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Abstract

Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely 

based on genome-wide association studies (GWAS) analysis of common SNPs. Leveraging phased 

haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of 185 thousand 

CAD cases and controls, interrogating 6.7 million common (MAF>0.05) as well as 2.7 million low 

frequency (0.005<MAF<0.05) variants. In addition to confirmation of most known CAD loci, we 

identified 10 novel loci, eight additive and two recessive, that contain candidate genes that newly 

implicate biological processes in vessel walls. We observed intra-locus allelic heterogeneity but 

little evidence of low frequency variants with larger effects and no evidence of synthetic 

association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD 

showing that genetic susceptibility to this common disease is largely determined by common SNPs 

of small effect size.

Coronary artery disease (CAD) is the main cause of death and disability worldwide and 

represents an archetypal common complex disease with both genetic and environmental 

determinants1,2. To date, 48 genomic loci have been found to harbour common SNPs in 

genome-wide significant association with the disease. Previous GWAS of CAD have tested 

the common disease/common variant hypothesis with meta-analyses typically based on 

HapMap imputation training sets or tagging SNP arrays with up to 2.5 million SNPs (85% 

with MAF > 0.05)3,4. The 1000 Genomes Project5 has considerably expanded the coverage 

of human genetic variation especially for lower frequency and insertion/deletion variants 

(indels). We assembled 60,801 cases and 123,504 controls from 48 studies for a GWAS 

meta-analysis of CAD; 34,997 (57.5%) of the cases and 49,512 (40.1%) of the controls had 

been previously included in our Metabochip-based CAD meta-analysis (Supplementary Fig. 

1)3. Imputation was based on the 1000 Genomes phase 1 version 3 training set with 38 

million variants of which over half are low frequency (MAF < 0.005) and one-fifth are 
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common (MAF > 0.05) variants. The majority (77%) of the participants were of European 

ancestry; 13% and 6% were of south (India and Pakistan) and east (China and Korea) Asian 

ancestry with smaller samples of Hispanic and African Americans (Supplementary Table 1). 

Case status was defined by an inclusive CAD diagnosis (e.g. myocardial infarction (MI), 

acute coronary syndrome, chronic stable angina, or coronary stenosis >50%). After selecting 

variants that surpassed allele frequency (MAF > 0.005) and imputation quality control 

criteria in at least 29 (>60%) of the studies, 8.6 million SNPs and 836K (9%) indels were 

included in the meta-analysis (Fig. 1); of these, 2.7 million (29%) were low frequency 

variants (0.005 < MAF < 0.05).

Scanning for additive associations

The results of an additive genetic model meta-analysis are summarized in Manhattan plots 

(Fig. 2 and Supplementary Fig. 2). 2,213 variants (7.6% indels) showed significant 

associations (P < 5 × 10−8) with CAD with a low false discovery rate (FDR q-value < 2.1 × 

10−4). When these 2,213 variants are grouped into loci, eight represent regions not 

previously reported at genome-wide levels of significance (Fig. 2; Table 1). Of 48 previously 

reported loci at genome-wide levels of significance, 47 showed nominally significant 

associations (Supplementary Table 2). The exception was rs6903956, the lead SNP for the 

ADTRP–C6orf105 locus detected in Han Chinese6, which previously showed no association 

in the Metabochip meta-analysis of Europeans and South Asians3. Thirty-six previously 

reported loci showed genome-wide significance (Supplementary Table 2). Monte Carlo 

simulations, guided by published effect-sizes, suggest that our study was powered to detect 

34 of the previously reported loci (95%CI 31 – 41 loci) at genome-wide significance. Hence, 

our findings are fully consistent with the previously identified CAD loci. The majority of the 

loci showing GWAS significance in the present analysis were well imputed (82% with 

imputation quality > 0.9) (Fig. 3a) and had small effect sizes (odds ratio (OR) < 1.25) (Fig. 

3b). An exception was the lead SNP in the novel chromosome 7q36.1 (NOS3) locus, 

rs3918226, which was only moderately well imputed (quality 0.78) but the validity of this 

association is supported by existing genotype data as it was present on the HumanCVD 

BeadChip available for some of the cohorts used in the present analysis and therefore 

directly measured genotypes could be compared with imputed genotypes (Supplementary 

Table 3)7. Three additional lower frequency and moderately well imputed SNPs in LPA and 

APOE (Fig. 3a), which were not previously reported in CAD GWAS3,4, also showed strong 

associations (LPA: rs10455872 P = 5.7 × 10−39, rs3798220 P = 4.7 × 10−9; APOE: rs7412 P 
= 8.2 × 10−11). The LPA SNPs have been previously shown to be strongly associated with 

CAD in candidate gene studies based on experimental genotype data7,8. SNP rs7412 

encodes the epsilon 2 allele of APOE and it has been well documented that ε2 carriers have 

lower cholesterol levels and significant protection from CAD was confirmed in a large meta-

analysis9 and in the Metabochip study (P = 0.0009)3. However, rs7412 is not present on 

most commercially available genome-wide genotyping arrays and cannot be imputed using 

HapMap reference panels, supporting the value of the expanded coverage of the 1000 

Genomes reference panels. Finally, SNP rs11591147, which encodes the low frequency 

(MAF = 0.01) R46L variant in PCSK9 that has been associated with low LDL cholesterol 

levels and cardioprotection10-13, was imperfectly imputed (quality = 0.61). Nonetheless 
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these data provide the strongest evidence to date for a protective effect of this variant for 

CAD (P = 7.5 × 10−6).

Scanning for non-additive associations

Few GWAS of CAD have systematically scanned for associations that include dominance 

effects and few truly recessive loci have been reported14,15. We used a recessive inheritance 

model to search for susceptibility effects conferred by homozygotes for the minor (i.e. less 

frequent) allele. Two novel recessive loci were identified with MAF 0.09 and 0.36 and 

genotypic OR 0.67 and 1.12 (Table 1, Fig. 2); these loci showed very little evidence of 

association under an additive model (Table 1). A supplementary dominant model analysis 

revealed multiple strong associations with variants that all overlapped with loci identified in 

the additive model analysis (Supplementary Table 4).

MI sub-phenotype analysis

Sub-group analysis in cases with a reported history of MI (~ 70% of total number of cases) 

did not identify any additional associations reaching genome-wide significance. The 

association results for the MI sub-phenotype for the 48 previously known CAD loci and the 

8 novel additive CAD loci discovered in this study are shown in Supplementary Table 5. 

Supplementary Fig. 3 compares the OR for the lead SNPs at 56 loci for the broader CAD 

phenotype (full cohort) and the MI sub-phenotype. While, as expected, for most of the loci 

the ORs are very similar, for ABO and HDAC9 the ORs are sufficiently distinct for their 

95% confidence intervals to lie away from the line of equality, suggesting that ABO 
preferentially associates with MI and HDAC9 with stable coronary disease but not infarction 

per se.

FDR and heritability analysis

We performed a joint association analysis to search for evidence of synthetic associations16 

where multiple low-frequency susceptibility variants at a locus might be in LD with a 

common variant that is discovered as the lead variant in a GWAS, and to compile an FDR-

defined list of informative variants for annotation and heritability analysis3. Variants that 

showed suggestive additive associations (P < 5 × 10−5) were assigned to 214 putative 

susceptibility loci centred on a lead variant ±1 centiMorgan and all variants in these loci 

examined; consequently the search space for the joint analysis included 1,399,533 variants. 

Using the GCTA software17 to perform an approximate joint association analysis (Online 
Methods), we identified 202 variants (q-value < 0.05) in 129 loci (Supplementary Table 6) 

with multiple (2 – 14) tightly linked variants in 57% of CAD loci. The 202 FDR variants 

were mostly common (median MAF 0.22) and well imputed (median imputation quality 

0.97). 95 variants (explaining 13.3±0.4% of CAD heritability) mapped to 44 GWAS 

significant loci. 93 variants (explaining 12.9±0.4% of CAD heritability) mapped to loci that 

include a previously reported GWAS significant variant; 109 variants (explaining a further 

9.3±0.3% of CAD heritability) mapped to other loci. Fifteen low frequency (MAF < 0.05) 

variants explained only 2.1±0.2% of CAD heritability noting that our study was ~90% 

powered to detect OR > 1.5 with low frequency variants (Supplementary Table 7).
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Common variants showing typical GWAS signals might be coupled with one or more low 

frequency variants with relatively large effects16. We found no evidence for such synthetic 

associations in the joint association analysis i.e. all low frequency variants were either lead 

variants or jointly associated (q-value < 0.05) with a common variant. Twenty of the 202 

FDR variants (9.9%) were indels (4–14 bp size) compared to 8.8% of all the variants in the 

meta-analysis (P = 0.60). Low frequency variants (MAF < 0.05) were strikingly 

underrepresented (6.9% vs. 29.0%; P = 4.9 × 10−12) which may reflect on the statistical 

power to detect modest effects associated with these variants (vide infra).

Annotation and ENCODE analysis

Functional annotations were assigned to the 9.4 million variants studied in the CAD additive 

meta-analysis using the ANNOVAR software18 (Supplementary Table 8). The 202 FDR 

variants were depleted in intergenic regions (P = 2.5 × 10−7) and enriched in introns (P = 

0.00035). Variants were also assigned to three sets of ENCODE (Encyclopedia of DNA 

Elements) features, namely histone/chromatin modifications (HM), DNase I hypersensitive 

sites (DHS) and transcription factor binding sites (TFBS) (Supplementary Table 9). The 

FDR variants showed independent enrichment across 11 cell types for the HM (P = 2.8 × 

10−6) and DHS (P = 0.0003) ENCODE feature sets and with genic annotation status (P = 

0.0013) (Supplementary Table 10 and Supplementary Table 11). These associations were 

also evident in three cell types selected with maximal CAD relevance with a 2.6-fold 

enrichment for DHS, 2.2-fold enrichment for HM and 1.6-fold enrichment for genic status 

(Supplementary Table 12 and Supplementary Table 13). These findings suggest that the 202 

FDR variants are enriched for functional variants with potential relevance to CAD 

pathogenesis.

Post hoc power calculations

8.2M of 9.4M (87%) of the analysed variants were highly powered (> 90%) to detect an OR 

≥ 1.3 (Supplementary Table 7). The number of variants with power ≥ 90% to detect 

associations varies systematically with allele frequency and imputation quality 

(Supplementary Fig. 4 for OR = 1.3); 1.5M of 2.7M (55%) low frequency variants (0.005 < 

MAF < 0.05) in the meta-analysis were adequately powered to detect an OR ≥ 1.3 as most of 

these variants were accurately imputed (median imputation quality 0.94, interquartile range 

0.88, 0.98). With more common variants (MAF > 0.05) almost all (99.8%) were highly 

powered to detect OR ≥ 1.3. However, in terms of the total coverage of low frequency 

variation, only 15.3% of 9.3M low frequency (0.005 < MAF < 0.05) variants in the 1000 

Genomes phase 1 v3 training set surpassed the allele frequency and imputation quality entry 

criteria in the 60% of the studies required for inclusion in the meta-analysis and were 

predicted to be adequately powered to detect significant associations; 100% of these variants 

were highly powered (>90%) to detect OR ≥ 3.15.

Interrogation of 10 novel additive and recessive loci

We examined whether there were any eQTLs, associations with known cardiovascular risk 

factors or prior evidence of involvement of genes with atherosclerotic processes in each of 
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the newly identified loci to define putative mechanisms by which the loci may affect risk of 

CAD.

Chromosome 4q12 (REST – NOA1) locus: The lead SNP rs17087335 lies within an intron 

of the nitric oxide associated 1 (NOA1) gene; 23 SNPs in linkage disequilibrium (LD 

r2>0.8) show CAD associations (P < 1 × 10−6) across the NOA1 and the repressor element-1 

silencing transcription factor (REST) genes (Fig. 4a). NOA1 is a GTP binding protein 

involved in the regulation of mitochondrial respiration and apoptosis19. REST is a 

transcription factor that suppresses the expression of voltage dependent sodium and 

potassium channels20 and has been shown to maintain vascular smooth muscle cells in a 

quiescent non-proliferative state and is itself down-regulated in neointimal hyperplasia21. 

SNP rs17087335 shows a cis-eQTL signal with REST in lung22 (Supplementary Table 14).

Chromosome 7q36.1 (NOS3) locus: The lead SNP rs3918226 (MAF = 0.07) lies in the first 

intron of the nitric oxide synthase 3 (NOS3) gene (Fig. 4b). This SNP has been tentatively 

associated with CAD (OR = 1.14, P = 1.4 × 10−4) in a candidate gene meta-analysis based 

on 15.6K cases and 35K controls genotyped with the HumanCVD BeadChip7 and firmly 

associated with essential hypertension (OR = 1.34, P = 1.0 × 10−14)23. NOS3 is involved in 

production of nitric oxide (NO), a potent vascular smooth muscle relaxant and a well-studied 

candidate gene for CAD. Indeed, proteins forming the NO receptor (soluble guanylyl 

cyclase) display both linkage as well as genome-wide association with CAD3,24. There are 

several overlapping ENCODE features in the NOS3 intron 1 suggesting a functional role for 

rs3918226. However, there are 30 genes neighbouring NOS3 within a ±1 centiMorgan 

window and the current data does not allow candidacy of these genes to be excluded. A non-

synonymous SNP, rs1799983, in NOS3 previously associated with cardiovascular 

phenotypes25 is in weak LD with rs3918226 but did not achieve significance in an additive 

or joint association analysis.

Chromosome 11p15.4 (SWAP70) locus: SNP rs10840293 is intronic to the switch-

associated protein-70 gene (SWAP70) (Fig. 4c). SWAP-70 is a signalling molecule involved 

in the regulation of filamentous-actin networks26 in cell migration and adhesion. SNP 

rs10840293 with other SNPs in strong LD are cis-eQTLs in naïve and challenged 

monocytes27, SNP rs93138 shows a strong association with CAD (P = 5.5 × 10−8) and is a 

cis-eQTL in naïve and challenged monocytes28, fat29, skin29 and lung22 (Supplementary 

Table 14); three of these SNPs (rs93138, rs173396 and rs472109) are intronic and lie within 

ENCODE regulatory functional elements. Although this CAD-associated locus includes 33 

genes, the eQTL and ENCODE data implicate SWAP70 as a plausible causal gene and 

suggest putative causal SNPs.

Chromosome 15q22.33 (SMAD3) locus: The lead SNP rs56062135 is intronic to SMAD3 
and the CAD association is tightly localized between two recombination hot spots (Fig. 4d). 

Mice lacking Smad3, a major downstream mediator of TGF-β, show enhanced neointimal 

hyperplasia with decreased matrix deposition in response to vascular injury30. SMAD3 had 

been tentatively associated in an earlier CAD GWAS31, although that lead SNP 

(rs17228212) is in linkage equilibrium with rs56062135, showed modest association (P = 

0.009) in the present GWAS and no evidence of joint association (Supplementary Table 6).
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Chromosome 15q26.1 (MFGE8 – ABHD2) locus: The lead intergenic SNP rs8042271 maps 

117kb upstream of milk fat globule-EGF factor 8 (MFGE8) and 57kb upstream from 

abhydrolase domain-containing protein 2 (ABHD2) (Fig. 4e). MFGE8 (lactadherin) has a 

crucial role in VEGF dependent neovascularization32 and is secreted from activated 

macrophages and binds to apoptotic cells, facilitating phagocytic engulfment33. ABHD234 

has been shown to be expressed in human atherosclerotic lesions with higher levels in 

patients with unstable angina. There were no overlapping risk factor QTL, eQTL or 

ENCODE features to guide the nomination of a putative causal gene.

Chromosome 17q23.2 (BCAS3) locus: The lead intronic SNP rs7212798 lies in the breast 

carcinoma amplified sequence 3 (BCAS3) gene (Fig. 4f). Multiple variants in LD with 

rs7212798 map to BCAS3 introns and show strong association with CAD. BCAS3 encodes 

the Rudhira protein that has been shown to activate Cdc42 to affect actin organization and 

control cell polarity and motility in endothelial cells thus contributing to angiogenesis35.

Chromosome 18q21.32 (PMAIP1 – MC4R) locus: The lead intergenic SNP rs663129 lies 

266 kb downstream of the phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1) 

gene and 200kb downstream of the melanocortin 4 receptor (MC4R) gene (Fig. 4g). 

PMAIP1 is a HIF1A-induced proapoptotic gene that mediates hypoxic cell death by the 

generation of reactive oxygen species36. MC4R is a well-studied obesity-related locus and 

the variant (and corresponding proxy variants) that were associated with higher CAD risk 

were also associated with BMI (P = 6×10−42) and obesity-associated risk factors including 

higher triglyceride and lower HDL concentrations and type 2 diabetes37-41. However, we 

found no eQTL data or ENCODE features for the lead or proxy SNPs to further implicate 

MC4R as the causal gene underlying the CAD susceptibility.

Chromosome 22q11.23 (POM121L9P – ADORA2A) locus: The lead SNP rs180803 lies in 

the non-coding RNA POM121 transmembrane nucleoporin-like 9, pseudogene 

(POM121L9P). A ±1 centiMorgan region spans 1.2Mb and includes 21 variants that are 

genome-wide significantly associated with CAD, most of them in LD (r2>0.6) with the lead 

SNP and mapping to intronic regions of the SPECC1L and ADORA2A genes (Fig. 4h).

Chromosome 12q24.23 (KSR2) locus: The lead SNP rs11830157 (MAF=0.36) associates 

with CAD risk in a recessive model (genotypic OR = 1.12) and is intronic to the kinase 

suppressor of ras 2 (KSR2) gene (Fig. 4i) and overlaps with ENCODE functional elements. 

KSR2 interacts with multiple proteins including AMPK and rare loss-of-function coding 

variants in KSR2 are associated with severe obesity, hyperphagia and insulin resistance, a 

phenotype recapitulated in Ksr2 null mice42.

Chromosome 19q13.11 (ZNF507 – LOC400684) locus: The lead SNP rs12976411 

(MAF=0.09) lies in an uncharacterized non-coding RNA (LOC400684) and is 3.4 kb 3’ of 

ZNF507 (Fig. 4j). The minor allele shows a protective CAD effect (genotypic OR = 0.69) in 

the recessive model. ENCODE analysis of this locus suggests that several SNPs including 

rs12981453 and rs71351160, which are in strong LD (r2>0.8) and intronic to ZNF507 
overlap with ENCODE functional elements.
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Discussion

We demonstrate that the ability of GWAS to investigate the genetic architecture of complex 

traits is enhanced by the 1000 Genomes Project. This has allowed us to conclude that low 

frequency variants of larger effect, synthetic associations and insertion/deletion 

polymorphisms are unlikely to explain a significant portion of the missing heritability of 

CAD. Rather, all ten novel CAD associations identified in the present analysis, as well as all 

but one of the previously identified loci, are represented by risk alleles with a frequency of 

greater than 5%. Thus, this comprehensive analysis strongly supports the common disease/

common variant hypothesis43 given that it was powered to detect MAF < 0.05 variants with 

OR > 1.5. Moreover, risk alleles are significantly clustered within or close to genes and 

enriched in regions with functional annotations. Finally, genes implicated by this unbiased 

approach suggest hypotheses that explore the biology of the arterial vessel wall as a critical 

component of CAD pathogenesis.

The success of the GWAS meta-analysis strategy to map common, small-effect susceptibility 

variants for complex diseases has leant heavily on genotype imputation with publically 

available training sets. The 1000 Genomes Project provides a substantial step-up from the 

HapMap era in terms of coverage of lower frequency variants and the integration of 

insertion/deletion polymorphism (Fig. 1). Lead SNPs for 4 of the 10 novel CAD loci were 

either absent or imperfectly tagged (r2 < 0.8) in the HapMap2 training set, which reduced 

the power of discovering these loci in previous GWAS meta-analyses. Although lower 

frequency variants often show geographical differentiation5, the phase1 v3 training set 

includes numerous low MAF variants that are tractable to a global meta-analysis that 

includes multiple continental ancestry groups. Key SNPs in apolipoproteins E and (a) and 

PCSK9, which mediate their CAD-effects via LDL-cholesterol linked mechanisms showed 

strong associations and reinforces the sensitivity of our 1000 Genomes analysis to detect 

lower frequency, imperfectly imputed susceptibility variants which were missed in HapMap-

based GWAS.

Association analysis under the customary additive inheritance model widely used in GWAS 

analyses is optimally powered to detect traits with no dominance variance but conveniently 

has adequate power to detect dominantly inherited traits as well44. However, the additive 

model is systematically underpowered to detect recessively inherited traits particularly for 

lower frequency alleles44. This motivated our recessive meta-analysis, which revealed two 

novel CAD loci, KSR2 and ZNF507-LOC400684 that escaped detection in a conventional 

additive association scan.

Our GWAS explores two potential sources of missing heritability for CAD as it includes 

indels and an extended panel of lower frequency variants. Although there was no evidence 

that indels were systematically enriched for CAD associations, they were present in 10% of 

the 202 variants with an FDR q-value < 5%. In terms of surveying the totality of human 

genetic variation, the 1.5M of 2.7M lower frequency variants that were included in the meta-

analysis with power to detect moderate-penetrance alleles (OR > 1.3) might seem modest. 

Yet the relative paucity of significant associations, 15 variants with MAF < 0.05 that explain 

2% of CAD heritability and provide no evidence of synthetic associations, will temper 
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expectations for the role of low frequency variants underlying CAD susceptibility, 

specifically with respect to risk prediction in a population-based setting. It is though 

important to acknowledge that GWAS based on SNP array data has limited power to resolve 

genes carrying rare mutation burdens. For example, LDLR45, APOA545, APOC346 and 

NPC1L147 are loaded with susceptibility or protective mutations for CAD. These 

discoveries were only revealed by whole-exome sequencing studies in large series of cases 

and controls yet explain less than 1% of the missing heritability of CAD45.

Annotation analysis showed that the CAD associated variants were significantly clustered 

within or close to genes. Furthermore, there was a strong and independent enrichment for an 

overlap of the CAD associations with ENCODE features, particularly in cell types relevant 

to CAD pathogenesis. This phenomenon has been previously reported for other diseases and 

traits48 and can guide candidate gene nomination and the design of future functional studies. 

We found few suggestions of overlap with risk factor QTL or eQTL in available datasets; 

this may in part reflect that the use of proxy variants can be limiting in cross-referencing 

1000 Genomes and HapMap association databases.

Coronary atherosclerosis underlies the development of the vast majority of cases of MI; 

therefore the two are intimately related. However, additional factors such as plaque 

vulnerability or the extent of the thrombotic reaction to plaque disruption may predispose to 

MI in the presence of CAD49. We confirmed that ABO is particularly associated with risk of 

MI50 suggesting that this locus may specifically increase the risk of plaque rupture and/or 

thrombosis. In contrast, HDAC9 showed a stronger association with CAD than with MI 

suggesting that it might predispose to atherosclerosis but not the precipitant events leading to 

an MI. However, HDAC9 shows even stronger associations with ischemic strokes involving 

thrombosis or embolism due to atherosclerosis of a large artery51. Although further 

epidemiological as well as experimental data are required to substantiate these findings, they 

suggest that certain loci may affect distinct mechanisms related to the development and 

progression of CAD.

Several of the genes implicated to date in large-scale analyses of CAD susceptibility encode 

proteins with a known role in the biology of circulating risk factors for CAD, notably lipid 

levels and the metabolism of lipoproteins; others relate to other known atherosclerosis risk 

factors, such as genes implicated in systemic inflammation and in hypertension. This is 

unsurprising, partly because of the undoubted importance of these known risk factors in the 

etiology of CAD but also because some of these prior analyses particularly targeted genes 

involved in risk factor traits, for example the HumanCVD BeadChip52 was based on 

candidate genes and the Metabochip3,53 drew on prior association data with risk factor traits 

as well as an earlier HapMap2 CAD GWAS meta-analysis54. The current experiment adopts 

a completely unbiased approach and is the first to do so at very large scale. In this respect, it 

is notable that for some of the novel loci where genomic data, biological precedent and 

eQTL associations suggest a plausible novel CAD gene, the genes so implicated have well 

documented roles in vessel wall biology. Their gene products are involved in diverse 

processes including cell adhesion and leukocyte and vascular smooth muscle cell (VSMC) 

migration (SWAP7026 and ABHD255), VSMC phenotypic switching (REST20), TGF-β 

Nikpay et al. Page 8

Nat Genet. Author manuscript; available in PMC 2016 April 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



signaling (SMAD356,57), anti-inflammatory and infarct sparing effects (ADORA2A58 and 

MFGE859), angiogenesis (BCAS335) and nitrous oxide signaling (NOS324).

It is important to note that these putative new susceptibility genes require substantial further 

investigation and validation before firm vascular biology links can be established. A number 

of preventative strategies target the vessel wall (control of blood pressure, smoking 

cessation) but the large majority of existing drug treatments for lowering CAD risk operate 

through manipulating circulating lipids and few directly target vessel wall processes. 

Detailed investigation of new aspects of vessel wall biology that are implicated by genetic 

association, but have not previously been explored in atherosclerosis, may provide new 

insights into its complex aetiology and hence new targets.

Online Methods

Association Analysis

Three models of heritable disease susceptibility were analysed by logistic regression 1) an 

additive model where the log(genotype risk ratio) (log(GRR)) for a genotype was 

proportional to the number of risk alleles, 2) a recessive model where the log(GRR) for 

homozygotes for the minor allele was compared with a reference risk in pooled 

heterozygotes and homozygotes for the major allele and 3) a dominant model where the 

log(GRR) for homozygotes for the minor allele pooled with heterozygotes was compared 

with a reference risk in homozygotes for the major allele. Minor and major alleles were 

identified by reference to the allele frequencies in the pooled populations (i.e. all continents) 

of 1000 Genomes phase 1 v3 data. For the recessive and dominant analyses, genotype 

probabilities to allow for variable imputation quality were analysed by all contributing 

studies; for the additive analysis, genotype probabilities or allelic dosages were used 

(Supplementary Table 1).

Data Quality Control

Association data for each contributing study were individually filtered by MAF > 0.005 

(estimated in combined cases and controls) and an imputation quality metric, rsq > 0.3 for 

minimac or info_proper > 0.4 for IMPUTE261. Allele frequencies for each study were 

binned and compared with other studies to detect systematic flipping of alleles 

(Supplementary Fig. 5). Over-dispersion of association statistics was assessed by the 

genomic control method62 (Supplementary Table 15) and adjusted values were submitted for 

meta-analysis. Variants that were retained in at least 60% of the studies were submitted for 

meta-analysis using the GWAMA program63. Following an inverse-variance weighted fixed-

effects meta-analysis, heterogeneity was assessed by Cochran’s Q statistic64 and the I2 

inconsistency index65 and variants showing marked heterogeneity were reanalysed using a 

random-effects model66. Over-dispersion in the resulting meta-analysis statistics was 

adjusted for by a second application of the genomic control procedure (Supplementary Fig. 

6).
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FDR estimation

The false discovery rate (FDR) was assessed using a step-up procedure encoded in the 

qqvalue Stata program67. This procedure has been reported to be well controlled under 

positive regression-dependency conditions68; simulations based on 1000 permuted replicates 

of the PROCARDIS imputed data demonstrated that the FDR was conservatively controlled 

(theoretical q-value = 0.05, empirical q-value = 0.026 95%CI 0.017 – 0.038) in the context 

of the linkage disequilibrium patterns prevalent in the 1000 Genomes phase 1 v3 training set.

GCTA and heritability analysis

Joint association analysis of the CAD additive meta-analysis results was performed using the 

GCTA software17 that fits an approximate multiple regression model based on summary 

association statistics and linkage disequilibrium information derived from a reference 

genotype database (here the 1000 Genomes phase 1 v3 training set for all continents/

populations that includes genotypes for 1,092 individuals). In this analysis, the lead variant 

is not necessarily retained in the final joint association model in situations where there might 

be multiple associated variants in strong LD. The accuracy of this analysis depends on 

appropriate ancestry matching as well as the sample size of the reference genotype panel to 

ensure that estimated LD correlations are unbiased and acceptably precise69. Simulations 

suggest that the expected correlation between p-values based on the GCTA method using a 

reference panel of 1,000 genotyped samples and p-values from an “exact” multiple 

regression based on experimental genotypes will be between 0.90 and 0.9569. We 

investigated the empirical accuracy of the GCTA joint association analysis by comparing 

GCTA joint association results with a standard multiple logistic regression analysis in 4 

contributing studies (Supplementary Fig. 7). This showed that 95% of the betas and SE were 

accurately approximated. The −log10 p-values from the two analyses were positively 

correlated (0.86 < rho < 0.93) with the GCTA method showing an insignificant trend (P > 

0.20) to yield slightly inflated values.

Heritability calculations were based on a multifactorial liability threshold model70 assuming 

that the disease prevalence was 5% and that the total heritability of CAD was 40%3; multiple 

regression estimates of allelic effect sizes were used following the GCTA joint association 

analysis. Standard errors of the heritability estimates were estimated by Monte Carlo 

sampling with 1,000 replicates (i.e. for each variant, draw effect sizes (beta) randomly from 

the variants’ beta±SE estimate, calculate heritability for each beta-by-replicate draw, sum 

heritability across N variants within each replicate and finally calculate the standard error of 

the heritability estimates across the 1,000 replicates).

Power Calculations

The power to detect genetic associations depends on the magnitude of the genetic risk (i.e. 

effect size), the type 1 error rate, the risk allele frequency and imputation quality and the 

sample size. Non-centrality parameter calculations were based on double genomic controlled 

standard error estimates from the additive model meta-analysis; these estimates integrate 

information on allele frequency, imputation quality and sample size, which typically vary 

across studies. The type 1 error was set at 5 × 10−8 and an additive risk model was assumed.
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Risk Factor QTL survey

The 10 novel CAD associated loci were scanned for associations with CAD heritable risk 

factors using publically available resources including large-scale GWAS consortia data 

downloads37-41,71-73 and the NHGRI GWAS catalogue accessed May 201474. As previous 

risk factor GWAS were mainly based on HapMap2 imputed datasets, all SNPs in LD (r2>0.8 

based on 1000 Genomes phase 1 v3 ALL reference panel) with the novel variants were 

examined for risk factor associations. The novel associated loci were cross-referenced with 

known cis and trans eQTL associations from the University of Chicago eQTL browser 

(accessed July 2014), the GTEx Portal (accessed June 2014), the Geuvadis Data Browser 

(accessed June 2014) and other published data22,28,29,75-79.

Annotation and ENCODE analysis

Variants were annotated using the ANNOVAR18 (version Aug 2013) software based on a 

GRCh/hg19 gene annotation database. Upstream/downstream status was assigned to variants 

that mapped ≤1kb from the transcript start/end. Variants without intergenic annotation were 

assigned a genic annotation status (42%). Supplementary Table 8 shows the annotation 

status of 9.4M variants included in the CAD additive meta-analysis; 86% of the genic 

variants map to introns.

ENCODE features were downloaded from the Ensembl database using the Funcgen Perl API 

module release 75. The list of the ENCODE experiments stored in the Ensembl database can 

be browsed at http://Feb2014.archive.ensembl.org/Homo_sapiens/Experiment/Sources?

db=core;ex=project-ENCODE-. This summarized 100 different types of functional evidence 

in 11 different cell types, a total of 379 ENCODE experiments that revealed 6,099,034 

features. Variants that overlaid one or more of these features were cross-tabulated with their 

ANNOVAR annotation status (Supplementary Table 10); 50% of variants mapped to one or 

more ENCODE features and variants in ENCODE features were strongly enriched for genic 

annotation status. Variants were grouped into three functional sets, histone/chromatin 

modifications (HM), DNase I hypersensitive sites (DHS) and transcription factor binding 

sites (TFBS) (Supplementary Table 9). Cell types were grouped into CAD relevant and 

others (Supplementary Table 12) based on their potential roles in CAD pathophysiology; 

hepatocytes (e.g. lipid metabolism80), vascular endothelial cells (atherosclerosis81) and 

myoblasts (injury/repair82) were selected as being most relevant to the CAD phenotype. 

Multi-way contingency tables reporting ENCODE feature and ANNOVAR annotation status 

with inclusion in the FDR < 5% variant list (FDR202 status) are summarized for 11 

ENCODE cell types in Supplementary Table 11 and for the three CAD relevant cell types in 

Supplementary Table 13. Contingency table counts were modelled by a logistic multiple 

regression model predicting FDR202 status with independent explanatory variables HM, 

DHS, TFBS and genic/intergenic status. The ENCODE83 project has previously mapped 

4,492 GWAS significant SNPs from the NHGRI (June 2011) catalogue74 to TF (12%) and 

DHS (34%) features in an extended dataset of 1,640 experiments. The 202 FDR variants 

were slightly less prevalent in these feature groups (10.4% TF and 19.8% DHS) which could 

reflect a CAD-specific issue or a more general consequence of our analysis being based on a 

subset of the ENCODE data retrieved from the Ensembl database.
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Figure 1. 
Spectrum of minor allele frequencies (MAF) and median imputation quality (MEDIAN 

INFO) showing the number (N) of variants in each bin (a) shows the distribution for the 

9.4M 1000 Genomes phase1v3 variants (b) shows the distribution for 2.5M HapMap2 SNPs. 

Imputation quality was calculated as the median of the respective values in up to 48 

contributing studies; the imputation quality for genotyped variants was set equal to 1.0. The 

1000 Genomes training set included more low frequency variants, many of which have 

imputation qualities > 0.9.
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Figure 2. 
A circular Manhattan plot summarizing the 1000 Genomes CAD association results. The 

meta-analysis statistics have been adjusted for over-dispersion (before double genomic 

control, lambda = 1.18); over-dispersion is predicted to be a regular feature in GWAS under 

the polygenic inheritance model60. The association statistics have been capped to P = 1 × 

10−20. Genome-wide significant variants (P < 5 × 10−8) are indicated by red triangles. Novel 

CAD loci are named in red (Table 1). Previously reported loci showing genome-wide 

significance are shown in black and those showing nominal significance (P < 0.05) in our 

Nikpay et al. Page 23

Nat Genet. Author manuscript; available in PMC 2016 April 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



meta-analysis in blue (Supplementary Table 2). The inner track (see inset) shows the 

imputation quality score of the lead variants of the novel loci. The middle track shows 

numbered chromosome ideograms with the centromeres indicated by pink bars.
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Figure 3. 
Imputation quality and effect size of lead variants at 46 genome-wide significant loci. (a) 
Imputation quality and minor allele frequency (MAF) for lead variants at 46 genome-wide 

significant susceptibility loci. Blue circles indicate novel additive loci, red squares - novel 

recessive loci, black triangles - previously mapped additive loci, black diamonds - key SNPs 

in LPA and APOE. Imputation quality and MAF were calculated as the median of the 

respective values in up to 48 contributing studies; the imputation quality for studies with 

genotype data was fixed at 1.0. (b) Odds ratios and effect allele frequency (EAF) for lead 
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variants at 46 genome-wide significant loci. Blue circles indicate novel additive loci; red 

squares - novel recessive loci, black triangles - previously mapped additive loci. SNPs 

rs55730499 and rs2891168 are lead variants in the LPA and chromosome 9p21 susceptibility 

loci. EAF was calculated as the median value in up to 48 contributing studies.
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Figure 4. 
Regional association plots of the eight additive (a–h) and two recessive (i–j) novel CAD 

loci. The association statistics have been adjusted for over-dispersion following meta-

analysis (genomic control parameter 1.18 for the additive and 1.05 for the recessive models). 

Linkage disequilibrium (r2) calculations were based on the combined 1000 Genomes phase 

1 v3 training dataset. Genomic coordinates in mega-base pairs (Mb) refer to the hg19 

sequence assembly.
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