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Our paper on the relationship between the spatial distribution of language

richness and mammal species richness recently argued that little congruence

exists between the distribution of threatened languages and threatened mam-

mals in New Guinea, despite high overlap between areas of high language

richness and high mammal species richness across this island [1]. In reply to

this, Cardillo et al. re-analysed the data at one of the spatial resolutions that

we considered in our paper, claiming that the original analyses were statistically

flawed [2]. In short, Cardillo et al. argue that the inclusion in our analyses of

coastal pixels containing both land and sea, as well as a lack of consideration

of spatial autocorrelation, has led us to wrongly derive conclusions about

patterns of distribution in language and species richness.

We believe such conclusions are misleading for various reasons. First, the

inclusion of coastal pixels in our analyses has no impact on the results reported.

Re-running the analyses at the 50 km resolution without the inclusion of these

mixed pixels, we show that the direction and significance of the Pearson corre-

lation coefficients between language richness and mammal richness (r ¼ 0.23,

p ¼ 0.004) and between threatened language richness and threatened mammal

richness (r ¼ 20.15, p ¼ 0.03) both still hold. Although the correlation between

threatened language richness and threatened mammal richness becomes non-

significant when only coastal pixels are considered (r ¼ 20.03, p ¼ 0.75), we

also show that both the direction and significance of the relationship between over-

all language richness and mammal richness still hold for analysis of coastal cells

alone (r ¼ 0.41, p , 0.001). Furthermore, a high number of languages, primarily

in the recent Austronesian language radiation, show a narrow distribution along

the northern coast of New Guinea [3] and are thus largely restricted to coastal

pixels; excluding such an important component of New Guinea linguistic diversity

from analysis may therefore be expected to bias conclusions about island-wide

patterns and correlates of regional language richness.

Second, there is a fundamental difference between correlation and regression

[4], which the authors fail to acknowledge. The use of regression implies a search

for assumed causality, while the use of correlation simply looks for similarity (or

dissimilarity) in patterns between associated variables. In this study, we did not

expect a decrease in one index of richness to be the cause of a decrease (or increase)

in the other, which is why we reported Pearson correlation coefficients and did

not use linear models. Given that no causality was sought between mammal

species richness and language richness, Pearson correlations were thus the most

adequate option to explore the level of congruence in the spatial distribution of

these indices.

Third, the assumptions made by Cardillo et al. that underpin the use of their

simultaneous autoregressive error (SAR) approach to establish relationships

between language richness and mammal species richness are actually invalid.

Assuming that the authors log-transformed the variables while adding 1 (as a

high number of pixels do not contain any threatened languages), simple

Shapiro–Wilks normality tests show that their log-transformed response vari-

ables (namely, log(language richness) and log(threatened language richness))

are zero-inflated, displaying consistent and significant deviation from a normal
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Table 1. (a) Best (within a DAIC of 4) candidate models exploring language richness as a function of mean elevation, distance to the coast, latitude and
mammal species richness at the 50 km spatial resolution, using a general linear model approach combined with a negative binomial distribution. (b) Best
(within a DAIC of 4) candidate models exploring threatened language richness as a function of mean elevation, distance to the coast, latitude and threatened
mammal species richness at the 50 km spatial resolution, using a general linear model approach combined with a negative binomial distribution.

model AIC

(a)

language richness � mammal richness � distance þ elevation þ latitude 1846.98

language richness � mammal richness � distance þ latitude 1848.05

(b)

threatened language richness � distance � latitude þ elevation 1055.84

threatened language richness � elevation � latitude þ distance 1056.98

threatened language richness � elevation þ distance þ latitude 1057.46

threatened language richness � distance � latitude þ threatened mammal richness þ elevation 1057.61

threatened language richness � elevation � distance þ latitude 1058.76

threatened language richness � elevation � latitude þ threatened mammal richness þ distance 1058.95

threatened language richness � threatened mammal richness þ elevation þ distance þ latitude 1059.28

threatened language richness � threatened mammal richness � latitude þ elevation þ distance 1059.62
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distribution (all p , 0.001 at the 50 km resolution). Failure to

secure a normal distribution for the variable to be predicted

under the assumption of normally distributed errors is not

the only issue; transformation of count data to continuous

data further violates the assumptions of response variable

distribution, with such transformed data known to perform

poorly (especially if mean counts are low and dispersion

high) [5].

Fourth, Cardillo et al. do not state how they accounted for

spatial autocorrelation in their SAR modelling approach. This

process is indeed very subjective; nearest neighbourhoods

and spatial weights matrices can be defined in a number of

ways [6,7], and there is no current standard ‘rule’ as to

which approach is best. However, the choice of nearest-neigh-

bour structure and spatial weights matrices can have a huge

influence over the subsequent outcomes of SAR models [8].

We attempted to reproduce the findings reported by Cardillo

et al. using inverse distance nearest neighbours estimation via

variogram inspection with row-standardized spatial weights,

combined with their subsequent SAR models. This approach

produced the closest match to the reported Moran’s I values

and models in their table 1. There remained, however, differ-

ences between our values and the values Cardillo et al.
reported, for example with our analyses producing much

higher Moran’s I values than the values reported for their

analyses. In short, it has not been possible for us to reproduce

their results, and our best attempt leaves us with significant

spatial autocorrelation in the SAR model residuals based on

Moran’s I, with spatial autocorrelation present at similar

low levels to those the authors claim must be accounted for

in justification of the SAR modelling process they employ [2].

To check the validity of our original results, and to assess

the potential for spatial autocorrelation to impact the level of

significance in the relationships both between total language

richness and mammal richness and between threatened

language richness and threatened mammal richness, we

decided to run new analyses. Because the response varia-

bles considered by Cardillo et al. cannot be considered to

follow a Gaussian distribution, even post-transformation,
we conducted general linear models with negative binomial

error distributions and examined the relationships between

total language richness and mammal richness and between

threatened language richness and threatened mammal rich-

ness; we then calculated Moran’s I on the residuals of these

models. Using this approach, we show that total mammal

richness positively and significantly influences language rich-

ness (estimate ¼ 0.009+0.001, p , 0.001), while threatened

mammal richness negatively and significantly influences

threatened language richness (estimate ¼ 20.07+0.003,

p ¼ 0.03). Examination of the spatial structure in the residuals

of these models revealed the presence of positive spatial auto-

correlation at very short distances (figure 1). We assessed the

level of significance of the spatial autocorrelation in the

residuals for these models via permutation tests [9]. These

tests relied on calculating the smallest distance at which all

grid cells were linked, and then building a row-standardized

spatial weight matrix. While significant, the level of spatial

autocorrelation in the model residuals was small: Moran’s

I ¼ 0.07, p ¼ 0.001 in both cases.

We then modelled language richness as a function of

elevation, distance to the coast, latitude and mammal species

richness at the 50 km spatial resolution, again using a general

linear model approach with a negative binomial error distri-

bution. Using an Akaike information criterion (AIC) approach,

results showed that total mammal richness was present as a

significant predictor within all of the top candidate models

(table 1a). Modelling threatened language richness instead of

total language richness led to a different outcome; in this

case, threatened mammal richness was present as a variable

within four of the eight top models, and within only one

model with DAIC , 2 (table 1b). In order to explore the influ-

ence of geographical factors on the spatial distribution of

threatened language and mammal richness across New

Guinea, we then used a general linear model approach com-

bined with a negative binomial error distribution (or Poisson

distribution, in the case of threatened mammal richness) to

explore the respective influence of elevation, distance to the

coast and latitude on these two response variables. In both
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Figure 1. Semivariograms and correlograms of spatial dependence in the residuals of general linear models (GLMs) between total language and mammal species
richness (a,c,e) and threatened language and threatened mammal species richness (b,d,f ) across New Guinea within seven equally spaced distance classes (the
minimum number at which all classes contained more than 100 observations between pairs of residuals). Maps of total language and mammal species richness (e)
and threatened language and mammal species richness ( f ) across New Guinea at the 50 km2 grid considered in our analyses are also provided (increasing richness
from paler to darker squares in richness bins selected according to natural breaks in the distribution of respective richness indices; see legends in (e) and ( f )). The
semivariograms (a) and (b) describe the similarity between pairs of model residuals according to Euclidean distance between them in space within the seven
distance classes. Exponential variogram models (dashed line) have been approximated to model the spatial dependence of GLM model residuals for both relation-
ships; the point of asymptote (or sill) depicts the distance at which spatial autocorrelation no longer exists in these residuals. The correlograms (c) and (d ) describe
the level and direction of spatial autocorrelation present in the GLM model residuals at each distance class (numbers of observations within each distance class is
provided in the figure). Positive values of Moran’s I denote positive spatial autocorrelation between model residuals, while negative values denote negative spatial
autocorrelation. Filled circles indicate significant levels of spatial autocorrelation for given distance classes (Moran’s I; R ¼ 1000 permutation tests), while empty
circles indicate non-significant levels of spatial autocorrelation.
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Table 2. The best-fitting general linear models (DAIC , 2) for threatened language richness and threatened mammal species richness (using negative
binomial and Poisson error distributions respectively) according to the following geographical predictor variables: elevation, distance to the coast and latitude.
(Coefficient estimates, standard errors (s.e.), and z- and p-values are provided. Variance inflation factors for all variables were less than or equal to 1.35.)

response variable coefficient estimate s.e. z-value p-value

threatened language richness intercept 1.52 0.14 10.76 ,0.001

elevation 22.83 � 1024 1.13 � 1024 22.49 0.01

distance 24.12 � 1026 1.14 � 1026 23.62 ,0.001

latitude 0.18 0.02 7.52 ,0.001

threatened mammal richness intercept 0.76 0.11 6.81 ,0.001

elevation 1.85 � 1024 1.31 � 1025 1.41 0.16

distance 21.52 � 1026 5.56 � 1027 22.74 0.01

latitude 20.01 0.02 20.46 0.65

elevation � latitude 26.22 � 1025 2.25 � 1025 22.76 0.01

rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20150591

4

cases, the best models (based on AIC weights) included all

three predictor variables; whereas elevation and latitude had

opposite effects on threatened language richness and threatened

mammal richness (negative and positive, and positive and

negative, respectively), distance to the coast negatively affected

both threatened language richness and threatened mammal

richness (table 2). Altogether, these results therefore confirm

our previous conclusions, as there is positive congruence

between total language richness and mammal richness, but

spatial patterns of threatened language richness and threatened

mammal richness appear to be driven by different processes.

Interestingly, consideration of spatial autocorrelation

actually does not challenge our results. The Dutilleul’s modi-

fied t-test considered by Cardillo et al. has been shown to

remain prone to inflated type 1 error rates [10,11]. This test

is moreover dramatically susceptible to the number of

distance classes considered in the estimation of spatial

autocorrelation and effective sample sizes, with a greater

number of classes estimating greater spatial autocorrelation

as well as a reduced effective sample size and degrees of free-

dom [12]. Running Dutilleul’s modified t-tests on our dataset

to reproduce Cardillo et al.’s findings reveals that the number

of distance classes considered must have been based on

Sturge’s rule for bin width selection [13] (n ¼ 17). However,

given: (i) the low overall positive level of Moran’s I found

in the residuals of the relationships between language and

mammal richness and between threatened language and

threatened mammal richness (0.07), (ii) the significant nega-

tive autocorrelation in these residuals at greater distance

classes (figure 1c,d ), and (iii) the very small number of obser-

vations found within the greatest of 17 distance classes, we

believe that consideration of such a large number of distance

classes has probably resulted in overcorrection of the effective

sample size. We thus ran further Dutilleul’s modified t-tests

for our data based on a reduced number of distance classes,
defined: (i) as the minimum number at which all distance

classes contained .100 observations (figure 1c,d; n ¼ 7),

and (ii) according to the distance threshold at which varia-

tion according to distance reached asymptote in visualized

variograms of the residuals of the relationship between

language richness and mammal richness and between threa-

tened language richness and threatened mammal richness

(600 km; figure 1a,b; n ¼ 4). Results reveal the heavy depen-

dence of this method on the allocation of distance classes,

and assist in demonstrating the validity of the conclusions

drawn in our original analyses. Modified t-tests for the corre-

lation between total mammal richness and total language

richness showed that while using seven equally spaced distance

classes the correlation was non-significant (r ¼ 0.28, p ¼ 0.11),

under selection via asymptote in visualized variograms the

correlation was significant (r ¼ 0.28, p ¼ 0.04; n ¼ 4 distance

classes). However, under both distance class selection

methods, the correlation between threatened mammal richness

and threatened language richness remained non-significant

(r ¼ 20.11, p ¼ 0.27 and 0.16, respectively).

In conclusion, the main message of our original study was

that, although spatial congruence in language and mammal

species richness exists across New Guinea, this pattern does

not hold when looking at richness of threatened languages

and species. This indicates that landscape-scale threats and

associated conservation management requirements differ

between these two components of biocultural diversity. The

analyses presented by Cardillo et al. do not challenge our

results, and the implications for regional maintenance of

biocultural diversity are the same whether one considers our

original analyses, the new analyses we present here, or even

Cardillo et al.’s analyses. Whether there is either a significant

negative correlation or no significant correlation between the

spatial distribution of threatened languages and threatened

mammal species, our original conclusions remain valid.
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