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The behavior of the well-characterized nematode, Caenorhabditis elegans (C. elegans), is often used to study the
neurologic control of sensory and motor systems in models of health and neurodegenerative disease. To advance the
quantification of behaviors to match the progress made in the breakthroughs of genetics, RNA, proteins, and neuronal
circuitry, analysis must be able to extract subtle changes in worm locomotion across a population. The analysis of worm
crawling motion is complex due to self-overlap, coiling, and entanglement. Using current techniques, the scope of the
analysis is typically restricted to worms to their non-occluded, uncoiled state which is incomplete and fundamentally
biased. Using a model describing the worm shape and crawling motion, we designed a deformable shape estimation
algorithm that is robust to coiling and entanglement. This model-based shape estimation algorithm has been
incorporated into a framework where multiple worms can be automatically detected and tracked simultaneously
throughout the entire video sequence, thereby increasing throughput as well as data validity. The newly developed
algorithms were validated against 10 manually labeled datasets obtained from video sequences comprised of various
image resolutions and video frame rates. The data presented demonstrate that tracking methods incorporated in
WormLab enable stable and accurate detection of these worms through coiling and entanglement. Such challenging
tracking scenarios are common occurrences during normal worm locomotion. The ability for the described approach to
provide stable and accurate detection of C. elegans is critical to achieve unbiased locomotory analysis of worm motion.

Introduction

Caenorhabditis elegans (C. elegans) is a free-living, semi-
transparent soil nematode that is widely used as a model organism
in the fields of genetics, animal development, and neurobiology.
C. elegans are fecund and have a rapid life-cycle (3.5 d from egg to
adulthood). In addition, self-fertilizing hermaphrodites create
homozygous progeny. From an experimental perspective, the small
size (1 mm) and transparency of this organism makes it ideal for
microscopy-based analysis. The worms are easy and inexpensive to
maintain. In addition, this species is ideally suited to forward and
reverse genetic approaches that have elucidated the entire genome1

and complete cell lineage,2,3 including the position and synaptic
connectivity of all neurons.4 The locomotion patterns of C. elegans
can be impacted by a variety of factors. Numerous studies have
shown that locomotion analysis provides extremely useful insight
into how environmental factors 5,6 and genetic factors 7-12 affect
behavior. Subtle changes in locomotion patterns must be isolated
through statistical analysis of worm motion,13,14 which requires a
large number of replicate screens, each consisting of the visual
observation of worms over a period of time. The large number of

observations required argues for automated, high throughput
tracking of C. elegans from time-lapse video sequences.

From a computer vision perspective, reliable detection of nem-
atodes can be a very challenging task as illustrated in Figure 1.
Standard shape descriptors and simple motion models cannot be
applied to the detection of nematodes because their shape lacks
usable contour features and their motion patterns are non-rigid
and very complex (e.g., omega bending and coiling). Addition-
ally, common imaging artifacts and clutter found on nematode
growth medium (NGM) plates further complicate the process.

C. elegans are morphologically complex organisms and have
been the subject of many studies aimed at quantifying their mor-
phological and locomotory properties. In early attempts, videos
featuring C. elegans worms were analyzed and detected as con-
nected regions after image thresholding.15,16 During tracking,
the position of each worm was searched for within a neighbor-
hood of its position in the previous video frame. The algorithm
handled collisions—when 2 worms touch one another—by aban-
doning both tracks. This approach was used in several worm
tracker systems and applied in a number of studies focusing on
locomotory phenotypes of C. elegans.15,17
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The aforementioned tracking strategies focused only on worm
position, leaving out critical shape characteristics such as length,
thickness, and posture. In later publications by several authors,
worm shapes were extracted from a binary image generated through
thresholding, refined using morphological operations, and skeleton-
ized to define the worm spinal axis (centerline).14,18-22 This addi-
tional information allowed the behavioral characterization of the
worms.

With these tracking approaches, here denoted as “basic
detection,” tracking repeats the segmentation for every video
frame without taking into account any relation of the results in
successive frames. These approaches fail when multiple worms
interact with one another or when one worm exhibits complex
posture with significant self-overlap (coiling) because these con-
formations are not handled by classical thinning methods used to
extract the worm centerline.23

Recently, edge linking strategies have been successfully applied
to separate homogeneous populations of overlapping C. elegans
worms in a fluidic environment.24,25 These approaches are based
on skeleton analysis and require worm populations of

homogeneous size to be effective. In addition, disambiguation is
only possible for a limited range of overlap patterns due to the
nature of the skeletonization operator. An approach used by
Huang et al. employs a worm model of 6 articulated rectangular
elements.26,27 Each element accepts a limited number of discrete
angular orientations, and model estimation is done through
dynamic programming. However, this model is overly simplistic
and does not reflect realistic locomotion patterns of freely mov-
ing worms. In addition, the relative coarseness of the model will
impair measurement precision and impact negatively on critical
tasks such as head detection. None of the previous methods are
robust to the wide variety of morphology and locomotion in
extended observations of C. elegans. Complex behaviors such as
frequency of coiling are defining characteristic of many C. elegans
strains, for example genotypes such unc-32, unc-34 and unc-17
are defined as “severe coilers” in literature.28 Limiting the loco-
motion analysis of worms to their non-occluded, uncoiled state is
incomplete and fundamentally biased. Thus, new models that
specifically address worm interaction and overlap are needed to
advance research in this field.

Our goal is to create a novel tracking algorithm that is robust
to worm interaction and overlap to address this need. To that
end, we reviewed the existing worm tracking systems capable of
both detection and tracking of multiple worms within a field of
view. We found that the overwhelming majority of tracking sys-
tems29-31 currently available do not support tracking through
occlusion, coiling, or entanglement. These systems rely on a
“basic detection” approach where binary images are generated
through thresholding, and skeletonised using morphological
thinning methods to define the worm spinal axis. This approach
has been used extensively in past biological studies and can be
considered classical.32 For example, in Tracker 3.0,29 tracking is
limited to only one worm at a time and relies exclusively on a
standard worm detection algorithm. As a result, the system drops
a track as soon as occlusion occurs. A more recent tracking sys-
tem14 allows the tracking of multiple worms within the field of
view, but because this system relies on detection-based tracking,
it does not handle coiling or entanglement either.

The focus of this paper is to demonstrate how our shape regis-
tration algorithm can successfully be used to track adult C. elegans
worm through coiling, interaction with other worms, and in a
cluttered environment. A direct comparison between our work
and published tracking systems not designed to address occlu-
sions would not be informative. Instead, a tracking system utiliz-
ing a variant of the “basic detection” algorithm was implemented
and its output was compared to WormLab. In addition, we eval-
uated the performance of WormLab against the tracking system
developed as part of our previous work, here denoted as Roussel
2007.34 We define robustness – the likelihood of successful
detection of the worm – and accuracy – the quality of the worm
outline – to quantify the performance of these systems.

This paper presents a sophisticated model-based approach for
the simultaneous tracking of multiple worms in a manner that is
both efficient and robust to occlusions. This approach furthers
our previous work33,34 and incorporates formalisms from Fon-
taine et al.35,36 to create a framework for the automated

Figure 1. Illustrative images of C. elegans on nematode growth medium
(NGM) plates in challenging tracking scenarios: (A) interaction between
2 worms, (B) coiling with self occlusion of the worm contour, (C) high
amplitude bending. Challenging scenes such as these are common
occurrences during normal worm locomotion. Stable and accurate
detection of worms at different maturation states through such scenarios
is critical to achieve reliable and automated multi-worm tracking.
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detection, tracking, and quantification of C. elegans shape and
motion. Our focus is to demonstrate the effectiveness of our
model-based shape registration specifically when tracking C. ele-
gans worms through coiling, entanglement, and in a cluttered
environment.

Mathematical modeling of worm anatomy and
worm dynamics

The geometric model
Following recent approaches, the worm centerline is modeled

as a parametric curve, M uð Þ, represented by a function of center-
line’s length, where u is the distance along the centerline from
the midpoint of the worm.33-36 The parameter u is normalized
over the range [¡ 0:5; 0:5] such that M 0ð Þ is the midpoint posi-
tion of the detected worm shape, M ¡ 0:5ð Þ its tail, and M 0:5ð Þ
its head. The bending angle Q uð Þ along the centerline is similarly
defined and modeled using a third order periodic B-spline basis
ff3

j g composed of a default number of NQ D 8 splines (1).

Q uð ÞD
XNQ

jD 1

ajf
3
j uð Þ: (1)

The relevance of such a curvature representation of the worm
centerline to model and analyze worm crawling movement has
been confirmed by a more recent study by Padmanabhan et al.37

The worm width profile R uð Þ is defined as a continuous function
for the localized radius as a function of distance along its length.
It is similarly parameterized using a third order periodic B-spline
basis with NQ D 8 splines (2).

R uð ÞD
XNQ

jD 1

rjf
3
j uð Þ: (2)

The worm model is a 2-dimensional surface defined around the
centerline curve. Roussel demonstrated that points within the
worm body can conveniently be cast into the Frenet frame 38 of
coordinate M uð Þ; e1 uð Þ; e2 uð Þð Þ where M uð Þis the point along
the worm centerline, e1 uð Þ the curve tangent vector and e2 uð Þ the
curve normal vector (Fig. 2A).39,40 Each point of the worm surface
can be located using the curvilinear coordinates u; vð Þ where u is
the normalized distance along the worm central axis and v is the
radial distance from the centerline. We express X u; vð Þ the Carte-
sian coordinates of a point within a worm body as

X u; vð ÞD L

Zu

0

e1 sð Þds
0
@

1
AC ve2 uð ÞCM 0ð Þ (3)

where L is the overall length of the worm, M(0) its midpoint posi-
tion,

e1 sð ÞD cosQ sð Þ
sinQ sð Þ

� �
and e2 sð ÞD ¡ sinQ sð Þ

cosQ sð Þ
� �

: (4)

In the earlier publications on C. elegans tracking listed earlier,
the natural variation of the worm length occurring during peri-
staltic progression was considered negligible.34,35 Fontaine and
colleagues 36 briefly present, without applying it experimentally,
how their model could be modified to allow for elongations and
contractions via a “rate of length function” K(u) augmenting the
generative model in (3) to

X u; vð ÞD L

Z ​u

0

K sð Þe1 sð Þds
0
@

1
A

C ve2 uð ÞCM 0ð Þ:

This approach, however, does not model the natural variation in
length of the worm body in a viscous environment. Because the
bending angle and length function are coupled, changing one
function has an adverse effect on the position of the outline.

In this paper, we model worm length elasticity in a manner
that more closely resembles the natural worm crawling move-
ments by decoupling the length and bending angle functions.

Figure 2. Illustration of the geometric and motion model for C .elegans:
(A) Illustration of the notations used to define the worm centerline and
width profile. (B) The worm crawling motion model can be characterized
by a peristaltic progression factor h along the worm central axis and
deformation b. (C) Illustration of the radial displacement of the midpoint.
(D) Illustration of the contraction/extension operator.
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We introduce an elasticity factor x to the generative model (3),
which acts as a length multiplier (Fig. 2D). An elasticity factor
greater than one increases worm length, while a factor less than
one decreases it. The final generative model becomes

X u; vð ÞD L

Zxu

0

e1 sð Þds
0
@

1
AC ve2 xuð ÞCM 0ð Þ: (5)

The advantage of this formalism is that it only influences the
worm outline at its extremities which is consistent with the peri-
staltic movements of nematodes in a viscous environment. This
formalism requires the bend angle function Q uð Þto be defined
outside its original support [¡ 0:5; 0:5] as Q ¡ 0:5ð Þif
u< ¡ 0:5 and Q 0:5ð Þ if u> 0:5. The model thus becomes
parameterized by a state vector containing the midpoint posi-
tionM 0ð Þ, length L, bending parameters [aj; jD 1; . . . ;NQ],
width parameters [rj; jD 1; . . . ;NQ], and elasticity factor x.

The motion model

Fontaine et al. and Roussel et al. each have previously demon-
strated that the natural crawling motion of worms in a viscous
environment can be characterized by a peristaltic progression fac-
tor h along the worm axis and a deformation of the curvature of
the worm.33-36 In a previous publication, Roussel et al defined
crawling as a combination of peristaltic progression and radial

displacement. In this paper, crawling is modeled as peristaltic
progression and change of the angle model parameters. This new
approach is more powerful because it enables modeling large
changes in bending angle and therefore supports image sequences
acquired at low frame rates.

The equations of motion illustrated in Figure 2B calculate the
predicted state vector after the worm has undergone a peristaltic
progression, h; and deformation, b. We added the elasticity fac-
tor, x; to Fontaine’s original state prediction equation introduced
in the previous section.

ak

Mk

xk

2
64

3
75D

L uð Þ¡ 1L uC hð Þak¡ 1

Mk¡ 1

xk¡ 1

2
64

3
75C

b

Z ​xk¡ 1ð Þh

0

e1 sð Þds

Dx

2
666664

3
777775

(6)

where L uð Þ is the matrix of B-spline bases evaluated at s sampled
grid points in u.

One critical weakness in this motion model is that it does not
allow any degree of freedom at the midpoint located at posi-
tionM 0ð Þ. While displacement of the worm midpoint is usually
negligible from one frame to the next, during long-term tracking
positioning error accumulates at the worm midpoint, as illus-
trated in Figure 3, and can result in detection and tracking fail-
ure. In order to ensure long-term tracking stability, an additional
degree of freedom illustrated in Figure 2C was added to the

Figure 3. The effect of cumulative positioning error at the worm midpoint. (A) When radial midpoint shift deformation is disabled from the fitting algo-
rithm, cumulative error shown with an arrow tends to aggregate at the midpoint of the worm. (B) Adding radial midpoint shift deformation to the defor-
mation model allows the fitting algorithm to compensate for this error and produces a stable tracking output. This deformation operator is critical for
long term tracking stability.
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motion model,

Mk DMk¡ 1 CD ¢ e2 0ð Þ (7)

This radial shift of the midpoint of the worm must be com-
pensated for by a local change of the worm curvature uD localized
at the worm mid-section u2 [¡ 0:12; 0:12]:

uD uð ÞD atan
D

L ¢0:24
� �

if u2 ¡ 0:12; 0:12½ �
0 otherwise:

8<
: (8)

Incorporating the radial shift of the midpoint and curvature
correction into our motion model, our equation of motion
becomes:

ak

Mk

xk

2
4

3
5D

L uð Þ¡ 1L uC hð Þak¡ 1 CL uð Þ¡ 1
uD

Mk¡ 1

xk¡ 1

2
64

3
75

C

b

Zxk¡ 1ð Þh

0

e1 sð ÞdsCD ¢e2 0ð Þ

Dx

2
666664

3
777775

(9)

Motion estimation

In this section, we describe how the model parameters are esti-
mated based on measurement from the image. Model estimation
approaches can be separated into feature-based and region-based
approaches. Our research focuses on a region-based model esti-
mation algorithm inspired from our earlier work.33 The worm
surface is modeled as a piecewise-constant Mumford–Shah
model40 and we use a curve evolution formalism inspired by
Chan and Vese41 to fit the model to the image data. Model esti-
mation is defined as a deformable shape fitting process using a
deformable template formalism. The geometric template here is
the worm contour recorded at the previous frame and character-
ized by the contour points Xe. In the context of worm tracking,
the worm structure to be estimated in the current video frame is
considered a deformed version of this template. The new object
structure is thus captured by the deformation parameters
rD h;b;x;Dð Þ.

Let I Xð Þ denote the grayscale image on a domain V. We
define R rð Þ the region of space occupied by the worm object
from the previous frame to which the deformation parameters r
have been applied, we define V/R rð Þ the region outside R rð Þ.
Fitting the region-based active contour model as defined in the
previous section can be seen as an optimization process where a
quantity J r;mi;moð Þ is minimized with respect to the

deformation parameter r and appearance.mi;mo/.

J r;mi;moð ÞD
Z Z
R rð Þ

¡ I Xð Þ¡mið Þ2dSC
Z Z
V nR rð Þ

¡ I Xð Þ¡moð Þ2dS

(10)

For deformation parameters r, the optimal appearance levels
.mi;mo/ are estimated as the average pixel intensity within their
respective spatial supports R rð Þ and V/R rð Þ.

Given known intensity values .mi;mo/, the problem is to esti-
mate the shape deformation parameter r that minimizes the
objective functionJ r;mi;moð Þ. Minimizing the objective func-
tion is performed by gradient descent requiring the gradient of J
with respect to the deformation parameters r. Using classical
integral calculus42 the derivative Fr can be expressed in the form
of an integral over the contour C around the worm region R rð Þ
as:

Fr D @J

@r
D

Z
C

I Xð Þ¡moð Þ2 ¡ I Xð Þ¡mið Þ2� � dX
dr

Nds (11)

where N is the unit normal associated with the contour C. This
provides the basic tools for fitting deformable worm templates.
We use the fitting forces Fr in conjunction with an iterative gra-
dient search optimization approach to fit the worm templates to
the image data. If the Chan and Vese energy functional is applied
to a binary image, the mean intensity values mi and mo are known
quantities (1 and 0, respectively) and need not be estimated. Our
motion estimation algorithm does not differentiate between
moving and static worms. A paralyzed worm will have
measured deformation parameters of amplitude zero.

Occlusion
Limited overlap between worms or self-occlusion within a single

worm are very common occurances and explain in part why tracking
C. elegans worms can be such a challenging task. Fontaine et al.35,36

describe a feature-based algorithm inspired by Blake et al.43,44 in
which the model is matched to contour-based features extracted
from a binary image. When a contour point cannot be matched
to any detected contour, it is marked as occluded and excluded
from the fitting process.

In contrast, we modify equation (11) by limiting the integral
over the object contour C to the portion of the contour that does
not overlap with other worms. At each fitting iteration we com-
pute an initial fitting force Fr assuming that the entire model is
visible, then determine which portion of the worm contour is
occluded, and finally recompute an updated fitting force.

Multiple hypotheses tracking

In highly cluttered environments, tracking systems can suffer
from frequent mis-associations.45 We previously demonstrated
that a multiple hypotheses tracking approach can be successfully
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incorporated into a chain of recursive estimations of the worm
shape to greatly improve tracking performance in cluttered envi-
ronments.33,34 During the fitting process, it is very common for
several hypotheses to converge toward the same worm position
and shape, making these hypotheses redundant. To adress this
redundancy issue and to keep the number of tracked hypotheses
to a manageable number, we added an advanced hypotheses
management system, where redundant hypotheses are detected
then discarded using a deterministic hyerarchical clustering algo-
rithm.46 Only representatives of the4 fittest clusters are retained.

Detection and tracking system
We present the detection and tracking framework developed

for WormLab (MBF Bioscience, Williston, VT), software for
analyzing the locomotion of C. elegans. The software maintains
the successive position of each worm in the field of view. As a
new frame is analyzed, it cycles through the active worm tracks
and tries to estimate the worm structure for each of them. Esti-
mated worms denoted as observations which are then assigned to
their corresponding track (denoted hereafter as observation to
track association). The tracking process can be performed back-
ward, which allows worms with no predecessor—those suddenly
appearing in the field of view—to be tracked backward in time.
The tracking system provides the user with various image proc-
essing operators to maximize worm contrast, compensate for illu-
mination irregularities and obtain a clean binary image. These
operators include greyscale closing to eliminate background gra-
dient,47 gaussian smoothing and binary closing to clean up holes
inside the worm body.48 Optimal Image processing is highly
dependent on the experimental condition and beyond the scope
of this paper. For the purpose of the study presented here, all
video sequences are well contrasted, have uniform illumination
and are in focus. Plate and stage remain at a fixed position at all
time during video recording.

Figure 4 outlines the major components of the tracking
framework:

Detection
The tracking algorithms require initial detection of the

worms. We used the approach described in,34 which assumes
that the intensity of pixels that belong to the worm follow a dif-
ferent distribution than those belonging to the background agar
(i.e. darker worm on lighter background or lighter worm on
darker background). The detection algorithm relies on measuring
2 points of high curvature from a closed planar B-spline curve fit
to the object contour to automatically estimate the initial center
line of the worm object.49 This approach is straightforward and
robust; it can be used for initial object detection and long-term
tracking in situations when the worm is isolated and uncoiled.

Deformable model estimate
When worm coiling, entanglement, or the presence of back-

ground artifacts prevents direct detection of the worm, we use
the deformable shape registration. In this case a deformable

Figure 4. Illustration of the detection and tracking framework developed
for the novel C. elegans tracking software presented here. Estimation of
worm position and shape is done with a combination of a detection pro-
cess, deformable model estimate, and an observation to track fusion
module.

Table 1. Tracking performance summary of WormLab.

WormLab Roussel 2007 Basic Detection

Sequence Id Worm Count Frame Count Frame rate scaling FP FN Error FP FN Error FP FN Error

1 19 19 7.5 0.63 0 0 0.01 0 0 0.02 0 5 0.28
2 28 28 7.5 6 0 0 0.03 0 0 0.04 0 8 0.3
3 112 56 7.5 6 0 0 0.02 0 0 0.03 0 8 0.09
4 128 32 7.5 6 0 0 0.03 0 0 0.04 1 8 0.1
5 76 50 7.5 1.49 1 0 0.04 1 0 0.05 3 22 0.34
6 80 20 9 4.46 0 0 0.04 0 0 0.04 0 0 0.04
7 159 40 7 4.46 1 0 0.04 1 0 0.05 1 15 0.13
8 70 14 25 20 0 0 0.04 0 0 0.04 0 8 0.15
9 134 12 15 4.46 11 0 0.11 13 5 0.16 15 16 0.24
10 100 20 15 4.46 0 0 0.07 0 31 0.36 0 51 0.54
TOTAL 906 13 0 0.049 15 36 0.081 20 141 0.172

A set of image sequences are analyzed with WormLab then validated against manually labeled worms. False positive (FP), false negative (FN), average fitting
error as a fraction of the worm length, frame rate (frame/s), scaling (mm / pixel),worm count (validated) and frame count (validated) are reported for each
sequence. Our tracking system shows significant improvement in robustness and accuracy over both the basic detection and the Roussel 2007 tracking
algorithms.
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model estimation algorithm is used to fit the geometric model
from the previous frame to the current image.

Observation to track association
Observation to track fusion is achieved using a combined

shape filtering (gating) and Multiple Hypothesis data association.
Shape filtering (gating) eliminates very unlikely observation to
track pairs and/or perform a focused detection on a restricted
region of space.

At present, WormLab is not a real-time tracker, processing
time largely depends on the number of tracked animals as well as
the complexity of the tracking scenario. Typically,10 Wild-Type
(N2) C. elegans evolving in a relatively clean agar plate can be
processed at an average of 7–10 frames per second but background
artifacts, frequent coiling or interactions will have a negative
impact on processing speed.

Material and methods

We demonstrate our tracking algorithm on 10 video sequen-
ces of wild-type (N2) adult C. elegans nematodes residing on
standard NGM, generously provided by Dr. Deborah Neher,
University of Vermont, Burlington VT, Dr. Christoph Schmitz,
Ludwig-Maximilians-Universit€at, Munich, Germany, and Randy
D. Blakely, Vanderbilt University, Nashville TN. Our videos
were acquired with the WormLab software using a purpose-built
illumination stand (MBF Bioscience) equipped with a Nikon
60 mm Micro lens (Nikon Inc., Melville, NY, USA) and an
AVT Stingray F-504B digital camera (Allied Vision Technologies
GmbH, Stadtroda, Germany) connected to the host computer
via Firewire/IEEE1394 interface. Video was captured at rates
between 7 – 25 frames per second and saved as AVI files with
MPEG-4 20:1 compression. The validation data set was com-
piled to encompass a wide range of imaging conditions with scal-
ing between 0.63 to 4.46 mm/pixel, frame rate between 5 and 15
frame/s. All our videos are relatively short and did not exceed
500 frames (Table 1).

In order to quantify the performance of our automated worm
tracking system, its output must be compared to ground truth
data. In the simplest, most direct approach, a human observer
manually labels the head, tail, midpoint and centerline points for
each worm in the sequence. The result of this process is the
ground truth against which multiple tracking algorithms can be
compared. This approach is very labor intensive and the range of
object features that can be generated by a user is limited.

As an alternative to exhaustive manual labeling of the entire
dataset, we can process all the validation sequences using Worm-
Lab and then correct any detection and tracking errors to obtain
an acceptable ground truth for the extensive range of worm met-
rics available within WormLab. Similar validation approaches
have been used previously to quantify the performance of a detec-
tion process.50 The rich validation data set would allow the quan-
tification of tracking system performance broken down by worm
geometry (length, length-to-width ratio, etc.), conformation
(coiling angle, self-overlap, etc.) or interaction scenario (overlap

with other worms). There are drawbacks to using this approach,
however, because the edit-based ground truth is biased in favor
of the software used to generate the initial detection data. Small
sub-pixel detection errors are likely to be ignored by the user,
thus artificially increasing the average detection accuracy for this
system. Ground truth datasets obtained by editing the output of
WormLab are only acceptable to quantify the detection rate (i.e.,
false positive, false negative) of the tracking software. They
should not be used to quantify the accuracy of this worm tracker.

To address this shortcoming, we adopted a hybrid validation
approach combining classical and edit-based validation. We per-
form a 3-step process to generate the ground truth: (i) the image
sequence is processed using WormLab, (ii) the result is edited
using the WormLab editing tools, (iii) finally, the user manually
marks the location of the head and tail extremities for each worm

Figure 5. Illustration of the tracking output for 2 worms through entan-
glement: (A) original images (B) tracking result overlaid on the original
images.
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present in the sequence. These manually labeled markers will be
used to estimate the system accuracy.

Even in our short videos the detected worm objects can num-
ber in the thousands. To manually label each of these instances
of a worm at every frame would be extremely labor intensive. To
avoid this problem, we took advantage of the inherent redun-
dancy of the tracking data set and manually validated a subset of
the video frames taken at a one second interval.

This validation protocol was used to evaluate the performance
of WormLab against the tracking system developed as part of our
previous work33 and a “basic detection” method that is our
approximation of the typical approach used in many worm track-
ers.14,18-22 With this method, shapes are extracted from a binary
image generated through thresholding and refined using a closing
morphological operation. The extremities of the worm are
detected as points of high curvature from the worm contour. The

worm spinal axis is finally
extracted using a skeleto-
nization operator. This
“Basic detection” tech-
nique is very similar to
the detection algorithm
implemented in Worm-
Lab. The main difference
is that WormLab can use
a deformable model esti-
mation technique as an
alternative when detec-
tion fails due to coiling,
entanglement or imaging
clutter.

Results

The tracking system
described in this paper
provides excellent track-
ing results. Figures 5–7
provide a visual indica-
tion of the system perfor-
mance; it shows that our
model provides stable
tracking output even in
complex tracking envi-
ronment such as coiling
or entanglement. Figures
6–7 illustrate the result
of tracking worms
through coiling. In
Figure 6 the worm starts
in a complex coiled con-
formation (tD 0s) and
initially cannot be
detected, when it uncoils
(tD 1:4s), the worm is
detected and tracked
backward through
coiling.

Validation data in
Table 1 is represented as
the percentages of false
positive and false negative
identifications. A false

Figure 6. Illustration of the tracking output for a worm undergoing coiling (self-overlap): (A) original images (B) tracking
result overlaid on the original images. When the analysis starts, the worm is in coiled configuration and cannot be
detected. The tracking algorithm can detect the worm when it uncoils and track the worm backward in time using our
shape registration algorithm.
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positive identification is an
automatically generated
worm structure that cannot
be matched by a manually
generated one across all
images in the video
sequence. False positives
are typically due to back-
ground artifacts mistakenly
identified as worms. Con-
versely, a false negative
identification is a manually
marked worm that is not
automatically detected in
the image of the video
sequence.

The error between auto-
matically and manually
detected worms is esti-
mated as the average abso-
lute distance between their
respective extremities. In
the case of false negatives,
when the tracking algo-
rithm fails to detect a
worm, we set the error to
half the length of the
missed worm. In order to
be able to compare detec-
tion accuracy between
worms of various sizes, the
error is normalized and
expressed as a percentage of
worm length. The results
of our validation are pre-
sented in Table 1.

Across all validation
sequences, a total of 906
worms have been labeled
with a false positive rate of
1.4%, a false negative rate
of 0.0%, and a normalized
detection error of 4.9%.
One of the difficulties with
validating the software is
that performance is highly
dependent on the complex-
ity of the tracking scenario,
such as coiling or interac-
tion with other worms. For
example, most of the error
reported in Table 1 is from
the sequences 9 and 10 where worms are coiling extensively.
WormLab uses detection-based tracking whenever possible, i.e.,
when the worm is uncoiled and un-occluded. In sequences where
C. elegans crawl on clean uncluttered plates with no coiling or

interaction, we expect the tracking results for any detection-based
system to be quite good. In sequence 6 where worms remain in
unoccluded, uncoiled state the performance of the 3 tracking
algorithms are virtually identical. In order to provide a fair

Figure 7. Illustration of the tracking output for a worm undergoing coiling (self-overlap): (A) original images (B) track-
ing result overlaid on the original images. The tracking process is made more challenging due to the presence of
food and eggs clutter. Precise position and conformation of the worm can be measured using our shape registration
algorithm.
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assessment of the performance of our tracking system in difficult
scenarios, we quantify the complexity of the tracking scene using
the following complexity metrics: A the width of the worm in
pixels to estimate optical resolution, B overlap as the proportion
of the worm contour that is occluded by itself, other worms, or a
background artifact, C the degree of coiling defined as the angle
formed by the head, midpoint and tail locations. Using these

complexity metrics, we focused our performance assessment on
the more challenging tracking scenarios and performed meaning-
ful comparisons between tracking systems. We evaluated the per-
formance of WormLab against (A) the tracking system developed
as part of our previous work33 and (B) a standard detection based
tracking algorithm, “basic detection”.20,29 The result of this per-
formance analysis is shown in Figure 8.

Discussion

In this paper we have validated this
approach by evaluating the perfor-
mance of our tracking system qualita-
tively and quantitatively. Using
complexity metrics, we focused our
performance assessment on the more
challenging tracking scenarios to per-
form meaningful performance assess-
ments. When the complexity of the
tracking scenario increases the tracking
performance and accuracy is expected
to diminish. On the performance anal-
ysis shown on Figure 8, the 3 systems
under consideration exhibit similar
tracking accuracy in scenarios with low
complexity, such as large worm width,
low occlusion, and small degree of coil-
ing. When the complexity of the sce-
nario increases, however, the accuracy
of the tracking system in WormLab
barely diminishes and WormLab con-
sistently outperforms the 2 other track-
ing algorithms by a significant margin.

The relatively poor performance of
detection-based systems shown in
Figure 8 can be explained by the fact
that these systems rely exclusively on a
standard worm detection algorithm
based on a classical thinning method
to extract the worm centerline. These
systems do not handle coiling or entan-
glement and are expected to drop a
track as soon as occlusion occurs.

Factors that contribute to higher
detection error include: clutter, overlap
(plate density), and low resolution.
When subtle body deformations need
to be quantified, the detection error
can be significantly reduced by using
clean, low density plates acquired at
high resolution and/or high
magnification.

We addressed the problem of track-
ing multiple C. elegans worms in a
manner that is efficient and robust to

Figure 8. Normalized detection error and false negative count as a function of scene complexity met-
rics. The left column shows that the detection error tends to increase with scene complexity that we
measure with: (A) degree of coiling; (C) worm width (in pixels) and (E) overlap. On the right, the evolu-
tion of the false negative count is similar, it tends to increase with scene complexity that we measure
with: (B) degree of coiling; (D) worm width (in pixels) and (F) overlap. It consistently outperforms Rous-
sel 200734,35 and the standard “basic detection” tracking algorithm. During validation, the WormLab
tracking system did not return a single false negative detection error.

e982437-10 Volume 3 Issue 4Worm



entanglement and coiling. A modeling approach for the shape
and motion of the C. elegans body was successfully applied to the
tracking of multiple worms observed in time-lapse video data.
Many of the weaknesses identified in our previous tracking algo-
rithm33 have been addressed, notably the inability to identify
individual worms in an entangled cluster at the first frame. Our
tracking algorithm can now detect the worm when it becomes
un-occluded and track the worm backward in time using our
shape registration algorithm. Another issue identified in our pre-
vious algorithm was the loss of accuracy when tracking worms in
coiled state. By incorporating occlusion information into our
new model estimation approach we can now track worms in all
but the most complex occlusion scenarios without any noticeable
loss of tracking robustness or accuracy. One noticeable weakness,
inherent to our modeling approach, can be observed in instances
of prolonged occlusion of 10 frames or longer for both worm
extremities. This is typically the case in tail chase coiling behavior
or when 2 worms adhere to one another. Further research is
needed to improve tracking in these scenarios.

Additional degrees of freedom have been added to our initial
motion model: the worm centerline is now extensible and can be
adjusted allowing the capture of the subtle length variation occur-
ring naturally in the crawling motion of worms and similar
organisms. The addition of the radial shift of the midpoint to
our deformation model has proven very beneficial for the track-
ing of worms over an extended duration. While our algorithms
can back-track the worm to a position of entanglement, overall
performance would benefit from the inclusion of an additional
module to detect worms even in entangled state.

Our study is restricted to the tracking of adult C. elegans.
Younger worms at the larvae stage are very challenging objects to
track because of their low contrast and tendencies to adhere to
adult worms causing occlusion of both their extremities. Practical
tracking of C. elegans larvae should only be attempted on clean
plates in the absence of adults.

The algorithms presented in this paper focus exclusively on
the tracking of C. elegans worms through crawling motion, in the
future, using alternative deformation pattern and equation of
motion, we will expand the framework to different modes of
worm locomotion such as swimming in fluid environments.
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