire process {M(r) : 0 ≤ r ≤ t} conditioned on σ2 = t. The details are 

provided in section 7.4.

4 Recurrence predictions

Tumor recurrence due to field cancerization poses a substantial clinical problem in many 

epithelial cancers [3]. We next aim to use the results of the previous section to develop a 

methodology for assessing the risk of tumor recurrence (as well as the likely type of tumor 

recurrence) after surgical removal of the primary tumor.

4.1 Local vs. distant field recurrence?

As discussed above, a recurring tumor can either arise in the same premalignant field (a 

second field tumor), or it can arise in a clonally unrelated field (second primary tumor). In 

this section we characterize the recurrence time distribution for each of these secondary 

tumor types, and study how the relative likelihood of local vs. distant recurrence depends 

upon parameters of the tissue and cancer type.

To this end, we first study the recurrence time distribution for second field tumors, which 

arise from the local premalignant field. Denote the second field recurrence time by , 

measured in time units τ starting from τ = 0 at time σ2. The time is reset at the tumor 

initiation time σ2, rather than the tumor resection time σ2 + TD, to accommodate the 

possibility that a recurrence occurs prior to detection of the primary tumor. Thus if 

recurrence occurs at some time τ < TD, then a secondary tumor already exists at the time of 

diagnosis of the primary tumor (but may be too small to be detectable). We assume that the 

primary tumor node is completely resected once it becomes detectable at time TD, leaving 

the surrounding field intact (i.e. there are no excision margins).

Foo et al. Page 14

J Theor Biol. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



At time σ2 a successful type-2 cell arises from a premalignant clone of radius Rl(σ2), whose 

distribution is characterized in (9). If Rl(σ2) = r, the incidence rate of successful type 2 

mutations within this field is given by

(12)

where cd(s2) is the rate of expansion of the malignant cells into the type-1 field. The proof of 

the following result can be found in section 7.5.

Corollary 4.1—The probability of a second field tumor having formed before time τ 

(measured from σ2), conditioned on {σ2 = t}, is given by

In particular,  is the probability that smaller, possibly undetectable second field 

tumors exist at the time of diagnosis.

In Figure 10A the cumulative distribution function of  as calculated in Corollary 4.1 is 

shown, for varying values of type-2 mutation rates u2. As one might expect, higher mutation 

rates yield a decreased time to recurrence (the curves shift to the left for increasing u2). 

However, considering that the size of the premalignant field at initiation of the primary 

tumor is inversely proportional to the mutation rate u2, see Figure 10B, the decrease in time 

to recurrence is a priori not obvious: a bigger precancer field increases the chance of fast 

recurrence. This example illustrates how a quantitative model enables us to assess the 

relative importance of competing aspects of the system - in this case, the impact of larger 

premalignant field versus higher mutation rates on recurrence likelihood.

If the recurrence does not take place in the local field giving rise to the first successful 

type-2 clone, then it either arises from one of the type-1 clones already present at time of 

initiation (i.e. the distant field), or it arises in a type-1 clone formed after initiation. In the 

latter case, the waiting time is again distributed as σ2, and hence we focus here on the 

distribution of the waiting time , defined as the time from σ2 until a second primary tumor 

arises from the distant field already existing at σ2. We have the following result, proved in 

section 7.6.

Corollary 4.2—The probability that the distant field at the time of initiation gives rise to a 

second primary tumor by time τ (measured from σ2), conditioned on {σ2 = t}, is given by

where
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and gt is defined in (26).

Thanks to the results in this section, it is now possible to evaluate the probability of local 

versus distant tumor recurrences in each parameter regime. Corollary 4.1 explicitly provides 

the probability density function , which is the probability that a second field 

tumor arises at time τ from the same field that gave rise to the primary tumor. To obtain the 

corresponding probability density function for recurrence as a second primary tumor, we 

have to consider recurrences due to distant field lesions that have arisen before and after σ2. 

While Corollary 4.2 characterizes the recurrence risk due to distant lesions already present at 

initiation, the time to a successful second primary tumor from a distant field not yet present 

at initiation is distributed as σ2, see (4). Therefore, the distribution of interest is that of 

, which is the time of the first distant recurrence event.

In Figure 11 we study how the comparison between the probability density functions of 

(second field tumor, local) and  (second primary tumor, distant) varies in regimes 1, 2 and 

3. The likelihood of local vs. distant recurrences depends strongly upon both the timing and 

parameter regime of the system In regime 1, local recurrence is significantly more likely 

overall, but at late times the probability of distant recurrences is slightly higher than for local 

recurrences. In contrast, in regimes 2 and 3 the overall probability of local and distant 

recurrences are comparable. However, in regime 2, at early times distant field recurrences 

are more likely, whereas the opposite is true at later times. The same observation, but even 

more pronounced, holds in regime 3.

5 Conclusions and outlook

In this study we performed a quantitative analysis of the cancer field effect by means of a 

spatial stochastic model of cancer initiation, which had previously been introduced in [26]. 

Using this model, we studied the characteristics of premalignant fields at the time of tumor 

initiation. In particular, we derived the size-distributions of the local field (the premalignant 

lesion that gives rise to the tumor) and the distant field (the premalignant lesions that are 

unrelated to the primary tumor). We also investigated how the extent and geometry of these 

fields depend upon Γ, a key combination of parameters of the tissue and genetic pathway 

leading to cancer. We calculated the dynamic clone size distribution at times leading up to 

initiation, and derived the probability density functions of local and distant recurrence times. 

Finally, we compared the relative likelihood of second field versus second primary tumors, 

and demonstrated how the clonal relatedness between primary and recurrent tumors depends 

explicitly upon tissue and cancer type parameters.

Using an example set of biologically realistic parameters in two space dimensions (which is 

appropriate for describing the cancer initiation process in the basal layer of a stratified 

epithelium), we found that lower mutation rates (such as in regime 1) were associated with 

larger local field sizes, whereas higher mutation rates (regimes 2 and 3) led to smaller local 
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fields. We also found that higher mutation rates resulted in larger distant fields, while more 

aggressive cancers (high selective advantage) led to larger local fields at diagnosis. Finally, 

we investigated the risk of recurrence after surgical resection of the malignant portion, and 

found that for low mutation rates (regime 1), local recurrence is much more likely, whereas 

for larger mutation rates (regimes 2 and 3), the overall probability of local and distant 

recurrences are comparable. However, in regimes 2 and 3, early recurrences are more likely 

to be a second primary tumor, whereas the late recurrences are more likely to be second field 

tumors.

One important limitation of our approach is that the model captures a specific sequence of 

genetic alterations with specified ui and si, and does currently not allow for permutations of 

genetic events and divergent pathways. Nevertheless, our model may provide a useful 

framework for comparing different biological hypotheses and disentangling divergent 

genetic pathways among cancer subtypes. In particular, it enables us to predict differences in 

observable dynamics such as initiation times and prognoses between different molecular 

models. Such an approach could help elucidating the sequence of genetic events during 

carcinogenesis, and will be the subject of future work. Another limitation of our framework 

is that we have assumed a static, uniform microenvironment within the tissue. The local 

microenvironment is in reality determined by a variety of time- and space-dependent factors 

such as glucose, oxygen, growth factors, drugs and cytokine concentrations. In addition to 

impacting the growth and mutation rates of cells within the tissue, the local 

microenvironment is increasingly being recognized as playing an important role in 

carcinogenesis through stromal signaling.

As mentioned before, field cancerization poses various clinical challenges, especially in the 

case of head and neck, where multifocal primary cancers as well as recurrences are common 

[35]. In particular, the optimal size of excision margins and assessment of the recurrence 

risk after surgery are largely unsolved problems arising in everyday clinical practice. In a 

forthcoming study, we will discuss how our analysis can be used to address some of the 

most pertinent clinical questions in head and neck cancer care.

In summary, the analyses performed in this work contribute towards a quantitative 

understanding of how organ-specific physiological parameters and pathway-specific 

parameters influence the process of field cancerization and the associated risk of recurrence. 

We demonstrate that tumor recurrence dynamics and premalignant field characteristics are 

strongly dependent upon these parameters, which vary across different tissue and cancer 

types. Once properly calibrated for a specific tissue and cancer type, the proposed 

methodology can potentially be used to provide insights into key prognostic factors such as 

risk of multifocal lesions and tumor recurrence, surveillance guidelines, and treatment 

design. For example, we are able to assess the likelihood and timing of local versus distant 

recurrences after surgical resection. Since this distinction provides information on the level 

of clonal relatedness between primary and recurrent tumors, the model predictions may 

provide insights into whether treatment strategies effective for primary tumors will be useful 

for recurrent tumors in particular cancer types. In addition, our methodology can be utilized 

to assess the relative benefits of surgical excision margins, and to help determine the 

minimal margins necessary to prevent recurrence in each tissue type.
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7 Appendix: Proofs

7.1 Proof of Theorem 3.2

To prove Theorem 3.2, we first need a few new definitions and preliminary results. Define 

V(t) to be the random total space-time volume covered by successful type-1 families until 

time t,

(13)

where Ti represents the arrival time of the i-th family, and M (t) is the total number of 

successful arrivals by time t, which is a Poisson process with rate λ. Let  represent the 

space-time volume conditioned on the event

where 0 < t1 < ⋯ < tm < t. In other words,
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(14)

For ease of notation we replace  with the more compact version . Since E[V (t)] = 

E[E[V(t)|M(t)]] and the conditioned process is a compound Poisson process, we obtain that

Similarly, we define A(t) to be the total area of clones covered by successful type-1 families 

at time t,

(15)

and we define  to be this quantity conditioned on (t1, …, tm),

(16)

Note that

(17)

By considering the space-time volume of type-1 clones we can calculate P (σ2 > t| (t1, …, 

tm) and P (σ2 > t|M (t) = m). Combining these two formulas and using Bayes rule we get the 

following result for the joint distribution of the arrival times of successful type-1 mutations, 

conditioned on the total number of mutations by time t.

Lemma 7.1

Conditioned on {σ2 > t} and {M (t) = m}, the arrival times of successful type-1 clones (T1, 

…, Tm) are distributed as order statistics of iid random variables as follows:

where 0 < t1 < ⋯< tm < t.
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Proof—The arrival process of successful type-1 mutations is represented by M(·), which is 

a Poisson process with rate λ = Nu1s1/(1 + s1) and arrival times T1, T2,…. Then for any t > 0 

and sequence 0 < t1 < ⋯ < tm < t we have that

(18)

Since

(19)

we find using Bayes’ rule

It follows then that

where T is a uniform random variable on [0, t].

The distribution in Lemma 7.1 is an exponential twist of the uniform distribution. Note that 

if the conditioning was placed on the set {σ2 = t} instead of {σ2 > t}, then the conditional 

distribution would no longer have product form because of the term , and the arrival 

times would not be the order statistics from an iid collection of random variables.

Next, we show that the random variable M(t) is Poisson if conditioned on {σ2 > t}.

Lemma 7.2

Conditioned on {σ2 > t}, M (t) =d Pois (λtϕ(t)).

Proof—First we note that
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(20)

From this, we find using Bayes’ rule

(21)

and hence

For subsequent considerations, it will be useful to define the two conditional probability 

measures P̂(·) = P (·|σ2 = t) and P̃(·) = P (·|σ2 > t), and their corresponding expected values, 

Ê(·) = E(·|σ2 = t) and Ẽ(·) = E(·|σ2 > t), respectively. In particular, we can compute the 

Radon-Nikodym derivative between these two measures.

Lemma 7.3

The Radon-Nikodym derivative of P̂ with respect to P̃ is given by

(22)

Proof—First, note that

(23)

By differentiating (19) and (20) we obtain

and
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(24)

Hence (23) becomes

and comparing this to (21) yields the desired result.

Recall now that M(t) is the number of successful type-1 mutations that have arrived by time 

t, and we denote their arrival times by T1, …, TM(t). At time t, the area of a clone created at 

time r < t is , and hence the area of the i-th clone at time t is given by the 

random variable

Using the above results together with definition 3.1 of a size-biased pick we can now prove 

Theorem 3.2.

Proof of Theorem 3.2—Using basic properties of conditional expectations and Definition 

3.1 we find

where Sm = X1 + … + Xm. Using the Radon-Nikodym derivative (22) we can rewrite this as

(25)

where we have used the fact that P (X1(t) < x|M (t) = m, σ2 > t) is independent of m, which 

we will show below. Using Lemma 7.1 and differentiating the cumulative distribution 

function
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we determine that

(26)

for . Note that (26) is indeed independent of m. From Lemma 7.2 it 

follows that

and combined with (25) and (26) this yields the desired result.

7.2 Proof of Theorem 3.3

Using Definition 3.1 of a size-biased pick we find

where the final equality follows from the same sequence of arguments as used in the proof 

of Theorem 3.2. Next, we note that

and
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Together with Lemma 7.2 the result follows.

7.3 Proof of Proposition 3.4

First, we use Bayes’ rule to find

(27)

Since P (σ2 ∈ dt) is given in (24) and P ( (t1, …, tm)) = λme−λζ, it remains to calculate P (σ2 

∈ dt| (t1, …, tm)). It is easy to see that

(28)

where q(ζ, t) is the probability that a type-2 mutation arises in a clone that is born in the 

interval (ζ, t). We find

where the last expression is the generating function for the Poisson process. Together with 

(28) this yields now

Together with (24) and (18), we find now

and hence performing the integration in

yields the desired result.
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7.4 Joint distribution of the process {M(r) : 0 ≤ r ≤ t}

We present here the joint distribution of the process {M(r) : 0 ≤ r ≤ t}, conditioned on σ2 = t, 

at multiple time points. Since the proof is similar to Proposition 3.4 we do not include it. For 

0 ≤ r ≤ r′ ≤ t define

Then for any positive integer ℓ, sequence of time points 0 < r1 ≤ … ≤ rℓ < t and non-negative 

integers k1 ≤ k2 ≤ … ≤ kℓ we have that

where for 1 ≤ i ≤ ℓ + 1,

r0 = 0, k0 = 0, and rℓ+1 = t. Note that for each i, 0 < pi < 1 and , i.e. the pi’s form 

a probability vector. The above joint distribution is rather difficult to parse, so we describe 

how one would generate samples of the increments of the process. For 1 ≤ i ≤ ℓ, set Xi = 

M(ri) − M (ri−1), then we can generate the values of the vector X1, …, Xℓ under the measure 

P̂ as follows. For each 1 ≤ i ≤ ℓ sample Xi according to a Poisson distribution with mean λϕ̂

(t; ri−1, ri). Choose an integer I according to the probability vector (p1, …, pℓ+1), if I = i < ℓ 

+ 1 replace Xi with Xi + 1. Note that in contrast to the setting of a Poisson process the 

random variables X1, …, Xℓ are not independent under P̂.

7.5 Proof of Corollary 4.1

where Rl(t) is the radius of the local field surrounding the tumor at time t. The result follows 

from

(29)
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and the conditional density of Rl(σ2) in (9).

7.6 Proof of Corollary 4.2

First, we note that

(30)

where R̃
i are the radii of the distant field clones, corresponding to their respective areas X̃

i 

defined in Section 3.2. Recalling the definition of η in (12), we find

(31)

Recalling the Radon-Nikodym derivative dP̂/dP ̃ from Lemma 7.3, it is straight-forward to 

verify that

which allows us to derive the following expression (proceeding as in the proof of Corollary 

3.3),

Switching from the clone-areas X̃
i back to the corresponding radii R̃

i, we find

From this, (31) and (30) we find

(32)

Finally, using Lemma 7.2,
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Figure 1. Lattice dynamics
(A) Schematic of spatial Moran model in d = 2: each cell divides at rate according to its 

fitness and replaces one of its 2d neighbors: if the light blue cell divides, its offspring 

replaces one of the dark blue neighbors, chosen uniformly at random. Every lattice site is 

occupied at all times (not shown). (B) Simulation example of the model: growth of an 

advantageous clone (light blue) starting from one cell with fitness advantage s = 0.2 over the 

surrounding field (dark blue).
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Figure 2. Geometry of squamous epithelium
A Basal layer (vertical perspective) before initiation with local field (left), and after 

initiation where the tumor is growing within the local field (right). B Sideways view of the 

fields before and after initiation, along the dashed lines in panel A. The proliferative cells 

inhabiting the two-dimensional lattice in the model reside in the basal layer of the 

epithelium.
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Figure 3. Simulations of clonal expansion rate for large s
Dependence of the growth rate c2 on the fitness advantage s. Statistics performed on M = 

100 samples for each s-value. The error bars represent 95% confidence intervals.
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Figure 4. The three dynamic regimes
Regime 1: first successful type-2 cell (arrow) arises in the first premalignant clone, Γ = 

0.055. Regime 2: several premalignant clones are present at the time of the first successful 

type-2 cell, Γ = 54.47. Regime 3: a large number of small premalignant clones are present by 

the time of the first successful type-2 cell, Γ = 5.45 × 104. Simulations obtained with 

parameter values as in Figure 5.
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Figure 5. Waiting time until first successful type-2
Cumulative distribution function (cdf) of σ2, the waiting time until the first successful type-2 

mutation, for increasing N (see (4)). Regime 1: u1 = 7.5 · 10−8, Regime 2: u1 = 7.5 · 10−7, 

Regime 3: u1 = 7.5 · 10−6. All other parameters are fixed: d = 2, N = 2 · 105, s1 = s2 = 0.1, u2 

= 2 · 10−5, c2(s1) = 0.16.
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Figure 6. Local and distant recurrences
Local (blue) and distant (green) premalignant fields give rise to second field tumors and 

second primary tumors (both red), respectively. In scenario A, there is only one 

premalignant field (the local field) present at time of cancer initiation (middle panel), and 

the recurrence occurs inside the local field. In scenario B, two unrelated precancerous fields 

are present at time of initiation (middle panel), and the recurrence may occur as a second 

primary tumor in the distant field.
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Figure 7. Size-distribution of local field
The size-distribution (8) of the local field is shown for different scenarios, corresponding to 

different Γ-values and regimes R1, R2 and R3 as explained in Section 2.4. A For varying 

arrival times t; B for varying type-1 mutation rates u1; C for varying type-2 mutation rates 

u2; (D) for varying type-1 fitness advantages s1. The non-varying parameters are held 

constant at d = 2, N = 2 · 105, u1 = 7.5 · 10−7, u2 = 2 · 10−5, s1 = s2 = 0.1 and c2(s1) = 0.16.
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Figure 8. 
The distribution of the total size of the distant field is shown for different scenarios, 

corresponding to the three regimes R1, R2 and R3 illustrated in Figure 4 for varying type-1 

mutation rates u1. The non-varying parameters are held constant at d = 2, N = 2 · 105, u2 = 2 

· 10−5, s1 = s2 = 0.1 and c2(s1) = 0.16.
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Figure 9. Dynamic clone-size distribution
For each of the three regimes in Figure 5, the expected number of type-1 clones of sizes 

comprised in the corresponding intervals Ij are shown as functions of time up to E(σ2) 

(expectations are conditioned on {t = E(σ2)}). The intervals are defined as I1 = [0, 1500), I2 

= [1500, 3000), I3 = [3000, 4500) and I4 = [4500, +∞). Parameter values as in Figure 5.
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Figure 10. Time to local recurrence
A The cumulative distribution function of the time to recurrence of a second field tumor is 

shown for three different scenarios, corresponding to u2 = 2 · 10−3 (Regime 1), u2 = 2 · 10−5 

(Regime 2) and u2 = 2 · 10−3 (Regime 2/3), respectively. The remaining parameters are d = 

2, N = 2·105, u1 = 7.5·10−7, s1 = s2 = 0.1, t = E(σ2). B Schematic of the relative initiation 

times of the primary tumor (yellow) and sizes of the local fields (blue), for the three 

scenarios in panel A. The numerical values for expected initiation time and local field size 

are: (a) (σ2) = 123, Ê(Rl) = 8; (b) (σ2) = 281, Ê(Rl) = 31; (c) (σ2) = 474, Ê(Rl) = 55.

Foo et al. Page 38

J Theor Biol. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 11. Local vs. distant recurrence
A For each of the three regimes in Figure 5, we show: the distribution of time to local 

recurrence , and the distribution of time to distant recurrence . The 

distribution of  is given in Corollary 4.1 and we set  to account both for 

contributions from type-1 clones already existing at σ2 as well as contributions from type-1 

clones born after σ2 (for which time to recurrence is distributed as σ2). Expected times to 

recurrence:  and  (Regime 1);  and  (Regime 

2);  and  (Regime 3). The parameter values are as in Figure 5.
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